CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Homework reminder

- Exercises 1-3 are due this Friday (October 3) at 11:59pm
- If you joined the course late and you need an extension, send me an email

Office hours / student meet-up time

- Thursdays 11am to noon: TA office hours (Mirza)
- Thursdays 2pm to 3pm: Student meet-up time
- Thursdays 3pm to 4pm: TA office hours (Zelin)
- Fridays 9am to 11am: My office hours

Which problems

can be solved

through computation?

The Turing machine model

Defining Turing machines rigorously

- **Definition**: A Turing machine is a 7-tuple $M = (Q, q_0, q_{\text{accept}}, q_{\text{reject}}, \Sigma, \sqcup, \delta)$
 - such that
 - Q is a finite set (the set of "states")
 - $q_0, q_{\text{accept}}, q_{\text{reject}} \in Q \text{ and } q_{\text{accept}} \neq q_{\text{reject}}$
 - Σ is a finite set of symbols (the "tape alphabet")
 - □ is a symbol (the "blank symbol")
 - $\{0,1,\sqcup\}\subseteq\Sigma$ and $\sqcup\notin\{0,1\}$
 - δ is a function $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$ (the "transition function")

♠ Warning: The definition in the textbook is slightly different. Sorry!
(The two models are equivalent.)

Defining TM computation rigorously

- \bullet Transition function δ describes the local evolution of the computation
- What about the global evolution?

Configurations of a Turing machine

- Let $M = (Q, q_0, q_{\text{accept}}, q_{\text{reject}}, \Sigma, \sqcup, \delta)$ be a Turing machine
- A configuration of M is a triple (u, q, v) where $u \in \Sigma^*$, $q \in Q$, $v \in \Sigma^*$, and $v \neq \epsilon$. Interpretation:
 - The tape currently contains uv
 - The machine is currently in state q and the head is pointing at the first symbol of v

Configuration shorthand

- Instead of (u, q, v), we often write uqv
- Think of uqv as a string over the alphabet $\Sigma \cup Q$
- Only works if $Q \cap \Sigma = \emptyset$
 - Can assume without loss of generality (rename states if necessary)

The initial configuration

- Let $w \in \{0, 1\}^*$ be an input
- The initial configuration of M on w is $q_0 \sqcup w$

The "next" configuration

- For any configuration uqv, we define NEXT(uqv) as follows:
 - Break uqv into individual symbols: $uqv = u_1u_2 \dots u_{n-1}u_nqv_1v_2v_3 \dots v_m$
 - If $\delta(q, v_1) = (q', b, R)$, then NEXT $(uqv) = u_1u_2 \dots u_{n-1}u_nbq'v_2v_3 \dots v_m$
 - Edge case: If m=1, then $\operatorname{NEXT}(uqv)=u_1u_2\dots u_{n-1}u_nbq'$
 - If $\delta(q, v_1) = (q', b, L)$, then NEXT $(uqv) = u_1u_2 \dots u_{n-1}q'u_nbv_2v_3 \dots v_m$
 - Edge case: If n=0, then $\operatorname{NEXT}(uqv)=q'\sqcup bv_2v_3\ldots v_m$
- We write $NEXT_M(uqv)$ if M is not clear from context

Halting configurations

- ullet An accepting configuration is a configuration of the form $uq_{
 m accept}v$
- ullet A rejecting configuration is a configuration of the form $uq_{
 m reject}v$
- A halting configuration is an accepting or rejecting configuration

Computation history

- Let $w \in \{0, 1\}^*$ be an input
- Let C_0 be the initial configuration of M on w, i.e., $C_0=q_0\sqcup w$
- Inductively, for each $i \in \mathbb{N}$, let $C_{i+1} = \text{NEXT}(C_i)$
- The computation history of M on w is the sequence C_0, C_1, \dots, C_T , where C_T is the first halting configuration in the sequence
- If there is no such C_T , then the computation history is C_0 , C_1 , C_2 , ... (infinite)

Halting and looping

- If the computation history of M on w is finite, we say M halts on w
- Otherwise, we say M loops on w

Accepting and rejecting

- Suppose *M* halts on *w*
- The computation history is finite, C_0 , C_1 , ..., C_T
- If C_T is an accepting configuration, we say M accepts w
- If C_T is a rejecting configuration, we say M rejects w

Time

- Suppose the computation history of M on w is C_0 , C_1 , ..., C_T
- We say that T is the running time of M on w
- If M loops on w, then its running time on w is ∞
- We say that M halts on w within T steps if the running time of M
 on w is at most T

Space

- The space used by M on w is
 - (Can be ∞)

Which of the following statements is **false**?

A: Space used on w is at most |w| + 1 + running time on w

then M halts on ww

C: If *M* halts on *w*, then *M* uses a finite amount of space on *w*

D: If *M* uses a finite amount of space on *w*, then *M* halts on *w*

B: If M halts on w within |w| steps,

Respond at PollEv.com/whoza or text "whoza" to 22333

- Formally, let C_0 , C_1 , ... be the (finite or infinite) computation history of M on w
- Write $C_i = (u_i, q_i, v_i)$ where $u_i \in \Sigma^*$, $q_i \in Q$, $v_i \in \Sigma^*$
- The space used by M on w is $\max_i |u_i v_i|$

Which problems

can be solved

through computation?

Deciding a language

- Let M be a Turing machine and let $Y \subseteq \{0, 1\}^*$
- We say that M decides Y if
 - M accepts every $w \in Y$, and
 - M rejects every $w \in \{0, 1\}^* \setminus Y$
- This is a mathematical model of what it means to "solve a problem"

Example: Palindromes

- Informal problem statement: "Given $w \in \{0, 1\}^*$, determine whether w is the same forward and backward."
- The same problem, formulated as a language:

PALINDROMES = $\{w \in \{0, 1\}^* : w \text{ is the same forward and backward}\}$

There exists a Turing machine that decides PALINDROMES

Another example: Primality testing

- Informal problem statement: "Given $K \in \mathbb{N}$, determine whether K is prime."
- Formulating the problem as a language:
 - Let $\langle K \rangle$ denote the binary encoding of K, i.e., the standard base-2 representation of K
 - Example: $\langle 6 \rangle = 110$. Note that $K \in \mathbb{N}$ whereas $\langle K \rangle \in \{0, 1\}^*$
 - Language:

 $PRIMES = \{\langle K \rangle : K \text{ is a prime number}\}\$

Encoding the input as a string

- OBJECTION: "Why should I have to encode my inputs?"
- RESPONSE: Encoding is necessary even for human computation!
 - What we say: "Given a nonnegative integer, determine whether it is prime"
 - What we mean: "Given a piece of text, determine whether it represents/encodes a prime number"

Larger alphabets

- OBJECTION: "Why encode the input in binary? Why not other alphabets?"
- **RESPONSE 1:** The Turing machine definition can be modified to handle inputs over other alphabets. We focus on binary inputs for simplicity's sake
- **RESPONSE 2:** We can encode symbols from other alphabets in binary

Example: ASCII

[NUL]	[SOH]	[STX]	[ETX]	[EOT]	[ENQ]	[ACK]	[BEL]	[BS]	[HT]	[LF]	[VT]	[FF]
0000000	0000001	0000010	0000011	0000100	0000101	0000110	0000111	0001000	0001001	0001010	0001011	0001100
[CR]	[SO]	[SI]	[DLE]	[DC1]	[DC2]	[DC3]	[DC4]	[NAK]	[SYN]	[ETB]	[CAN]	[EM]
0001101	0001110	0001111	0010000	0010001	0010010	0010011	0010100	0010101	0010110	0010111	0011000	0011001
[SS]	[ESC]	[FS]	[GS]	[RS]	[US]	[SPACE]	!	"	#	\$	%	&
0011010	0011011	0011100	0011101	0011110	0011111	0100000	0100001	0100010	0100011	0100100	0100101	0100110
-	()	*	+	,	-	•	/	0	1	2	3
0100111	0101000	0101001	0101010	0101011	0101100	0101101	0101110	0101111	0110000	0110001	0110010	0110011
4	5	6	7	8	9	:	;	<	=	>	?	@
0110100	0110101	0110110	0110111	0111000	0111001	0111010	0111011	0111100	0111101	0111110	0111111	1000000
Α	В	С	D	E	F	G	Н	ı	J	K	L	M
1000001	1000010	1000011	1000100	1000101	1000110	1000111	1001000	1001001	1001010	1001011	1001100	1001101
N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
1001110	1001111	1010000	1010001	1010010	1010011	1010100	1010101	1010110	1010111	1011000	1011001	1011010
[\]	۸	_	•	а	b	С	d	е	f	g
1011011	1011100	1011101	1011110	1011111	1100000	1100001	1100010	1100011	1100100	1100101	1100110	1100111
h	i	j	k	I	m	n	0	р	q	r	S	t
1101000	1101001	1101010	1101011	1101100	1101101	1101110	1101111	1110000	1110001	1110010	1110011	1110100
u	V	w	х	У	Z	{		}	~	[DEL]		
1110101	1110110	1110111	1111000	1111001	1111010	1111011	1111100	1111101	1111110	1111111		

Another encoding example: Connectivity

• Informal problem statement: "Given a K-vertex graph G, determine whether it is connected"

- Formulating the problem as a language:
 - Let $\langle G \rangle \in \{0, 1\}^{K^2}$ denote the adjacency matrix of G
 - Language:

CONNECTED = $\{\langle G \rangle : G \text{ is a connected graph}\}$

Multiple possible encodings

- **OBJECTION:** "Why are we using adjacency matrices instead of adjacency lists?"
- **RESPONSE:** It doesn't matter much which encoding we use, because it is not hard to convert between the two encodings

Encoding other things as strings

- If X is any mathematical object that can be written down (a number, a graph, a polynomial, ...), then we use the notation $\langle X \rangle$ to denote some "reasonable" encoding of X as a binary string
- It typically doesn't matter which specific encoding we use, provided we choose something reasonable
- If you are unsure how $\langle X \rangle$ should be defined in a particular case, ask!