CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Homework reminder

- Exercises 1-3 are due today at 11:59pm
- If you joined the course late and you need an extension, send me an email

Which problems can be solved through computation?

Deciding a language

- Let M be a Turing machine and let $Y \subseteq \{0, 1\}^*$
- We say that *M* decides *Y* if
 - M accepts every $w \in Y$, and
 - M rejects every $w \in \{0, 1\}^* \setminus Y$

Decidable and undecidable

- Let $Y \subseteq \{0, 1\}^*$
- We say that Y is decidable if there exists a Turing machine M that decides Y
- Otherwise, we say that Y is undecidable

Which problems can be solved through computation?

Which languages are decidable?

Examples

- PALINDROMES = $\{w \in \{0, 1\}^* : w \text{ is the same forward and backward}\}$
- PARITY = $\{w \in \{0, 1\}^* : w \text{ has an odd number of ones}\}$
- $Y = \{0^K \langle K \rangle : K \text{ is a positive integer}\}$

Is every language decidable?

Undecidability

Theorem: There exists an undecidable language.

- To prove this theorem, we need to rule out all possible Turing machines!
- How can we possibly do this?

The liar paradox

Code as data

- Plan: We will construct a language Y such that trying to decide Y creates a liar paradox
- Key idea: A Turing machine M can be encoded as a binary string $\langle M \rangle$
 - "Code as data"
 - Specific encoding choice doesn't matter for now

Turing machines analyzing Turing machines

- If *M* is a Turing machine...
- Then $\langle M \rangle$ can be the input for another Turing machine!
- Compilers, syntax highlighting, linters...

Self-rejecting Turing machines

- Let *M* be a TM
- What if we run M on $\langle M \rangle$? Strange, but legal
- Three possibilities:
 - M accepts (M)
 - M rejects (M)
 - M loops on $\langle M \rangle$
- **Definition:** We say that a Turing machine M is self-rejecting if M rejects $\langle M \rangle$

Self-rejecting Turing machines

• Let SELF-REJECTORS = $\{\langle M \rangle : M \text{ is a self-rejecting Turing machine}\}$

Theorem: SELF-REJECTORS is undecidable

- Proof: Let M be any Turing machine
- If M rejects $\langle M \rangle$, then $\langle M \rangle \in SELF$ -REJECTORS
- If M doesn't reject $\langle M \rangle$, then $\langle M \rangle \notin SELF-REJECTORS$
- Either way, *M* does not decide SELF-REJECTORS!

Visualizing the proof: "Diagonalization"

What happens when we run this Turing machine...

on this input?	7
----------------	---

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_1	~	~	×	∞	•••
M_2	×	×	~	✓	•••
M_3	~	✓	×	×	•••
M_4	∞	✓	×	∞	•••
:	:	:	:	:	•.

$$X = Reject$$

Visualizing the proof: "Diagonalization"

What happens when we run this Turing machine...

on this input?							
	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••		
M_1	✓	~	×	∞	•••		
M_2	×	×	✓	~	•••		
M_3	/	~	X	×	•••		
M_4	∞	~	×	∞			
•	:	:	:	:	٠.		

$$X = Reject$$

Undecidable language:

Interpreting the theorem

- We proved that there does not exist a Turing machine that decides
 SELF-REJECTORS
- **OBJECTION:** "Yeah, but I don't particularly care about Turing machines. Is there some other type of algorithm that decides SELF-REJECTORS?"
- **RESPONSE:** The Church-Turing Thesis

The Church-Turing Thesis

• Let $Y \subseteq \{0, 1\}^*$

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in Y if and only if there exists a Turing machine that decides Y.

Mathematically precise notion

The Church-Turing Thesis

- The Church-Turing thesis says:
 - The Turing machine model is a "correct" way of modeling arbitrary computation
 - The informal concept of an "algorithm" is successfully captured by the rigorous definition of a Turing machine
- Consequence: It is really, truly impossible to design an algorithm that decides SELF-REJECTORS or any other undecidable language!

Are Turing machines powerful enough?

- **OBJECTION:** "To encompass all possible algorithms, we should add various bells and whistles to the Turing machine model."
- Example: Left-Right-Stationary Turing Machine: Like an ordinary Turing machine, except it has a transition function $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R, S\}$
- S means the head does not move in this step
- (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)

- The model is still realistic, even though we added an extra feature
- Is it a counterexample to the Church-Turing thesis?
- No!
- Let's prove that the left-right-stationary Turing machine model is equivalent to the original Turing machine model

Let Y be a language

Theorem: There exists a left-right-stationary TM that decides Y

if and only if there exists a TM that decides Y

- Idea of the proof of " \Rightarrow " direction: Simulate S by doing L followed by R
- Details: Let $M=\left(Q,q_0,q_{\mathrm{accept}},q_{\mathrm{reject}},\Sigma,\sqcup,\delta\right)$ be a left-right-stationary TM that decides Y
- New TM: $M' = (Q', q_0, q_{\text{accept}}, q_{\text{reject}}, \Sigma, \sqcup, \delta')$
- New set of states: $Q' = Q \cup \{\underline{q}: q \in Q\}$, i.e., two disjoint copies of Q

- New transition function $\delta': Q' \times \Sigma \to Q' \times \Sigma \times \{L, R\}$ given by:
 - If $\delta(q,b) = (q',b',L)$, then $\delta'(q,b) = \delta(q,b)$
 - If $\delta(q,b) = (q',b',\mathbb{R})$, then $\delta'(q,b) = \delta(q,b)$
 - If $\delta(q,b)=(q',b',S)$, then $\delta'(q,b)=\left(\underline{q'},b',L\right)$
 - For every q and b, we let $\delta'\left(\underline{q},b\right)=\left(q,b,R\right)$
- Exercise: Rigorously prove that M' decides Y

The Church-Turing Thesis

• Let $Y \subseteq \{0, 1\}^*$

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in Y if and only if there exists a Turing machine that decides Y.

Mathematically precise notion

Multi-tape Turing

- Another TM variant: "k-tape
- Transition function:

$$\delta: Q \times \Sigma^k \to Q \times \Sigma^k \times \{L, R, S\}^k$$

• (Exercise: Rigorously define acceptance, rejection, etc.)

In each step, what determines the actions of head 1?

A: Head 1's state and the symbol observed by head 1

C: Head 1's state and the symbols observed by all heads

B: The machine's state and the symbols observed by all heads

D: The machine's state and the symbol observed by head 1

Respond at PollEv.com/whoza or text "whoza" to 22333

