CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

The Church-Turing Thesis

• Let $Y \subseteq \{0, 1\}^*$

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in Y if and only if there exists a Turing machine that decides Y.

Mathematically precise notion

The Church-Turing Thesis

- The Church-Turing thesis says:
 - The Turing machine model is a "correct" way of modeling arbitrary computation
 - The informal concept of an "algorithm" is successfully captured by the rigorous definition of a Turing machine
- Consequence: It is really, truly impossible to design an algorithm that decides SELF-REJECTORS or any other undecidable language!

Are Turing machines powerful enough?

- **OBJECTION:** "To encompass all possible algorithms, we should add various bells and whistles to the Turing machine model."
- Example: Left-Right-Stationary Turing Machine: Like an ordinary Turing machine, except it has a transition function $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R, S\}$
- S means the head does not move in this step

Left-right-stationary Turing machines

- Let Y be a language
- We proved:

Theorem: There exists a left-right-stationary TM that decides Y

if and only if there exists a TM that decides Y

Multi-tape Turing machines

Another TM variant: "k-tape TM"

• Transition function:

$$\delta: Q \times \Sigma^k \to Q \times \Sigma^k \times \{L, R, S\}^k$$

• (Exercise: Rigorously define

acceptance, rejection, etc.)

Multi-tape Turing machines

• Let k be any positive integer and let Y be a language

Theorem: There exists a k-tape TM that decides Y if and only if there exists a 1-tape TM that decides Y

How should we keep track of the locations of the simulated heads?

A: Store the location data in the machine's state

B: Ensure that the real/simulated heads' locations are always equal

C: Use special symbols to mark the cells containing simulated heads

D: Store the location data in a single dedicated tape cell

Proof on upcoming 12 slides

Respond at PollEv.com/whoza or text "whoza" to 22333

Idea: Pack a bunch of data into each cell

ullet Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

- Idea: Pack a bunch of data into each cell
- Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

• The one "real head" will scan back and forth, updating the simulated heads' locations and the simulated tape contents. (Details on the next slides)

- Let $M=\left(Q,q_0,q_{\rm accept},q_{\rm reject},\Sigma,\sqcup,\delta\right)$ be a k-tape Turing machine that decides Y
- We will define a 1-tape Turing machine

$$M' = (Q', q'_0, q'_{accept}, q'_{reject}, \Sigma', \sqcup', \delta')$$

that also decides Y

Simulating k tapes with 1 tape: Alphabet

- Let $\Gamma = \Sigma \cup \{\underline{b} : b \in \Sigma\}$, i.e., two disjoint copies of Σ
 - An underline represents a simulated head
- New alphabet: $\Sigma' = \{\sqcup'\} \cup \left\{ \begin{array}{c} b_1 \\ \vdots \\ b_k \end{array} : b_1, \dots, b_k \in \Gamma \right\}$
 - One symbol in Σ' is one "simulated column" of M
- Technicality: Encode input over the alphabet $\left\{ egin{array}{c|c} 0 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \vdots & 1 & 1 \\ \hline \end{bmatrix} \right\}$ instead of $\{0,1\}$

Simulating 2 tapes with 1 tape: States

Simulating k tapes with 1 tape: States

New state set:

$$Q' = \left\{ \begin{array}{c|c} q & D \\ \hline b_1 & \sigma_1 \\ \vdots & \vdots \\ \hline b_k & \sigma_k \end{array} \right. : \begin{array}{c} q \in Q \\ D \in \{L, R\} \\ b_1, \dots, b_k \in \Sigma \cup \{?\} \\ \sigma_1, \dots, \sigma_k \in (\Sigma \times \{L, R, S\}) \cup \{?\} \end{array} \right\}$$

Simulating k tapes with 1 tape: Start state

New start state:

$$q'_0 = egin{array}{c|c} q_0 & L \\ ? & ? \\ \vdots & \vdots \\ ? & ? \end{array}$$

Simulating k tapes with 1 tape: Transitions

$$\delta' \begin{pmatrix} \boxed{q} & D \\ b_1 & \sigma_1 \\ \vdots & \vdots \\ b_k & \sigma_k \end{pmatrix}, \boxed{c_1 \\ \vdots \\ c_k \end{pmatrix} = \begin{pmatrix} \boxed{q} & D \\ \boxed{b'_1} & \sigma'_1 \\ \vdots & \vdots \\ \boxed{b'_k} & \sigma'_k \end{pmatrix}, \boxed{c'_1 \\ \vdots \\ \boxed{c'_k} \\ \end{pmatrix}$$

• If
$$\sigma_j = (a, D)$$
 and $c_j = b_j$:

Let
$$b_i' = ?$$
,

$$\sigma_i'=?$$
,

$$c_i' = a$$

• If
$$\sigma_j = (a, S)$$
 and $c_j = \underline{b_j}$:

Let
$$b_i' = a$$
,

$$\sigma'_j = ?$$
,

$$c_j' = \underline{a}$$

• If
$$\sigma_i = ?$$
 and $b_i = ?$:

Let
$$b_i' = c_j$$
,

$$\sigma'_j = ?$$
,

$$c_j' = \underline{c_j}$$

Let
$$b'_j = b_j$$
,

$$\sigma'_j = \sigma_j$$
,

$$c_j' = c_j$$

Simulating k tapes with 1 tape: Transitions

$$\delta' \begin{pmatrix} \boxed{q} & R \\ b_1 & \sigma_1 \\ \vdots & \vdots \\ b_k & \sigma_k \end{pmatrix}, \ \sqcup' \end{pmatrix} = \begin{pmatrix} \boxed{q} & L \\ \boxed{b'_1} & \sigma'_1 \\ \vdots & \vdots \\ \boxed{b'_k} & \sigma'_k \end{pmatrix}, \ \boxed{c'_1} \\ \vdots \\ \boxed{c'_k} \end{bmatrix}, L$$

- If $\sigma_i = ?$ and $b_i = ?$:
- In all other cases:

Let
$$b_j'=\sqcup$$
, $\sigma_j'=?$, $c_j'=\underline{\sqcup}$
Let $b_j'=b_j$, $\sigma_j'=\sigma_j$, $c_j'=$

Simulating k tapes with 1 tape: Transitions

$$\delta' \begin{pmatrix} \boxed{q & \mathbf{L}} \\ b_1 & \sigma_1 \\ \vdots & \vdots \\ b_k & \sigma_k \end{pmatrix} = \begin{pmatrix} \boxed{q' & \mathbf{R}} \\ \boxed{b'_1} & \sigma'_1 \\ \vdots & \vdots \\ \boxed{b'_k} & \sigma'_k \end{pmatrix}, \boxed{c'_1} \\ \boxed{\vdots} \\ \boxed{b'_k} & \sigma'_k \end{pmatrix}$$

- Let $(q', a_1, ..., a_k, D_1, ..., D_k) = \delta(q, b_1, ..., b_k)$, treating $b_i = ?$ as $b_i = \sqcup$
- If q' is a halting state:

Let
$$b_i' = ?$$
,

$$\sigma_i'=?$$
,

$$c'_i = \sqcup$$

• If
$$\sigma_i = ?$$
 and $b_i = ?$:

Let
$$b_i' = \sqcup$$
,

Let
$$b'_j = \sqcup$$
, $\sigma'_j = (a_j, D_j)$, $c'_j = \underline{\sqcup}$

$$c'_j = \underline{\sqcup}$$

Let
$$b'_j = b_j$$

Let
$$b'_j = b_j$$
, $\sigma'_j = (a_j, D_j)$, $c'_j = \sqcup$

$$c'_j = \sqcup$$

Simulating k tapes with 1 tape: Halting states

$$q'_{
m accept} = egin{array}{c} q_{
m accept} &
m R \\ ? & ? \\ dash \vdots & dash \vdots \\ ? & ? \end{array}$$

$$q'_{\text{reject}} = egin{array}{c} q_{\text{reject}} & R \\ ? & ? \\ \vdots & \vdots \\ ? & ? \end{array}$$

- That completes the definition of M'
- Exercise: Rigorously prove that M' decides the language Y

TMs can simulate all "reasonable" machines

- We could add various other bells and whistles to the basic TM model
 - The ability to observe the two neighboring cells
 - The ability to "teleport" back to the initial cell in a single step

- A two-dimensional tape
- None of these changes has any effect on the power of the model

The Church-Turing Thesis

• Let $Y \subseteq \{0, 1\}^*$

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in Y if and only if there exists a Turing machine that decides Y.

Mathematically precise notion