
Threshold Functions and Noise Sensitivity (lecture notes)

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

Definition 0.1 (Linear threshold functions). A linear threshold function (LTF) is a function f : {±1}n →
{±1} of the form f(x) = sign(w0 + w1x1 + w2x2 + · · ·+ wnxn), where w0, w1, . . . , wn ∈ R.

For concreteness, we use the convention sign(0) = +1. Alternatively, by replacing w0 with w0 + ε for
some tiny ε, we can ensure that sign(0) never comes up. In these notes, we will use Fourier analysis to prove
some Fourier concentration results, learnability results, and circuit lower bounds for classes of functions
related to LTFs.

1 Fourier concentration of linear threshold functions

LTFs are unate, so they have total influence at most
√
n. This immediately implies that LTFs are ε-

concentrated at degree up to
√
n/ε. We will prove a much stronger degree bound of O(1/ε2) using the notion

of noise sensitivity.

Definition 1.1 (Noise sensitivity). Let f : {±1}n → {±1}. Sample x ∈ {±1}n uniformly at random, and
sample

yi =

{
−xi with prob δ

xi with prob 1− δ

independently for each i. Then we define NSδ[f ] = Pr[f(x) ̸= f(y)].

Noise sensitivity is just a reparameterized version of noise stability. Specifically, from the definitions, one
can double check that

Stabρ[f ] = 1− 2NS(1−ρ)/2[f ]

and NSδ[f ] =
1

2
− 1

2
Stab1−2δ[f ].

We will show that if I[f ] is small and we have some mild closure properties, then f has low noise sensitivity.
Then we will show that if f has low noise sensitivity, then it is concentrated at low degree.

1.1 Bounded total influence =⇒ bounded noise sensitivity

Theorem 1.2. Let f : {±1}n → {±1}. Let m ≤ n, and let C be the class of functions f ′ : {±1}m → {±1}
one can get by starting with f and then identifying and negating variables. Assume that every function in C
has total influence at most I. Then NS1/m[f ] ≤ I/m.

Proof. As a thought experiment, sample w ∈ {±1}m, π : [n] → [m], z ∈ {±1}n, and j ∼ [m] uniformly at
random. Define

x = z ◦ wπ

y = z ◦ (w⊕j)π.
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Then x is distributed uniformly over {±1}n, and y can be constructed from x by flipping each bit independently
with probability 1/m. Therefore, if we define gz,π(w) = f(z ◦ wπ), then

NS1/m[f ] = Pr
w,π,z,j

[f(z ◦ wπ) ̸= f(z ◦ (w⊕j)π] = E
z,π

 1

m
·

m∑
j=1

Pr
w
[gz,π(w) ̸= gz,π(w

⊕j)]


=

1

m
E
z,π

[I[gz,π]]

≤ I/m.

Corollary 1.3 (Peres’s Theorem). If f is an LTF, then NSδ[f ] ≤ O(
√
δ).

Proof. Let m = ⌊1/δ⌋. Then δ ≤ 1/m, so NSδ[f ] ≤ NS1/m[f ]. If we identify/negate variables of f , we
get another LTF on m variables, which is unate, hence it has total influence at most

√
m. Therefore,

NS1/m[f ] ≤
√
m/m = 1/

√
m ≤ O(

√
δ).

Note that the bound goes to 0 uniformly as δ → 0, i.e., there is no dependence on n.

Corollary 1.4. If f has the form ANYs ◦ LTF, then NSδ[f ] ≤ O(s ·
√
δ).

Proof. Union bound.

For example, an “s-facet polytope” is a function of the form ANDs ◦ LTF.

1.2 Bounded noise sensitivity =⇒ concentration at low degrees

Theorem 1.5. Let f : {±1}n → {±1}. Then f is O(NS1/k[f ])-concentrated on degree up to k.

Proof.

2NS1/k[f ] = 1− Stab1−2/k[f ] = E
S∼Sf

[1− (1− 2/k)|S|] ≥ (1− (1− 2/k)k) · Pr
S∼Sf

[|S| ≥ k]

≥ (1− e−2) ·W≥k[f ].

Consequently, LTFs are ε-concentrated on degree up to O(1/ε2). More generally, we have shown that
(roughly speaking) a total influence bound of the form n · ε(n) implies O(ε(k))-concentration up to degree k.

2 Chow’s theorem

An “LTF ◦LTF circuit” is a function of the form f(x) = g(h1(x), . . . , hm(x)), where g, h1, . . . , hm are all LTFs.
The size of the circuit is m+ 1, the total number of LTFs. This is a simple type of neural network. How
powerful are LTF ◦ LTF circuits?

Every function f : {±1}n → {±1} can be computed by an LTF ◦ LTF circuit of exponential size, because
we can put f in conjunctive / disjunctive normal form. Note that AND and OR are both special cases of
LTFs. What about polynomial-size LTF ◦ LTF circuits?

We will prove that there are (many) functions that cannot be computed by polynomial-size LTF ◦ LTF
circuits. The key is Chow’s theorem, which says that an LTF is fully specified by its Fourier coefficients of
degree at most 1.

Theorem 2.1 (Chow’s theorem). Let f : {±1}n → {±1} be an LTF and let g : {±1}n → R. Assume
f̂(S) = ĝ(S) for every S ⊆ [n] such that |S| ≤ 1. Then f ≡ g.
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Proof. Since f is an LTF, there is some degree-1 function ℓ : {±1}n → R such that for every x ∈ {±1}n, we
have ℓ(x) ̸= 0 and f(x) = sign(ℓ(x)). Then

E
x
[|ℓ(x)|] = E

x
[f(x) · ℓ(x)] =

∑
S⊆[n]

f̂(S) · ℓ̂(S) =
∑
|S|≤1

f̂(S) · ℓ̂(S) =
∑
|S|≤1

ĝ(S) · ℓ̂(S)

=
∑
S⊆[n]

ĝ(S) · ℓ̂(S)

= E
x
[g(x) · ℓ(x)]

Since ℓ(x) is never zero, this implies that g(x) = sign(ℓ(x)) for every x.

Corollary 2.2. The number of distinct functions f : {±1}n → {±1} that can be computed by LTFs is 2O(n2).

Proof. For any Boolean function f : {±1}n → {±1}, every Fourier coefficient is an integer multiple of 2−n

between −1 and 1. Hence there are O(2n) possibilities for each of the n+ 1 Fourier coefficients of degree ≤ 1,
so we get a bound of O(2n)n+1.

Corollary 2.3. The number of distinct functions f : {±1}n → {±1} that can be computed by size-m LTF◦LTF
circuits is 2O(n2m).

In contrast, the total number of functions f : {±1}n → {±1} is 22
n
, which is much larger than 2O(n2m) if

m = poly(n).

3 Polynomial threshold functions

The proof in the previous section was dissatisfying, because it was nonconstructive. It is a major open
problem to prove that an “explicit” Boolean function cannot be computed by polynomial-size LTF ◦ LTF
circuits.1 One possible candidate hard function is the inner product mod 2 function. If n is even, then we
define IPn : {±1}n → {±1} by the formula

IPn(x1, . . . , xn/2, y1, . . . , yn/2) =

n/2∏
i=1

max(xi, yi).

(The name comes from the fact that if we encode inputs and outputs using {0, 1}, then the formula would
become IPn(x, y) =

∑
i xiyi mod 2. But we will encode bits using ±1 for convenience.) We will prove that

IPn cannot be computed by sparse polynomial threshold functions, which are an interesting special case of
LTF ◦ LTF circuits.

Definition 3.1 (Polynomial threshold functions). A polynomial threshold function (PTF) of sparsity m is a
function f : {±1}n → {±1} of the form f(x) = sign(p(x)), where p is a multilinear polynomial with at most
m monomials.

Proposition 3.2. Let f : {±1}n → {±1}. If f can be computed by a PTF of sparsity m, then f can also be
computed by an LTF ◦ LTF circuit of size at most mn+ 1.

Proof. If x ∈ {0, 1}n, then
n⊕

i=1

xi =
n∑

i=1

xi mod 2 =
n∑

t=1

(−1)t+1 · 1

[
n∑

i=1

xi ≥ t

]

=

n∑
t=1

(−1)t+1 ·

(
1

2
+

1

2
· sign

(
0.5− t+

n∑
i=1

xi

))
.

1For example, it is an open problem to prove that there exists a function f ∈ NP that cannot be computed by polynomial-size
LTF ◦ LTF circuits.
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Therefore, if x ∈ {±1}n, then

∏
i∈S

xi = 1− 2 ·
n⊕

i=1

(
1

2
− 1

2
xi

)

= 1− 2 ·
n∑

t=1

(−1)t+1 ·

(
1

2
+

1

2
· sign

(
0.5− t+

n∑
i=1

(
1

2
− 1

2
xi

)))
= a constant + a linear combination of n LTFs.

Therefore, if f(x) = sign(
∑m

i=1 ci
∏

j∈Si
xj), then

f(x) = sign

(
m∑
i=1

ci · (a constant + a linear combination of at most n LTFs)

)
= sign (a constant + a linear combination of at most mn LTFs) .

Lemma 3.3. Let f be a PTF, f(x) = sign(p(x)). Assume f is not constant. Then∑
S⊆[n]
p̂(S)̸=0

|f̂(S)| ≥ 1.

Proof. Let S∗ maximize |p̂(S∗)|. Then

|p̂(S∗)| =
∣∣∣E
x
[p(x) · χS∗(x)]

∣∣∣ ≤ E
x
[|p(x)|] = E

x
[p(x) · f(x)] =

∑
p̂(S)̸=0

p̂(S) · f̂(S) ≤ |p̂(S∗)| ·
∑

p̂(S)̸=0

|f̂(S)|.

Since f is not constant, we can divide both sides by |p̂(S∗)|.

Theorem 3.4. If n is even, then every PTF computing IPn has sparsity at least 2n/2.

Proof. On your homework (Exercise 3), you prove that |ÎPn(S)| = 2−n/2 for every S ⊆ [n].
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