
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

The nature of this course

• We will study:

• The mathematical/philosophical foundations of computer science

• The ultimate limits of computation

• We will develop conceptual tools for reasoning about computation

• Expect lots of proofs and very little programming

2

Who this course is designed for

• CS students, math students, and anyone who is curious

• Prerequisites:

• Experience with mathematical proofs

• CMSC 27200 or CMSC 27230 or CMSC 37000, or MATH 15900 or MATH 15910

or MATH 16300 or MATH 16310 or MATH 19900 or MATH 25500

3

Who this course is designed for

• It’s okay if you don’t consider yourself “theory-oriented”

• You belong here

• My job:

• Give you resources so you can learn and succeed

• Persuade you that complexity theory is worthy of your attention

4

Class participation

• Please ask questions!

• “What does that notation mean?”

• “I forget what a _____ is. Can you remind me?”

• “How do we know _____?”

• “I’m lost. Can you explain that again?”

5

Textbook

6

• Classic

• Popular

• High-quality

• Not free

Assessment

• 29 homework exercises

• Exercises 1-3 are due Friday, October 3

• Midterm exam in class on Friday, October 24

• Final exam at the end of the quarter

7

My office hours

• Fridays, 9am to 11am, JCL 205

• Confused/curious? I’ll try to help you learn

• Stuck on the homework? I’ll try to think of a good hint

• Have a complaint? I’ll listen and try to make things better

8

Teaching assistants

• Mirza Mehmedagic

• Office hours: Thursdays, 11am to noon, JCL 205

• Zelin Lv

• Office hours: Thursdays, 3pm to 4pm, JCL 205

9

Student meet-up time

• Thursdays, 2pm to 3pm, JCL Common Area A

• Immediately before Zelin’s office hours

• Find study partners

• Discuss course topics

• Collaborate on homework

10

https://canvas.uchicago.edu/courses/66278

11

• Course policies
• Slides

• Exercises
• Practice exams
• Official solutions

• Discussions
• Announcements

• Submitting your
homework
solutions

• Grades
• Feedback on your

work

https://canvas.uchicago.edu/courses/66278

The central question of this course:

Which problems

can be solved

through computation?

12

Examples

• Many problems can be solved

through computation:

• Multiplication

• Sorting

• Shortest path

• Are there any problems that cannot be

solved through computation?

13

Impossibility proofs

• We will take a mathematical approach to this question

1. Formulate precise mathematical models

• “Computation”

• “Problem”

• “Solve”

2. Write rigorous mathematical proofs of impossibility

14

Which problems

can be solved

through computation?

15

Computation

• Computers: Modern technology?

• Computation is ancient

• Can be performed by:

• A human being with paper and a pencil

• A smartphone

• A steam-powered machine

• We want a mathematical model that describes

all of these and transcends any one technology

16

Computation

• Note: Humans can do all the same computations

that smartphones/laptops do

• (less quickly/reliably)

• Consequence: We can study

computation without understanding

electronics

• Computation is a familiar, everyday, human act

17

Ex: Palindromes

• Suppose a long string

of bits is written on a

blackboard

• Our job: Figure out whether the string is a “palindrome,” i.e., whether

it is the same forwards and backwards

• What should we do?

18

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Ex: Palindromes

• Idea: Compare and cross

off the first and last

symbols

• Repeat until we find a

mismatch or everything

is crossed off

19

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Not a
palindrome

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Local decisions

• In each step, how do we know what to do next?

1. We keep track of some information (“state”) in our mind

2. We look at the local contents of the blackboard

(one symbol is sufficient)

• We can describe the algorithm

using “transition function”

(next slide)
20

I just crossed off a zero,
and now I’m heading over

to the right end of the
string

21

0 1 0 1 (blank)

𝒒𝟎 Move right
Go to state 𝑞1

𝒒𝟏 Cross off 0
Move right
Go to state 𝑞2

Cross off 1
Move right
Go to state 𝑞3

Output YES Output YES Output YES

𝒒𝟐 Move right Move right Move left
Go to state 𝑞4

Move left
Go to state 𝑞4

Move left
Go to state 𝑞4

𝒒𝟑 Move right Move right Move left
Go to state 𝑞5

Move left
Go to state 𝑞5

Move left
Go to state 𝑞5

𝒒𝟒 Cross off 0
Move left
Go to state 𝑞6

Output NO Output YES Output YES

𝒒𝟓 Output NO Cross off 1
Move left
Go to state 𝑞6

Output YES Output YES

𝒒𝟔 Move left Move left Move right
Go to state 𝑞1

Move right
Go to state 𝑞1

If we’re in
this state…

and we see
this symbol…

22

0 1 0 1 (blank)

𝒒𝟎 Move right
Go to state 𝑞1

𝒒𝟏 Cross off 0
Move right
Go to state 𝑞2

Cross off 1
Move right
Go to state 𝑞3

Output YES Output YES Output YES

𝒒𝟐 Move right Move right Move left
Go to state 𝑞4

Move left
Go to state 𝑞4

Move left
Go to state 𝑞4

𝒒𝟑 Move right Move right Move left
Go to state 𝑞5

Move left
Go to state 𝑞5

Move left
Go to state 𝑞5

𝒒𝟒 Cross off 0
Move left
Go to state 𝑞6

Output NO Output YES Output YES

𝒒𝟓 Output NO Cross off 1
Move left
Go to state 𝑞6

Output YES Output YES

𝒒𝟔 Move left Move left Move right
Go to state 𝑞1

Move right
Go to state 𝑞1

If we’re in
this state…

and we see
this symbol…

then we
should do this

23

0 1 0 1 (blank)

𝒒𝟎 Move right
Go to state 𝑞1

𝒒𝟏 Cross off 0
Move right
Go to state 𝑞2

Cross off 1
Move right
Go to state 𝑞3

Output YES Output YES Output YES

𝒒𝟐 Move right Move right Move left
Go to state 𝑞4

Move left
Go to state 𝑞4

Move left
Go to state 𝑞4

𝒒𝟑 Move right Move right Move left
Go to state 𝑞5

Move left
Go to state 𝑞5

Move left
Go to state 𝑞5

𝒒𝟒 Cross off 0
Move left
Go to state 𝑞6

Output NO Output YES Output YES

𝒒𝟓 Output NO Cross off 1
Move left
Go to state 𝑞6

Output YES Output YES

𝒒𝟔 Move left Move left Move right
Go to state 𝑞1

Move right
Go to state 𝑞1

If we’re in
this state…

and we see
this symbol…

then we
should do this

The Turing machine model

• Turing machines: A mathematical model of human computation

• In a nutshell, a Turing machine is any algorithm that can be described

by a transition function like the one we just saw

24

The Turing machine model

• There is a “tape” that is divided into “cells”

• Each cell has one symbol written in it

• There is a “head” pointing at one cell

• The machine can be in one of finitely many internal “states”
25

1 0@#10⊔⊔ ⊔ ⊔⊔ ⊔

Turing machines

26

• In each step, the machine decides

• What to write

• Which direction to move the head (left or right)

• The new state

• Decision is based only on current state and observed symbol

• New cells are automatically “created” when needed

Transition function

• Mathematically, a Turing machine is described by a transition function

𝛿: 𝑄 × Σ → 𝑄 × Σ × {L, R}

• Here 𝑄 is the set of states and Σ is the set of symbols

• 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏′, 𝐷) means:

• If we are in the state 𝑞 and we read the symbol 𝑏…

• Write 𝑏′ (replacing 𝑏), move the head in direction 𝐷 (L = left, R = right), and go to

state 𝑞′

27

Input

• One Turing machine represents one algorithm

• For us, the input to a Turing machine will always be a finite string over the

binary alphabet

28

Symbols and alphabets

• An “alphabet” Σ is any nonempty, finite set of “symbols”

• Σ = {0, 1}

• Σ = ⊔, 0, 1, 0, 1

• Σ = {A, B, C, … , Z}

• Σ = { , , , , }

29

Strings

• Let Σ be an alphabet

• A string over Σ is a finite sequence of symbols from Σ

• The length of a string 𝑥 is the number of symbols, denoted 𝑥

• If 𝑛 is a nonnegative integer, then Σ𝑛 is the set of length-𝑛 strings over Σ

• Example: If Σ = {0, 1}, then

Σ3 = {000, 001, 010, 011, 100, 101, 110, 111}

30

If 𝚺 = 𝒎, then what is 𝚺𝟎 ?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: Σ0 = 𝑚A: Σ0 = 0

D: Σ0 is not well-definedC: Σ0 = 1

The empty string

• If Σ is any alphabet, then |Σ0| = 1

• There is one string of length zero: the empty string, denoted 𝜖

• Denoted "" in popular programming languages

• Σ0 = {𝜖}

31

Arbitrary-length strings

• Let Σ be an alphabet

• We define Σ∗ to be the set of strings over Σ of any finite length:

Σ∗ = ራ

𝑛=0

∞

Σ𝑛

• Example: 0, 1 ∗ = {𝜖, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, … }

32

Turing machine initialization

• The tape initially contains an input string 𝑤 ∈ 0, 1 ∗ (one bit per cell)

• The head is initially in a cell to the left of the input

• This cell contains a special “blank symbol” ⊔

• The machine is initially in a special “start state” 𝑞0

33

𝑤1 𝑤2 𝑤3 ⋯ 𝑤𝑛 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞0

⊔⊔

Halting

• After initialization, we repeatedly apply the transition function

• Whenever necessary, a new cell is created containing ⊔

• Eventually, the machine might reach a “halting state”

• There are two halting states: 𝑞accept and 𝑞reject

• In this case, the computation halts

34

Accepting and rejecting

• If the machine reaches 𝑞accept, we say it accepts the input

• Analogy: “return True”

• If the machine reaches 𝑞reject, we say it rejects the input

• Analogy: “return False”

35

Looping

• It is also possible that the machine runs forever without halting

• In this case, we say the machine “loops”

36

Input Turing
Machine

Accept

Reject

Loop

Which problems

can be solved

through computation?

37

Languages

• A binary language is a set 𝑌 ⊆ 0, 1 ∗

• Each language 𝑌 ⊆ 0, 1 ∗ represents a distinct computational problem:

“Given 𝑤 ∈ 0, 1 ∗, figure out whether 𝑤 ∈ 𝑌”

38

Deciding a language

• Let 𝑀 be a Turing machine and let 𝑌 ⊆ 0, 1 ∗

• We say that 𝑀 decides 𝑌 if

• 𝑀 accepts every 𝑤 ∈ 𝑌, and

• 𝑀 rejects every 𝑤 ∈ 0, 1 ∗ ∖ 𝑌

• This is a mathematical model of what it means to “solve a problem”

39

Example: Palindromes

• Informal problem statement: “Given 𝑤 ∈ 0, 1 ∗, determine whether 𝑤

is the same forward and backward.”

• The same problem, formulated as a language:

PALINDROMES = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 is the same forward and backward

• There exists a Turing machine that decides PALINDROMES

40

Example: Parity

• Informal problem statement: “Given 𝑤 ∈ 0, 1 ∗, determine whether

the number of ones in 𝑤 is even or odd.”

• The same problem, formulated as a language:

PARITY = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 has an odd number of ones

• Exercise: Design a Turing machine that decides PARITY

41

Example: A Turing machine that decides PARITY

42

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

⊔ 1 0 1 ⊔ ⊔ ⊔ ⊔⊔

𝑞0

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

43

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞0

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

44

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞even

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

45

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞even

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

46

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞odd

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

47

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞odd

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

48

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞odd

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

49

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞odd

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

50

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞even

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

51

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞even

⊔⊔ ⊔⊔

Example: A Turing machine that decides PARITY

52

𝟎 𝟏 ⊔

𝒒𝟎 𝑞even, .⊔, R

𝒒𝐞𝐯𝐞𝐧 𝑞even, 0, R (𝑞odd, 1, R) 𝑞reject, .⊔, R

𝒒𝐨𝐝𝐝 𝑞odd, 0, R 𝑞even, 1, R 𝑞accept, .⊔, R

𝒒𝐚𝐜𝐜𝐞𝐩𝐭

𝒒𝐫𝐞𝐣𝐞𝐜𝐭

1 0 1 ⊔ ⊔ ⊔ ⊔⊔ ⊔

𝑞reject

⊔⊔ ⊔⊔

101 ∉ PARITY

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: The nature of this course
	Slide 3: Who this course is designed for
	Slide 4: Who this course is designed for
	Slide 5: Class participation
	Slide 6: Textbook
	Slide 7: Assessment
	Slide 8: My office hours
	Slide 9: Teaching assistants
	Slide 10: Student meet-up time
	Slide 11: https://canvas.uchicago.edu/courses/66278
	Slide 12: The central question of this course: Which problems can be solved through computation?
	Slide 13: Examples
	Slide 14: Impossibility proofs
	Slide 15: Which problems can be solved through computation?
	Slide 16: Computation
	Slide 17: Computation
	Slide 18: Ex: Palindromes
	Slide 19: Ex: Palindromes
	Slide 20: Local decisions
	Slide 21
	Slide 22
	Slide 23
	Slide 24: The Turing machine model
	Slide 25: The Turing machine model
	Slide 26: Turing machines
	Slide 27: Transition function
	Slide 28: Input
	Slide 29: Symbols and alphabets
	Slide 30: Strings
	Slide 31: The empty string
	Slide 32: Arbitrary-length strings
	Slide 33: Turing machine initialization
	Slide 34: Halting
	Slide 35: Accepting and rejecting
	Slide 36: Looping
	Slide 37: Which problems can be solved through computation?
	Slide 38: Languages
	Slide 39: Deciding a language
	Slide 40: Example: Palindromes
	Slide 41: Example: Parity
	Slide 42: Example: A Turing machine that decides PARITY
	Slide 43: Example: A Turing machine that decides PARITY
	Slide 44: Example: A Turing machine that decides PARITY
	Slide 45: Example: A Turing machine that decides PARITY
	Slide 46: Example: A Turing machine that decides PARITY
	Slide 47: Example: A Turing machine that decides PARITY
	Slide 48: Example: A Turing machine that decides PARITY
	Slide 49: Example: A Turing machine that decides PARITY
	Slide 50: Example: A Turing machine that decides PARITY
	Slide 51: Example: A Turing machine that decides PARITY
	Slide 52: Example: A Turing machine that decides PARITY

