
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Homework reminder

• Exercises 1-3 are due today at 11:59pm

• If you joined the course late and you need an extension, send me an

email

2

Which problems

can be solved

through computation?

3

Deciding a language

• Let 𝑀 be a Turing machine and let 𝑌 ⊆ 0, 1 ∗

• We say that 𝑀 decides 𝑌 if

• 𝑀 accepts every 𝑤 ∈ 𝑌, and

• 𝑀 rejects every 𝑤 ∈ 0, 1 ∗ ∖ 𝑌

4

Decidable and undecidable

• Let 𝑌 ⊆ 0, 1 ∗

• We say that 𝑌 is decidable if there exists a Turing machine 𝑀 that

decides 𝑌

• Otherwise, we say that 𝑌 is undecidable

5

Which problems

can be solved

through computation?

6

Which languages are decidable?

7

Examples

• PALINDROMES = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 is the same forward and backward

• PARITY = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 has an odd number of ones

• 𝑌 = 0𝐾 𝐾 ∶ 𝐾 is a positive integer

8

Out of those three languages, how many are decidable?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Two

A: Zero B: One

D: Three

Is every language decidable?

9

Undecidability

• To prove this theorem, we need to rule out all possible Turing machines!

• How can we possibly do this?

10

Theorem: There exists an undecidable language.

The liar paradox

11

Are you selecting option B as your answer to this question?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Yes

A: Yes

D: Yes

B: No

Code as data

• Plan: We will construct a language 𝑌 such that trying to decide 𝑌

creates a liar paradox

• Key idea: A Turing machine 𝑀 can be encoded as a binary string 𝑀

• “Code as data”

• Specific encoding choice doesn’t matter for now

12

Turing machines analyzing Turing machines

• If 𝑀 is a Turing machine…

• Then 𝑀 can be the input for another Turing machine!

• Compilers, syntax highlighting, linters…

13

Self-rejecting Turing machines

• Let 𝑀 be a TM

• What if we run 𝑀 on 𝑀 ? Strange, but legal

• Three possibilities:

• 𝑀 accepts 𝑀

• 𝑀 rejects 𝑀

• 𝑀 loops on 𝑀

• Definition: We say that a Turing machine 𝑀 is self-rejecting if 𝑀 rejects 𝑀

14

Self-rejecting Turing machines

• Let SELF-REJECTORS = 𝑀 ∶ 𝑀 is a self-rejecting Turing machine

15

Theorem: SELF-REJECTORS is undecidable

• Proof: Let 𝑀 be any Turing machine

• If 𝑀 rejects 𝑀 , then 𝑀 ∈ SELF-REJECTORS

• If 𝑀 doesn’t reject 𝑀 , then 𝑀 ∉ SELF-REJECTORS

• Either way, 𝑀 does not decide SELF-REJECTORS!

Visualizing the proof: “Diagonalization”

𝑀1 𝑀2 𝑀3 𝑀4 ⋯

𝑀1

𝑀2

𝑀3

𝑀4

⋮

16

What happens
when we run this
Turing machine…

…on this input?

= Accept

= Reject

∞ = Loop

∞ ⋯

⋯

⋯

∞ ∞ ⋯

⋮ ⋮ ⋮ ⋮ ⋱

Visualizing the proof: “Diagonalization”

𝑀1 𝑀2 𝑀3 𝑀4 ⋯

𝑀1 ∞ ⋯

𝑀2 ⋯

𝑀3 ⋯

𝑀4 ∞ ∞ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

17

What happens
when we run this
Turing machine…

…on this input?

= Accept

= Reject

∞ = Loop

Undecidable language: ⋯

Interpreting the theorem

• We proved that there does not exist a Turing machine that decides

SELF-REJECTORS

• OBJECTION: “Yeah, but I don’t particularly care about Turing machines.

Is there some other type of algorithm that decides SELF-REJECTORS?”

• RESPONSE: The Church-Turing Thesis

18

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

19

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

The Church-Turing Thesis

• The Church-Turing thesis says:

• The Turing machine model is a “correct” way of modeling arbitrary computation

• The informal concept of an “algorithm” is successfully captured by the rigorous

definition of a Turing machine

• Consequence: It is really, truly impossible to design an algorithm that

decides SELF-REJECTORS or any other undecidable language!

20

Are Turing machines powerful enough?

• OBJECTION: “To encompass all possible algorithms, we should add various

bells and whistles to the Turing machine model.”

• Example: Left-Right-Stationary Turing Machine: Like an ordinary Turing

machine, except it has a transition function 𝛿: 𝑄 × Σ → 𝑄 × Σ × {L, R, S}

• S means the head does not move in this step

• (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)

21

Left-right-stationary Turing machines

• The model is still realistic, even though we added an extra feature

• Is it a counterexample to the Church-Turing thesis?

• No!

• Let’s prove that the left-right-stationary Turing machine model is

equivalent to the original Turing machine model

22

Left-right-stationary Turing machines

• Let 𝑌 be a language

• Proof: (3 slides) The “⇐” direction is trivial

23

Theorem: There exists a left-right-stationary TM that decides 𝑌

if and only if there exists a TM that decides 𝑌

Left-right-stationary Turing machines

• Idea of the proof of “⇒” direction: Simulate S by doing L followed by R

• Details: Let 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿 be a left-right-stationary

TM that decides 𝑌

• New TM: 𝑀′ = 𝑄′, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿′

• New set of states: 𝑄′ = 𝑄 ∪ 𝑞 ∶ 𝑞 ∈ 𝑄 , i.e., two disjoint copies of 𝑄

24

Left-right-stationary Turing machines

• New transition function 𝛿′: 𝑄′ × Σ → 𝑄′ × Σ × L, R given by:

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, L , then 𝛿′ 𝑞, 𝑏 = 𝛿(𝑞, 𝑏)

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, R , then 𝛿′ 𝑞, 𝑏 = 𝛿(𝑞, 𝑏)

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, S , then 𝛿′ 𝑞, 𝑏 = 𝑞′, 𝑏′, L

• For every 𝑞 and 𝑏, we let 𝛿′ 𝑞, 𝑏 = 𝑞, 𝑏, R

• Exercise: Rigorously prove that 𝑀′ decides 𝑌

25

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

26

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

Multi-tape Turing machines

• Another TM variant: “𝑘-tape TM”

• Transition function:

𝛿: 𝑄 × Σ𝑘 → 𝑄 × Σ𝑘 × {L, R, S}𝑘

• (Exercise: Rigorously define

acceptance, rejection, etc.)

27

1 1 0⋯ ⊔ ⊔

⋯ 0 # 1 $ ⊔

𝑞

In each step, what determines the actions of head 1?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Head 1’s state and the symbols
observed by all heads

A: Head 1’s state and the symbol
observed by head 1

D: The machine’s state and the
symbol observed by head 1

B: The machine’s state and the
symbols observed by all heads

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Homework reminder
	Slide 3: Which problems can be solved through computation?
	Slide 4: Deciding a language
	Slide 5: Decidable and undecidable
	Slide 6: Which problems can be solved through computation?
	Slide 7: Which languages are decidable?
	Slide 8: Examples
	Slide 9: Is every language decidable?
	Slide 10: Undecidability
	Slide 11: The liar paradox
	Slide 12: Code as data
	Slide 13: Turing machines analyzing Turing machines
	Slide 14: Self-rejecting Turing machines
	Slide 15: Self-rejecting Turing machines
	Slide 16: Visualizing the proof: “Diagonalization”
	Slide 17: Visualizing the proof: “Diagonalization”
	Slide 18: Interpreting the theorem
	Slide 19: The Church-Turing Thesis
	Slide 20: The Church-Turing Thesis
	Slide 21: Are Turing machines powerful enough?
	Slide 22: Left-right-stationary Turing machines
	Slide 23: Left-right-stationary Turing machines
	Slide 24: Left-right-stationary Turing machines
	Slide 25: Left-right-stationary Turing machines
	Slide 26: The Church-Turing Thesis
	Slide 27: Multi-tape Turing machines

