Random Restrictions and Bounded-Depth Circuits (lecture notes) [Edited 2025-11-26]

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza®@uchicago.edu)

In these notes, we will use random restrictions to prove total influence and Fourier concentration bounds
for DNFs and, more generally, for bounded-depth circuits.

Definition 0.1 (Restrictions). A restriction is a string p € {+1,—1,x}". If f: {£1}" — R, then
flp: {F£1}" = R is defined by f|,(x) = f(y), where

i = {Pz’ if p; € {1}

x; if p; = *.

Definition 0.2 (Random Restrictions). We define R, to be the distribution over p € {+1, —1,*}" in which
the coordinates are independent and

*  with probability p
pi = +1 with probability (1 — p)/2
—1 with probability (1 —p)/2.

1 Influence of size-s DNF's

Previously, we proved that width-w DNFs have total influence O(w). In this section, we will prove that
size-s DNFs have total influence O(log s). The first step is to show that if we apply a random restriction to a
size-s DNF, the restricted function tends to have low total influence.

Lemma 1.1. Let f be a size-s DNF. Then

E  [DNFWidth(f|,)] < O(logss).
p~Ivy 2

Proof. The probability that a fixed term has width at least w after the restriction is at most (3/4)"“. (If it
had width less than w initially, this is trivial; if it had width at least w initially, then it collapses to 0 except
with this probability.) Therefore, by the union bound, Pr[DNFWidth(f|,) > w] < s - (3/4)". Therefore,

E[DNFWidth(f|,)] = Z Pr[DNFWidth(f|,) > w] < logy 38+ s- Z (3/4)Y = logy /3 s + o(1). O
w=1 w>logy /3 s
The second step is to analyze the effect of random restrictions on total influence.

Lemma 1.2. Let f: {+1}" — {£1} and p € [0,1]. Then

1
)= E (ifll.
Proof.
; = r x %)) = p - Inf;[f].
E DG = P [f(e) # FGS) = p-Tafil] 0

It follows that size-s DNF's have total influence O(log s). Note that this implies that DNFs computing
the parity function must have size 2",



2 Exponentially small Fourier tails

Previously, we proved that width-w DNFs have total influence O(w), which implies that they are e-concentrated
up to degree O(w/¢), hence learnable from random examples in time nOW/e) Tn this section, we will prove
that they are e-concentrated up to degree O(w - log(1/¢)), hence learnable from random examples in time
nOwlog(1/e)) " which is much better when ¢ is small. E.g., think ¢ = 1/n.

The first step is to show that width-w DNFs become low-degree functions under random restrictions.
This follows from the famous Switching Lemma:

Lemma 2.1 (Switching Lemma). Let f be a width-w DNF. Then

Pr [DTDepth(f|,) > k] < O(pw)".
p~Itp

We omit the proof of the switching lemma. The next step is a formula for the Fourier coefficients of a

restricted function.

Lemma 2.2. Let f: {£1}" — {£1}, let p be a restriction, let x be a completion of p, and let S C [n]. Then

Tlo(8) = 30 FSUU) xu(a) 18 € p7(x) and U € o7 ({0,1})].
UC[n]

Proof. We have

fla)y=>" FT) - xr(a) = > FT) - Xrop-1(01) (@) - X710 (),
TCln] TCn]

so the coefficient on xg(x) is

> FT) - Xrrp-1 (o1 (@)-

T:TNp~1(x)=8
The change of variables U = T N p~1({0,1}) completes the proof. O

The next step is to show that the spectral sample distribution is not affected much by random restrictions,
hence the width-w DNF must have had good spectral concentration even before the restriction. Specifically,
the following lemma [based on my circuit complexity lecture notes from Autumn 2024] says that the operation
of drawing a spectral sample “commutes with” the operation of applying a random restriction.

Lemma 2.3 (Spectral sample after a random restriction). Let f: {£1}" — {£1}. The following two
distributions over subsets of [n] are identical.

1. Sample p ~ R, then sample S ~ Sy, then output S.
2. Sample T ~ Sy, then sample p ~ R, then output T N p~1(x).

Proof. By squaring the previous lemma, we find that for any restriction p and any completion x of p, we have

o2 =3 FSUU)-FSUU) - xuaw(@) 1[S C o' (x) and U,U" C p~ ({0, 1})]
UU'Cln)

where UAU’ is the symmetric difference between U and U’. If p is a random restriction sampled from R,
and z is a uniform random completion of p, then in expectation, we have

E[flo(81] = 3 F(SUU)- FSUU) - E [xpav(2) - 1[S € p~! () and U, € p~'({0,1})]] .
UU'Cln)


https://en.wikipedia.org/wiki/Symmetric_difference

The completion x and the star-set p~!(x) are independent, so we can exchange the expectation with the
product:

E [ } > f SUU)- f(SUU") - Elxvav ()] - Pr[S € p~'(x) and U, U’ € p~({0,1})].
U,U'C[n
Nontrivial character functions have expectation zero, so the equation above simplifies to
E[J1,(8)2] = > FSUU)2-PrlS € p' () and U € p7'({0,1})]
UC|n]

= > J(1)? PrS=Tnp ' (»)).

TCn)

The left-hand side in the equation above is the probability of getting S under distribution 1 in the lemma
statement. The right-hand side is the probability of getting S under distribution 2 in the lemma statement. [J

Theorem 2.4. If f: {£1}" — {£1} is a width-w DNF, then W2F[f] < 2-27%k/®) and hence f is
e-concentrated on degree at most O(w - log(1/e)).

Proof. On the one hand, by the Switching Lemma, there is a value p = ©(1/w) such that for every d € N,
we have

15| > d] < Pr [DTDepth(f|,) >d] <277
~1p p~Ryp
SNSf\p

On the other hand, by Lemma 2.3, we have

S|>dj= E | Pr[|Tnpt(x)>d].
P ISz d = B | T )2 d)
SNSf‘

For any fixed set T C [n], we expect |T'N p~ ()| ~ p-|T|. Indeed, one can show that
Pr(IT0p )l = Lp- 171 ]| 2 172,

(Note that such a statement amounts to bounding the median of the binomial distribution.!) Therefore,

l\')\}—t

Tgasf[ ooz kaJH > Py T2 K-

Rearranging, we get Prr.s,[|T| > k] < 2- 2Pk Tf pk > 2, then this is at most 2 - 27P%/2 and if pk < 2,
then trivially Prr.s,[|T] > k] < 2- 9—Pk/2 0

3 Deeper circuits

An ACg circuit is a depth-d circuit consisting of alternating layers of AND gates and OR gates with unbounded
fan-in, ultimately applied to variables and negated variables. The size of the circuit is the total number of
gates. Let’s analyze the total influence of such a circuit. Once again, the first step is to analyze the effect of
a random restriction on such a circuit. The “ACY Criticality Theorem” is analogous to the Switching Lemma.

Theorem 3.1 (AC0 Criticality Theorem). Let f be a size-s ACS circuit, let p € (0,1), and let k € N. Then

Pr [DTDepth(f|,) > k] < (p- O(logs)*™")".
p~ip

!An alternative and more elementary approach is to use Cantelli’s inequality to prove Pr[|T N p~'(x)| > |pk/2]] > 1/3.


https://en.wikipedia.org/wiki/Cantelli%27s_inequality

We omit the proof of Theorem 3.1. Let’s take Theorem 3.1 for granted and use it to bound the total
influence of ACY circuits.

Corollary 3.2. Let f be a size-s AC2 circuit. Then
I[f] < O(log 5)"*.

Proof. For a suitable value p = 1/0(log 5)9~!, Theorem 3.1 implies

E [DTDepth <N 27k 1,
pNR,,[ pth(f],)] _;

If f is a depth-k decision tree, then senss(x) < k for every x, hence I[f] < k. Applying Lemma 1.2 completes
the proof. O

Similarly, one can prove that AC? circuits have exponentially small Fourier tails:

Theorem 3.3 (Linial-Mansour-Nisan). If f: {+1}" — {£1} is a size-s ACY circuit, then W2F[f] <
2. 27k/000s)*™" " pepce f is e-concentrated on degree at most O(log 5)4=! -log(1/e).
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