
Total Influence (lecture notes) [Edited 2025-10-20]

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

In these notes, we will show that a few interesting classes of functions are concentrated at relatively low
degree, hence nontrivially learnable from random examples. The proofs are based on the notion of total
influence. If x ∈ {±1}n and i ∈ [n], let x⊕i denote x with the i-th bit flipped.

Definition 0.1 (Influence and total influence). If f : {±1}n → {±1}, then the influence of variable i on f is
defined by Infi[f] = Prx[f(x) ̸= f(x⊕i)]. Furthermore, the total influence of f is defined by I[f] =

∑
i Infi[f].

Total influence is a measure of the “complexity” of f . Besides its application to learning theory, total
influence is also interesting for its own sake.

1 Total influence of size-s decision trees

As a warm-up, let’s analyze the total influence of decision trees, even though this won’t immediately buy us
anything in terms of learnability. We use a connection between total influence and sensitivity.

Definition 1.1 (Sensitivity). For a function f : {±1}n → {±1} and an input x ∈ {±1}n, define

sensf (x) = |{i : f(x) ̸= f(x⊕i)}|.

Lemma 1.2. For any f : {±1}n → {±1}, the total influence of f is equal to the average sensitivity of f .
That is, I[f] = Ex[sensf (x)].

Proof. Linearity of expectation.

For a decision tree f , let costf (x) denote the number of queries that f makes on x.

Lemma 1.3. If f is a decision tree, then sensf (x) ≤ costf (x).

Proof. If f did not query xi, then f(x⊕i) = f(x).

Lemma 1.4. If f is a size-s decision tree, then s = Ex[2
costf (x)], and moreover E[costf (x)] ≤ log s.

Proof. Let L be the set of leaves. For each leaf u ∈ L, let du be the depth of u. Then

E
x
[2costf (x)] =

∑
u∈L

Pr[reach u] · 2du =
∑
u∈L

2−du · 2du = |L| = s.

The “moreover” part of the lemma follows from Jensen’s inequality.

Corollary 1.5. If f : {±1}n → {±1} is a size-s decision tree, then I[f] ≤ log s.

2 Total influence of width-w DNFs

A DNF formula is a disjunction of terms, each of which is a conjunction of literals (variables and their
negations). The width of a DNF formula is the maximum number of literals in a single term. To bound the
total influence of width-w DNFs, we use a modified version of Lemma 1.2.

Lemma 2.1. For any f : {0, 1}n → {0, 1}, we have I[(−1)f] = 2Ex[f(x) · sensf (x)].

1

Proof. We have

Infi[(−1)f] = Pr
x
[f(x) ̸= f(x⊕i)] = 2Pr

x
[f(x) = 1, f(x⊕i) = 0] = 2E

x
[f(x) · 1[f(x) ̸= f(x⊕i)]].

Linearity of expectation completes the proof.

Corollary 2.2. If f : {0, 1}n → {0, 1} is a width-w DNF, then I[(−1)f] ≤ 2w.

Proof. For any x ∈ {0, 1}n, we have f(x) · sensf (x) ≤ w, because, if f(x) = 1, then some term of f is satisfied,
hence only variables in that term can be pivotal for f on x.

It is apparently an open question whether the factor of two in Corollary 2.2 can be eliminated.

3 Fourier concentration from total influence bounds

In this course, we will develop several methods for using total influence bounds to prove Fourier concentration
and learnability bounds. The simplest version is a bound that says every Boolean function f is ε-concentrated
on degree up to I[f]/ε. The proof is based on discrete derivatives.

Definition 3.1 (Discrete derivatives). If f : {±1}n → R, then

(Dif)(x) =
f(x(i7→+1))− f(x(i7→−1))

2
.

Let us compute the Fourier coefficients of Dif . We have DiχS = χS\{i} if i ∈ S, and DiχS = 0 if i /∈ S.
(Just like partial derivatives from calculus class!) Therefore, by linearity,

Dif =
∑

S⊆[n],i∈S

f̂(S) · χS\{i}.

Lemma 3.2 (Fourier formula for total influence). For any f : {±1}n → {±1}, we have I[f] = ES∼Sf
[|S|].

Proof.

I[f] =

n∑
i=1

Infi[f] =

n∑
i=1

E
x
[(Dif)(x)

2] =

n∑
i=1

∑
S⊆[n]

D̂if(S)
2 =

n∑
i=1

∑
S⊆[n],i∈S

f̂(S)2 =
∑
S⊆[n]

|S| · f̂(S)2.

Corollary 3.3. Every f : {±1}n → {±1} is ε-concentrated up to degree I[f]/ε.

Proof. This is Markov’s inequality applied to the random variable |S| where S ∼ Sf .

For example, width-w DNFs are ε-concentrated up to degree O(w/ε), hence learnable from random
examples in time nO(w/ε). We will improve these bounds in later classes.

4 Total influence of unate functions

Definition 4.1. A Boolean function f : {±1}n → {±1} is monotone if, for every x, y ∈ {±1}n, we have
x ≤ y =⇒ f(x) ≤ f(y). More generally, we say that f is unate if it can be written in the form f(x) = g(x◦a),
where g is a monotone function, a ∈ {±1}n, and x ◦ a denotes coordinatewise multiplication.

If x ∈ {±1}n, i ∈ [n], and b ∈ {±1}, let x(i7→b) denote x with b in place of the i-th coordinate. We use
f̂(i) as a shorthand for f̂({i}).

Lemma 4.2. Let f : {±1}n → {±1}. If f is monotone, then Infi[f] = f̂(i). If f is unate, then Infi[f] = |f̂(i)|.

2

Proof. We have f̂(i) = Ex[f(x) · xi] = 1
2 ·Ex

[
f(x(i7→+1))− f(x(i7→−1))

]
= Ex[(Dif)(x)]. If f is monotone, the

latter quantity is equal to Infi[f]. If f is unate, it is ± Infi[f].

Lemma 4.3. For any f : {±1}n → {±1}, we have
∑n

i=1 |f̂(i)| ≤
√
n.

Proof. By Cauchy-Schwarz, we have
∑n

i=1 |f̂(i)| ≤
√
n ·
∑n

i=1 f̂(i)
2. By Parseval,

∑n
i=1 f̂(i)

2 = 1.

Corollary 4.4. If f : {±1}n → {±1} and f is unate, then I[f] ≤
√
n.

Thus, unate functions are ε-concentrated up to degree O(
√
n/ε), hence learnable from random examples

in time nO(
√
n/ε), which is slow but highly nontrivial.

5 Total influence of size-s unate decision trees

Theorem 5.1. Let f : {±1}n → {±1} be unate and computable by a size-s decision tree. Then I[f] ≤
√
log s.

Note that every function can be computed by a decision tree of size s = 2n, hence Theorem 5.1 strengthens
the result from the previous section that unate functions have I[f] ≤

√
n.

Proof. Assume first that f is monotone. Then Infi = |f̂(i)|. Sample x ∈ {±1}n uniformly at random. Define
y ∈ {±1}n by

yi =

{
xi if f queries xi on input x

0 otherwise.

The outcome f(x) is determined by y. Abusing notation, we can write f(x) = f(y). Then we have

f̂(i) = E
x
[f(x) · xi] = E

x
[f(y) · xi] = E

y

[
f(y) · E

x|y
[xi]

]
= E[f(y) · yi].

Therefore,

I[f] =

n∑
i=1

f̂(i) = E

[
f(y) ·

n∑
i=1

yi

]
≤ E

[∣∣∣∣∣
n∑

i=1

yi

∣∣∣∣∣
]
≤

√√√√√E

(n∑
i=1

yi

)2
 =

√√√√E

[
n∑

i=1

y2i

]
+
∑
i̸=j

E[yiyj].

We analyze the second term first. If i ̸= j, then

E[yiyj] = E
y

[
E
x|y

[xi] · E
x|y

[xj]

]
= E

y

[
E
x|y

[xixj]

]
= E[xixj] = E[xi] · E[xj] = 0 · 0 = 0.

Therefore,

I[f] ≤

√√√√E

[
n∑

i=1

y2i

]
=
√
E[costf (x)] ≤

√
log s

by Lemma 1.4. Finally, suppose more generally that f is unate, say f(x) = g(x ◦ a) for some monotone g.
Then Infi[f] = Infi[g], and g can be computed by a size-s decision tree, so I[f] = I[g] ≤

√
log s.

Consequently, size-s monotone decision trees are ε-concentrated up to degree
√
log s/ε, hence learnable

from random examples in time nO(
√
log s), which is faster than the previous nO(log s) algorithm we saw for

general decision trees. By more sophisticated techniques, one can show that size-s monotone decision trees
are learnable from random examples in poly(n, s) time.

3

	Total influence of size-s decision trees
	Total influence of width-w DNFs
	Fourier concentration from total influence bounds
	Total influence of unate functions
	Total influence of size-s unate decision trees

