CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Homework reminder

e Exercises 1-3 are due this Friday (October 3) at 11:59pm

* If you joined the course late and you need an extension, send me an

email

Office hours / student meet-up time

* Thursdays 11am to noon: TA office hours (Mirza)
* Thursdays 2pm to 3pm: Student meet-up time
* Thursdays 3pm to 4pm: TA office hours (Zelin)

* Fridays 9am to 11am: My office hours

Which problems
can be solved

through computation?

The Turing machine model

Defining Turing machines rigorously

* Definition: A Turing machine is a 7-tuple M = (Q, do, Qaccepts Areject» 2L, 6)

such that | o
I Warning: The definition in the
* (is afinite set (the set of “states”) textbook is slightly different. Sorry!
(The two models are equivalent.)

* o CIaccept' CIreject € Q and CIaccept 2 Qreject

e Y is a finite set of symbols (the “tape alphabet”)
e Llis asymbol (the “blank symbol”)
« {0,1,u} S Xand U €& {0,1}

* disafunction 6:Q X X — Q X X X {L, R} (the “transition function”)

Defining TM computation rigorously

* Transition function é describes the local evolution of the

computation

 What about the global evolution?

Configurations of a Turing machine

o

*let M = (Q, do, Qaccepts Arejects 2,1, 5) be a Turing machine

* A configuration of M is a triple (u,q,v) whereu € £*,qg € Q, v € ¥%, and

U # €. Interpretation:

* The tape currently contains uv

* The machine is currently in state g and the head is pointing at the first symbol of v

2%)

Un

%1

%)

Um

[\

Configuration shorthand

* Instead of (u, g, v), we often write uqv
* Think of uqv as a string over the alphabet X U

* Only worksif Q NX =0

e Can assume without loss of generality (rename states if necessary)

The initial configuration

* Letw € {0,1}" be an input

* The initial configuration of M onw is gy LU w

10

The “next” configuration

* For any configuration uqv, we define NEXT(uqgv) as follows:

* Break uqv into individual symbols: uqv = uqu, ... u;,_1U,qV{ V>, V3 ...

* If6(q,v;) = (q',b,R), then NEXT(uqv) = uju, ... u,_1uU,bq'v,v5 ...

* Edge case: If m = 1, then NEXT(uqv) = uqu, ... u,_qu,bq’ LI

* If6(q,v1) = (q',b,L), then NEXT(uqv) = uqu, ...up_1q u,bv,vs ...

* Edge case: If n = 0, then NEXT(uqv) = q' Ll bv,vs ...v,,

* We write NEXT,,(uqv) if M is not clear from context

11

Halting configurations

* An accepting configuration is a configuration of the form uq,cceptV

* A rejecting configuration is a configuration of the form uqyejectV

* A halting configuration is an accepting or rejecting configuration

12

Computation history

e Letw € {0,1}" be an input
* Let Cy be the initial configuration of M onw, i.e,, Cy = qo U W
* Inductively, for each i € N, let C;;; = NEXT((;)

* The computation history of M on w is the sequence C,, Cy, ..., Ct, where Cr

is the first halting configuration in the sequence

* |If there is no such Cr, then the computation history is Cy, C1, C5, ... (infinite)

13

Halting and looping ©

* If the computation history of M on w is finite, we say M halts on w

* Otherwise, we say M loops on w

14

Accepting and rejecting

e Suppose M halts onw
* The computation history is finite, Cy, Cy4, ..., Ct
 If C+ is an accepting configuration, we say M accepts w

* If Cr is a rejecting configuration, we say M rejects w

15

Time

* Suppose the computation history of M on w is Cy, Cy, ..., Ct
e We say that T is the running time of M on w
* If M loops on w, then its running time on w is o

* We say that M halts on w within T steps if the running time of M

onwisatmostT

16

< Which of the following statements is false? >

S p a Ce < A: Space used on w is at most >< B: If M halts on w within |w| steps,

lw| + 1 + running time on w then M halts on ww >

< C: If M halts on w, then M uses a >< D: If M uses a finite amount of
. finite amount of space on w space on w, then M halts on w
* The space used by M on w is i i

Respond at PollEv.com/whoza or text “whoza” to 22333

e (Can be o)
* Formally, let Cy, C, ... be the (finite or infinite) computation history of M on w

* Write C; = (u;,q;,v;) whereu; € £*,q; € Q, v; EX”

* The space used by M on w is max |u;v;|
l

17

Which problems
can be solved

through computation?

Deciding a language

* Let M be a Turing machine and letY € {0, 1}*

 We say that M decides Y if

e M acceptseveryw €Y, and

* M rejectseveryw € {0,1}*\Y

* This is a mathematical model of what it means to “solve a problem”

19

Exa m p | e : Pa | i n d rO m eS £111200011010011110010110001 2220

 Informal problem statement: “Given w € {0, 1}*, determine whether w

is the same forward and backward.”

* The same problem, formulated as a language:

PALINDROMES = {w € {0,1}" : w is the same forward and backward}

* There exists a Turing machine that decides PALINDROMES

20

Another example: Primality testing

* Informal problem statement: “Given K € N, determine whether K is prime.”

* Formulating the problem as a language:
* Let (K) denote the binary encoding of K, i.e., the standard base-2 representation of K
* Example: (6) = 110. Note that K € N whereas (K) € {0, 1}

* Language:

PRIMES = {(K) : K is a prime number}

21

Encoding the input as a string

* OBJECTION: “Why should | have to encode my inputs?”

* RESPONSE: Encoding is necessary even for human computation!

 What we say: “Given a nonnegative integer, determine

whether it is prime”

* What we mean: “Given a piece of text, determine

whether it represents/encodes a prime number”

Leci nest nos une fufie .

A

“This is not a pipe.”
(1929 painting by René Magritte)

22

Larger alphabets ABC

* OBJECTION: “Why encode the input in binary? Why not other alphabets?”

* RESPONSE 1: The Turing machine definition can be modified to handle

inputs over other alphabets. We focus on binary inputs for simplicity’s sake

* RESPONSE 2: We can encode symbols from other alphabets in binary

23

Example: ASCI

[NUL] [SOH] [STX] [ETX] [EOT] [ENQ] [ACK] [BEL] [BS] [HT] [LF] [VT] [FF]
0000000 | 0000001 | 0000010 | 0000011 | 0000100 | 0000101 | 0000110 | 0000111 | 0001000 | 0001001 | 0001010 | 0001011 | 0001100
[CR] [SO] [SI] [DLE] [DC1] [DC2] [DC3] [DC4] [NAK] [SYN] [ETB] [CAN] [EM]
0001101 | 0001110 | 0001111 | 0010000 | 0010001 | 0010010 | 0010011 | 0010100 | 0010101 | 0010110 | 0010111 | 0011000 | OO11001
[SS] [ESC] [FS] [GS] [RS] [US] [SPACE] ! " # S % &
0011010 | 0011011 | 0011100 | 0011101 | 0011110 | 0011111 | 0100000 | 0100001 | 0100010 | 0100011 | 0100100 | 0100101 | 0100110
' () * + , - . / 0 1 2 3
0100111 | 0101000 | 0101001 | 0101010 | 0101011 | 0101100 | 0101101 | 0101110 | 0101112 | 0110000 | 0110001 | 0110010 | 0110011
4 5 6 7 8 9 : ; < = > ? @
0110100 | 0110101 | 0110110 | 0110111 | 0111000 | 0111001 | 0111010 | 0111011 | 0111100 | O111101 | 01117110 | 0112111 | 1000000
A B C D E F G H | J K L M
1000001 | 1000010 | 1000011 | 1000100 | 1000101 | 1000110 | 1000111 | 1001000 | 1001001 | 1001010 | 1001011 | 1001100 | 1001101
N (0) P Q R S T U \'} W X Y YA
1001110 | 1001111 | 1010000 | 1010001 | 1010010 | 1010011 | 1010100 | 1010101 | 1010110 | 1010111 | 1011000 | 1011001 | 1011010
[\] A _) a b c d e f g
1011011 | 1011100 | 1011101 | 1011110 | 1011111 | 1100000 | 1100001 | 1100010 | 1100011 | 1100100 | 1100101 | 1100110 | 1100111
h i j k I m n o p q r s t
1101000 | 1101001 | 1101010 | 1101011 | 1101100 | 1101101 | 1101110 (1101111 | 1110000 |{ 1110001 | 1110010 | 1110011 | 1110100
u v w X y z { | } ~ [DEL]
1110101 | 1110110 | 1110111 | 1111000 | 1111001 | 1111010 17121021 | 12117100 | 11721101 | 17711710} 11111112

24

Another encoding example: Connectivity

* Informal problem statement: “Given a K-vertex graph G, determine

whether it is connected”

* Formulating the problem as a language:

* Let (G) € {0, 1}K2 denote the adjacency matrix of G

* Language:

CONNECTED = {{G) : G is a connected graph}

25

Multiple possible encodings

* OBJECTION: “Why are we using adjacency matrices instead of

adjacency lists?”

* RESPONSE: It doesn’t matter much which encoding we use, because

it is not hard to convert between the two encodings

26

Encoding other things as strings

e If X is any mathematical object that can be written down (a number, a
graph, a polynomial, ...), then we use the notation (X) to denote some

“reasonable” encoding of X as a binary string

* |t typically doesn’t matter which specific encoding we use, provided we

choose something reasonable

* If you are unsure how (X) should be defined in a particular case, ask!

27

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Homework reminder
	Slide 3: Office hours / student meet-up time
	Slide 4: Which problems can be solved through computation?
	Slide 5: The Turing machine model
	Slide 6: Defining Turing machines rigorously
	Slide 7: Defining TM computation rigorously
	Slide 8: Configurations of a Turing machine
	Slide 9: Configuration shorthand
	Slide 10: The initial configuration
	Slide 11: The “next” configuration
	Slide 12: Halting configurations
	Slide 13: Computation history
	Slide 14: Halting and looping
	Slide 15: Accepting and rejecting
	Slide 16: Time
	Slide 17: Space
	Slide 18: Which problems can be solved through computation?
	Slide 19: Deciding a language
	Slide 20: Example: Palindromes
	Slide 21: Another example: Primality testing
	Slide 22: Encoding the input as a string
	Slide 23: Larger alphabets
	Slide 24: Example: ASCII
	Slide 25: Another encoding example: Connectivity
	Slide 26: Multiple possible encodings
	Slide 27: Encoding other things as strings

