
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Homework reminder

• Exercises 1-3 are due this Friday (October 3) at 11:59pm

• If you joined the course late and you need an extension, send me an

email

2

Office hours / student meet-up time

• Thursdays 11am to noon: TA office hours (Mirza)

• Thursdays 2pm to 3pm: Student meet-up time

• Thursdays 3pm to 4pm: TA office hours (Zelin)

• Fridays 9am to 11am: My office hours

3

Which problems

can be solved

through computation?

4

The Turing machine model

5

1 0@#10⊔⊔ ⊔ ⊔⊔ ⊔

Defining Turing machines rigorously

• Definition: A Turing machine is a 7-tuple 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿

such that

• 𝑄 is a finite set (the set of “states”)

• 𝑞0, 𝑞accept, 𝑞reject ∈ 𝑄 and 𝑞accept ≠ 𝑞reject

• Σ is a finite set of symbols (the “tape alphabet”)

• ⊔ is a symbol (the “blank symbol”)

• 0, 1,⊔ ⊆ Σ and ⊔ ∉ 0, 1

• 𝛿 is a function 𝛿: 𝑄 × Σ → 𝑄 × Σ × {L, R} (the “transition function”)
6

Warning: The definition in the

textbook is slightly different. Sorry!

(The two models are equivalent.)

Defining TM computation rigorously

• Transition function 𝛿 describes the local evolution of the

computation

• What about the global evolution?

7

Configurations of a Turing machine

• Let 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿 be a Turing machine

• A configuration of 𝑀 is a triple (𝑢, 𝑞, 𝑣) where 𝑢 ∈ Σ∗, 𝑞 ∈ 𝑄, 𝑣 ∈ Σ∗, and

𝑣 ≠ 𝜖. Interpretation:

• The tape currently contains 𝑢𝑣

• The machine is currently in state 𝑞 and the head is pointing at the first symbol of 𝑣

8

𝑢1 𝑢2 ⋯ 𝑢𝑛 𝑣1 𝑣2 ⋯ 𝑣𝑚

𝑞

⊔⊔ ⊔ ⊔ ⊔

Configuration shorthand

• Instead of 𝑢, 𝑞, 𝑣 , we often write 𝑢𝑞𝑣

• Think of 𝑢𝑞𝑣 as a string over the alphabet Σ ∪ 𝑄

• Only works if 𝑄 ∩ Σ = ∅

• Can assume without loss of generality (rename states if necessary)

9

The initial configuration

• Let 𝑤 ∈ 0, 1 ∗ be an input

• The initial configuration of 𝑀 on 𝑤 is 𝑞0 ⊔ 𝑤

10

The “next” configuration

• For any configuration 𝑢𝑞𝑣, we define NEXT 𝑢𝑞𝑣 as follows:

• Break 𝑢𝑞𝑣 into individual symbols: 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑞𝑣1𝑣2𝑣3 … 𝑣𝑚

• If 𝛿 𝑞, 𝑣1 = 𝑞′, 𝑏, R , then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑏𝑞′𝑣2𝑣3 … 𝑣𝑚

• Edge case: If 𝑚 = 1, then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑏𝑞′ ⊔

• If 𝛿 𝑞, 𝑣1 = 𝑞′, 𝑏, L , then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑞′𝑢𝑛𝑏𝑣2𝑣3 … 𝑣𝑚

• Edge case: If 𝑛 = 0, then NEXT 𝑢𝑞𝑣 = 𝑞′ ⊔ 𝑏𝑣2𝑣3 … 𝑣𝑚

• We write NEXT𝑀 𝑢𝑞𝑣 if 𝑀 is not clear from context

11

Halting configurations

• An accepting configuration is a configuration of the form 𝑢𝑞accept𝑣

• A rejecting configuration is a configuration of the form 𝑢𝑞reject𝑣

• A halting configuration is an accepting or rejecting configuration

12

Computation history

• Let 𝑤 ∈ 0, 1 ∗ be an input

• Let 𝐶0 be the initial configuration of 𝑀 on 𝑤, i.e., 𝐶0 = 𝑞0 ⊔ 𝑤

• Inductively, for each 𝑖 ∈ ℕ, let 𝐶𝑖+1 = NEXT 𝐶𝑖

• The computation history of 𝑀 on 𝑤 is the sequence 𝐶0, 𝐶1, … , 𝐶𝑇, where 𝐶𝑇

is the first halting configuration in the sequence

• If there is no such 𝐶𝑇, then the computation history is 𝐶0, 𝐶1, 𝐶2, … (infinite)

13

Halting and looping

• If the computation history of 𝑀 on 𝑤 is finite, we say 𝑀 halts on 𝑤

• Otherwise, we say 𝑀 loops on 𝑤

14

Accepting and rejecting

• Suppose 𝑀 halts on 𝑤

• The computation history is finite, 𝐶0, 𝐶1, … , 𝐶𝑇

• If 𝐶𝑇 is an accepting configuration, we say 𝑀 accepts 𝑤

• If 𝐶𝑇 is a rejecting configuration, we say 𝑀 rejects 𝑤

15

Time

• Suppose the computation history of 𝑀 on 𝑤 is 𝐶0, 𝐶1, … , 𝐶𝑇

• We say that 𝑇 is the running time of 𝑀 on 𝑤

• If 𝑀 loops on 𝑤, then its running time on 𝑤 is ∞

• We say that 𝑀 halts on 𝑤 within 𝑇 steps if the running time of 𝑀

on 𝑤 is at most 𝑇

16

Space

• The space used by 𝑀 on 𝑤 is the number of cells that are used

• (Can be ∞)

• Formally, let 𝐶0, 𝐶1, … be the (finite or infinite) computation history of 𝑀 on 𝑤

• Write 𝐶𝑖 = 𝑢𝑖 , 𝑞𝑖 , 𝑣𝑖 where 𝑢𝑖 ∈ Σ∗, 𝑞𝑖 ∈ 𝑄, 𝑣𝑖 ∈ Σ∗

• The space used by 𝑀 on 𝑤 is max
𝑖

𝑢𝑖𝑣𝑖

17

Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: If 𝑀 halts on 𝑤, then 𝑀 uses a
finite amount of space on 𝑤

A: Space used on 𝑤 is at most
𝑤 + 1 + running time on 𝑤

B: If 𝑀 halts on 𝑤 within |𝑤| steps,
then 𝑀 halts on 𝑤𝑤

D: If 𝑀 uses a finite amount of
space on 𝑤, then 𝑀 halts on 𝑤

Which problems

can be solved

through computation?

18

Deciding a language

• Let 𝑀 be a Turing machine and let 𝑌 ⊆ 0, 1 ∗

• We say that 𝑀 decides 𝑌 if

• 𝑀 accepts every 𝑤 ∈ 𝑌, and

• 𝑀 rejects every 𝑤 ∈ 0, 1 ∗ ∖ 𝑌

• This is a mathematical model of what it means to “solve a problem”

19

Example: Palindromes

• Informal problem statement: “Given 𝑤 ∈ 0, 1 ∗, determine whether 𝑤

is the same forward and backward.”

• The same problem, formulated as a language:

PALINDROMES = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 is the same forward and backward

• There exists a Turing machine that decides PALINDROMES

20

Another example: Primality testing

• Informal problem statement: “Given 𝐾 ∈ ℕ, determine whether 𝐾 is prime.”

• Formulating the problem as a language:

• Let 𝐾 denote the binary encoding of 𝐾, i.e., the standard base-2 representation of 𝐾

• Example: 6 = 110. Note that 𝐾 ∈ ℕ whereas 𝐾 ∈ {0, 1}∗

• Language:

PRIMES = 𝐾 ∶ 𝐾 is a prime number

21

Encoding the input as a string

• OBJECTION: “Why should I have to encode my inputs?”

• RESPONSE: Encoding is necessary even for human computation!

• What we say: “Given a nonnegative integer, determine

whether it is prime”

• What we mean: “Given a piece of text, determine

whether it represents/encodes a prime number”

22

“This is not a pipe.”
(1929 painting by René Magritte)

Larger alphabets

• OBJECTION: “Why encode the input in binary? Why not other alphabets?”

• RESPONSE 1: The Turing machine definition can be modified to handle

inputs over other alphabets. We focus on binary inputs for simplicity’s sake

• RESPONSE 2: We can encode symbols from other alphabets in binary

23

BA C

Example: ASCII

24

[NUL] [SOH] [STX] [ETX] [EOT] [ENQ] [ACK] [BEL] [BS] [HT] [LF] [VT] [FF]

0000000 0000001 0000010 0000011 0000100 0000101 0000110 0000111 0001000 0001001 0001010 0001011 0001100

[CR] [SO] [SI] [DLE] [DC1] [DC2] [DC3] [DC4] [NAK] [SYN] [ETB] [CAN] [EM]

0001101 0001110 0001111 0010000 0010001 0010010 0010011 0010100 0010101 0010110 0010111 0011000 0011001

[SS] [ESC] [FS] [GS] [RS] [US] [SPACE] ! " # $ % &

0011010 0011011 0011100 0011101 0011110 0011111 0100000 0100001 0100010 0100011 0100100 0100101 0100110

' () * + , - . / 0 1 2 3

0100111 0101000 0101001 0101010 0101011 0101100 0101101 0101110 0101111 0110000 0110001 0110010 0110011

4 5 6 7 8 9 : ; < = > ? @

0110100 0110101 0110110 0110111 0111000 0111001 0111010 0111011 0111100 0111101 0111110 0111111 1000000

A B C D E F G H I J K L M

1000001 1000010 1000011 1000100 1000101 1000110 1000111 1001000 1001001 1001010 1001011 1001100 1001101

N O P Q R S T U V W X Y Z

1001110 1001111 1010000 1010001 1010010 1010011 1010100 1010101 1010110 1010111 1011000 1011001 1011010

[\] ^ _ ` a b c d e f g

1011011 1011100 1011101 1011110 1011111 1100000 1100001 1100010 1100011 1100100 1100101 1100110 1100111

h i j k l m n o p q r s t

1101000 1101001 1101010 1101011 1101100 1101101 1101110 1101111 1110000 1110001 1110010 1110011 1110100

u v w x y z { | } ~ [DEL]

1110101 1110110 1110111 1111000 1111001 1111010 1111011 1111100 1111101 1111110 1111111

Another encoding example: Connectivity

• Informal problem statement: “Given a 𝐾-vertex graph 𝐺, determine

whether it is connected”

• Formulating the problem as a language:

• Let 𝐺 ∈ 0, 1 𝐾2
 denote the adjacency matrix of 𝐺

• Language:

CONNECTED = 𝐺 ∶ 𝐺 is a connected graph

25

Multiple possible encodings

• OBJECTION: “Why are we using adjacency matrices instead of

adjacency lists?”

• RESPONSE: It doesn’t matter much which encoding we use, because

it is not hard to convert between the two encodings

26

Encoding other things as strings

• If 𝑋 is any mathematical object that can be written down (a number, a

graph, a polynomial, …), then we use the notation ⟨𝑋⟩ to denote some

“reasonable” encoding of 𝑋 as a binary string

• It typically doesn’t matter which specific encoding we use, provided we

choose something reasonable

• If you are unsure how ⟨𝑋⟩ should be defined in a particular case, ask!

27

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Homework reminder
	Slide 3: Office hours / student meet-up time
	Slide 4: Which problems can be solved through computation?
	Slide 5: The Turing machine model
	Slide 6: Defining Turing machines rigorously
	Slide 7: Defining TM computation rigorously
	Slide 8: Configurations of a Turing machine
	Slide 9: Configuration shorthand
	Slide 10: The initial configuration
	Slide 11: The “next” configuration
	Slide 12: Halting configurations
	Slide 13: Computation history
	Slide 14: Halting and looping
	Slide 15: Accepting and rejecting
	Slide 16: Time
	Slide 17: Space
	Slide 18: Which problems can be solved through computation?
	Slide 19: Deciding a language
	Slide 20: Example: Palindromes
	Slide 21: Another example: Primality testing
	Slide 22: Encoding the input as a string
	Slide 23: Larger alphabets
	Slide 24: Example: ASCII
	Slide 25: Another encoding example: Connectivity
	Slide 26: Multiple possible encodings
	Slide 27: Encoding other things as strings

