Total Influence (lecture notes) [Edited 2025-10-20 and 2025-11-04]

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza®@uchicago.edu)

In these notes, we will show that a few interesting classes of functions are concentrated at relatively low
degree, hence nontrivially learnable from random examples. The proofs are based on the notion of total
influence. If x € {1}" and i € [n], let ® denote = with the i-th bit flipped.

Definition 0.1 (Influence and total influence). If f: {£1}" — {£1}, then the influence of variable i on f is
defined by Inf;[f] = Pry[f(z) # f(«®")]. Furthermore, the total influence of f is defined by I[f] = >_. Inf;[f].

Total influence is a measure of the “complexity” of f. Besides its application to learning theory, total
influence is also interesting for its own sake.

1 Total influence of size-s decision trees

As a warm-up, let’s analyze the total influence of decision trees, even though this won’t immediately buy us
anything in terms of learnability. We use a connection between total influence and sensitivity.

Definition 1.1 (Sensitivity). For a function f: {£1}" — {£1} and an input = € {£1}", define

sensy(z) = [{i: f(z) # f(2™)}].

Lemma 1.2. For any f: {+1}" — {£1}, the total influence of f is equal to the average sensitivity of f.
That is, I[f] = E,[sens¢(x)].

Proof. Linearity of expectation. O
For a decision tree f, let costs(x) denote the number of queries that f makes on x.

Lemma 1.3. If f is a decision tree, then sensy(x) < costy(x).

Proof. If f did not query x;, then f(z®%) = f(x). O

Lemma 1.4. If f is a size-s decision tree, then s = E.[2°%% ()] and moreover E[cost(z)] < log s.

Proof. Let L be the set of leaves. For each leaf u € L, let d, be the depth of u. Then

E[2C°Stf(x)] = Z Pr[reach u] - 9% — Z 27w 2t = IL| = s.

xX
u€eL ueL

The “moreover” part of the lemma follows from Jensen’s inequality. O

Corollary 1.5. If f: {£1}" — {£1} is a size-s decision tree, then I[f] <logs.

2 Total influence of width-w DNF's

A DNF formula is a disjunction of terms, each of which is a conjunction of literals (variables and their
negations). The width of a DNF formula is the maximum number of literals in a single term. To bound the
total influence of width-w DNFs, we use a modified version of Lemma 1.2.

Lemma 2.1. For any f: {0,1}" — {0,1}, we have I[(—=1)/] = 2E,[f(x) - senss(x)].

Proof. We have

Infi[(=1)] = Pr(f(x) # f(2®)] = 2Pr[f(2) = 1, f(2®') = 0] = 2E[f(2) - 1[f(2) # f(a®)]].
Linearity of expectation completes the proof. O
Corollary 2.2. If f: {0,1}" — {0,1} is a width-w DNF, then I[(—1)f] < 2w.

Proof. For any = € {0,1}", we have f(x)-sens¢(z) < w, because, if f(x) = 1, then some term of f is satisfied,
hence only variables in that term can be pivotal for f on x. O

The factor of two in Corollary 2.2 can be eliminated [Amall].

3 Fourier concentration from total influence bounds

In this course, we will develop several methods for using total influence bounds to prove Fourier concentration
and learnability bounds. The simplest version is a bound that says every Boolean function f is e-concentrated
on degree up to I[f]/e. The proof is based on discrete derivatives.

Definition 3.1 (Discrete derivatives). If f: {£1}" — R, then

f(x(i»—H-l)) _ f(m(z‘»—>—1))

(Dif)(z) = 5

Let us compute the Fourier coefficients of D;f. We have D;xs = xg\;) if i € S, and Dixs =01ifi ¢ S.
(Just like partial derivatives from calculus class!) Therefore, by linearity,

Dif =) F(8) - xs\ (-

SCln],ieS
Lemma 3.2 (Fourier formula for total influence). For any f: {£1}" — {1}, we have I[f] = Es.s,[|S]]-

Proof.

n

1] = If[f] = Y E(D:f)(@)’) =D D Dif(5)> =3 f(8)>= > 18- f(5)>. O
i=1 i=1 SC[n]

i=1 i=1 SC[n],i€S SCn]

Corollary 3.3. Every f: {£1}" — {£1} is e-concentrated up to degree I[f]/e.
Proof. This is Markov’s inequality applied to the random variable |S| where S ~ S;. O

For example, width-w DNFs are e-concentrated up to degree O(w/e), hence learnable from random
examples in time n®®/2). We will improve these bounds in later classes.

4 Total influence of unate functions

Definition 4.1. A Boolean function f: {£1}" — {£1} is monotone if, for every z,y € {£1}", we have
x <y = f(x) < f(y). More generally, we say that f is unate if it can be written in the form f(z) = g(xoa),
where ¢ is a monotone function, a € {+1}", and x o a denotes coordinatewise multiplication.

 Ifze{£1}", i€ [n], and b € {£1}, let 2% denote z with b in place of the i-th coordinate. We use
f (@) as a shorthand for f({i}).

~ ~

Lemma 4.2. Let f: {£1}"™ — {Z1}. If f is monotone, then Inf;[f] = f(i). If f is unate, then Inf;[f] = | f(3)].

Proof. We have f(z) =E,[f(z) z] =1 E, [f(x(i*}“)) - f(x(i*}_l))} = E.[(Dif)(z)]. If f is monotone, the
latter quantity is equal to Inf;[f]. If f is unate, it is & Inf;[f]. O

Lemma 4.3. For any f: {£1}" — {1}, we have > ;" |]f(N < /n.
Proof. By Cauchy-Schwarz, we have) ", 1F()] < \/n- >y f(i)2. By Parseval, Yoy Fli)2=1. O

Corollary 4.4. If f: {£1}" — {£1} and [is unate, then I[f] < \/n.

Thus, unate functions are e-concentrated up to degree O(y/n/e), hence learnable from random examples
in time n°(V7/¢) | which is slow but highly nontrivial.

5 Total influence of size-s unate decision trees

Theorem 5.1. Let f: {£1}" — {£1} be unate and computable by a size-s decision tree. Then I[f] < /log s.

Note that every function can be computed by a decision tree of size s = 2", hence Theorem 5.1 strengthens
the result from the previous section that unate functions have I[f] < \/n.

Proof. Assume first that f is monotone. Then Inf; = | f(i)|. Sample z € {£1}" uniformly at random. Define
y € {£1}" by

x; if f queries x; on input x
Yi = .
0 otherwise.

The outcome f(z) is determined by y. Abusing notation, we can write f(x) = f(y). Then we have

7li) = E[f(2) - 2:] = E[f(4) - 0] = E [f@) E [m] —E[f() - ui.

T x Yy zly

Therefore,

+ Y Elyy;)-

17

I[f]:ZA(Z'):E (:‘»'Z%]SE[' ']S E (Z%) = [Z%

We analyze the second term first. If i # j, then

Elyss] =% | Efn]- Efo]] =B | £ fous]| = Blowa;] = 5o Bl =0-0 =0

x|y x|y x|y
Therefore,

I[f] < E[Z%] \/Elcost ¢ ()] < +/logs

by Lemma 1.4. Finally, suppose more generally that f is unate, say f(x) = g(« o a) for some monotone g.
Then Inf;[f] = Inf;[g], and g can be computed by a size-s decision tree, so I[f] = I[¢g] < v/log s. O

Consequently, size-s monotone decision trees are e-concentrated up to degree v/log s/e, hence learnable
from random examples in time no(\/@), which is faster than the previous n©U°2%) algorithm we saw for
general decision trees. By more sophisticated techniques, one can show that size-s monotone decision trees
are learnable from random examples in poly(n, s) time.

References

[Amall] Kazuyuki Amano. “Tight Bounds on the Average Sensitivity of k-CNF”. In: Theory of Computing
7.4 (2011), pp. 45-48. DOI: 10.4086/toc.2011.v007a004.

https://doi.org/10.4086/toc.2011.v007a004

	Total influence of size-s decision trees
	Total influence of width-w DNFs
	Fourier concentration from total influence bounds
	Total influence of unate functions
	Total influence of size-s unate decision trees

