
Random Restrictions and Bounded-Depth Circuits (lecture notes) [Edited 2025-11-26]

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

In these notes, we will use random restrictions to prove total influence and Fourier concentration bounds
for DNFs and, more generally, for bounded-depth circuits.

Definition 0.1 (Restrictions). A restriction is a string ρ ∈ {+1,−1, ⋆}n. If f : {±1}n → R, then
f |ρ : {±1}n → R is defined by f |ρ(x) = f(y), where

yi =

{
ρi if ρi ∈ {±1}
xi if ρi = ⋆.

Definition 0.2 (Random Restrictions). We define Rp to be the distribution over ρ ∈ {+1,−1, ⋆}n in which
the coordinates are independent and

ρi =


⋆ with probability p

+1 with probability (1− p)/2

−1 with probability (1− p)/2.

1 Influence of size-s DNFs

Previously, we proved that width-w DNFs have total influence O(w). In this section, we will prove that
size-s DNFs have total influence O(log s). The first step is to show that if we apply a random restriction to a
size-s DNF, the restricted function tends to have low total influence.

Lemma 1.1. Let f be a size-s DNF. Then

E
ρ∼R1/2

[DNFWidth(f |ρ)] ≤ O(log s).

Proof. The probability that a fixed term has width at least w after the restriction is at most (3/4)w. (If it
had width less than w initially, this is trivial; if it had width at least w initially, then it collapses to 0 except
with this probability.) Therefore, by the union bound, Pr[DNFWidth(f |ρ) ≥ w] ≤ s · (3/4)w. Therefore,

E[DNFWidth(f |ρ)] =
∞∑

w=1

Pr[DNFWidth(f |ρ) ≥ w] ≤ log4/3 s+ s ·
∑

w≥log4/3 s

(3/4)w = log4/3 s+O(1).

The second step is to analyze the effect of random restrictions on total influence.

Lemma 1.2. Let f : {±1}n → {±1} and p ∈ [0, 1]. Then

I[f ] =
1

p
· E
ρ∼Rp

[I[f |ρ]].

Proof.
E

ρ∼Rp

[Infi[f |ρ]] = Pr
ρ∼Rp,x∈{±1}n

[f |ρ(x) ̸= f |ρ(x⊕i)] = p · Infi[f ].

It follows that size-s DNFs have total influence O(log s). Note that this implies that DNFs computing
the parity function must have size 2Ω(n).
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2 Exponentially small Fourier tails

Previously, we proved that width-w DNFs have total influenceO(w), which implies that they are ε-concentrated
up to degree O(w/ε), hence learnable from random examples in time nO(w/ε). In this section, we will prove
that they are ε-concentrated up to degree O(w · log(1/ε)), hence learnable from random examples in time
nO(w·log(1/ε)), which is much better when ε is small. E.g., think ε = 1/n.

The first step is to show that width-w DNFs become low-degree functions under random restrictions.
This follows from the famous Switching Lemma:

Lemma 2.1 (Switching Lemma). Let f be a width-w DNF. Then

Pr
ρ∼Rp

[DTDepth(f |ρ) ≥ k] ≤ O(pw)k.

We omit the proof of the switching lemma. The next step is a formula for the Fourier coefficients of a
restricted function.

Lemma 2.2. Let f : {±1}n → {±1}, let ρ be a restriction, let x be a completion of ρ, and let S ⊆ [n]. Then

f̂ |ρ(S) =
∑
U⊆[n]

f̂(S ∪ U) · χU (x) · 1[S ⊆ ρ−1(⋆) and U ⊆ ρ−1({0, 1})].

Proof. We have

f(x) =
∑
T⊆[n]

f̂(T ) · χT (x) =
∑
T⊆[n]

f̂(T ) · χT∩ρ−1({0,1})(x) · χT∩ρ−1(⋆)(x),

so the coefficient on χS(x) is ∑
T :T∩ρ−1(⋆)=S

f̂(T ) · χT∩ρ−1({0,1})(x).

The change of variables U = T ∩ ρ−1({0, 1}) completes the proof.

The next step is to show that the spectral sample distribution is not affected much by random restrictions,
hence the width-w DNF must have had good spectral concentration even before the restriction. Specifically,
the following lemma [based on my circuit complexity lecture notes from Autumn 2024] says that the operation
of drawing a spectral sample “commutes with” the operation of applying a random restriction.

Lemma 2.3 (Spectral sample after a random restriction). Let f : {±1}n → {±1}. The following two
distributions over subsets of [n] are identical.

1. Sample ρ ∼ Rp, then sample S ∼ Sf |ρ, then output S.

2. Sample T ∼ Sf , then sample ρ ∼ Rp, then output T ∩ ρ−1(⋆).

Proof. By squaring the previous lemma, we find that for any restriction ρ and any completion x of ρ, we have

f̂ |ρ(S)2 =
∑

U,U ′⊆[n]

f̂(S ∪ U) · f̂(S ∪ U ′) · χU∆U ′(x) · 1[S ⊆ ρ−1(⋆) and U,U ′ ⊆ ρ−1({0, 1})],

where U∆U ′ is the symmetric difference between U and U ′. If ρ is a random restriction sampled from Rp

and x is a uniform random completion of ρ, then in expectation, we have

E
[
f̂ |ρ(S)2

]
=

∑
U,U ′⊆[n]

f̂(S ∪ U) · f̂(S ∪ U ′) · E
[
χU∆U ′(x) · 1[S ⊆ ρ−1(⋆) and U,U ′ ⊆ ρ−1({0, 1})]

]
.
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The completion x and the star-set ρ−1(⋆) are independent, so we can exchange the expectation with the
product:

E
[
f̂ |ρ(S)2

]
=

∑
U,U ′⊆[n]

f̂(S ∪ U) · f̂(S ∪ U ′) · E[χU∆U ′(x)] · Pr[S ⊆ ρ−1(⋆) and U,U ′ ⊆ ρ−1({0, 1})].

Nontrivial character functions have expectation zero, so the equation above simplifies to

E
[
f̂ |ρ(S)2

]
=

∑
U⊆[n]

f̂(S ∪ U)2 · Pr[S ⊆ ρ−1(⋆) and U ⊆ ρ−1({0, 1})]

=
∑
T⊆[n]

f̂(T )2 · Pr[S = T ∩ ρ−1(⋆)].

The left-hand side in the equation above is the probability of getting S under distribution 1 in the lemma
statement. The right-hand side is the probability of getting S under distribution 2 in the lemma statement.

Theorem 2.4. If f : {±1}n → {±1} is a width-w DNF, then W≥k[f ] ≤ 2 · 2−Ω(k/w), and hence f is
ε-concentrated on degree at most O(w · log(1/ε)).

Proof. On the one hand, by the Switching Lemma, there is a value p = Θ(1/w) such that for every d ∈ N,
we have

Pr
ρ∼Rp

S∼Sf |ρ

[|S| ≥ d] ≤ Pr
ρ∼Rp

[DTDepth(f |ρ) ≥ d] ≤ 2−d.

On the other hand, by Lemma 2.3, we have

Pr
ρ∼Rp

S∼Sf |ρ

[|S| ≥ d] = E
T∼Sf

[
Pr

ρ∼Rp

[|T ∩ ρ−1(⋆)| ≥ d]

]
.

For any fixed set T ⊆ [n], we expect |T ∩ ρ−1(⋆)| ≈ p · |T |. Indeed, one can show that

Pr
[
|T ∩ ρ−1(⋆)| ≥ ⌊ p · |T | ⌋

]
≥ 1/2.

(Note that such a statement amounts to bounding the median of the binomial distribution.1) Therefore,

E
T∼Sf

[
Pr

ρ∼Rp

[
|T ∩ ρ−1(⋆)| ≥ ⌊pk⌋

]]
≥ Pr

T∼Sf

[|T | ≥ k] · 1
2
.

Rearranging, we get PrT∼Sf
[|T | ≥ k] ≤ 2 · 2−⌊pk⌋. If pk ≥ 2, then this is at most 2 · 2−pk/2, and if pk ≤ 2,

then trivially PrT∼SC
[|T | ≥ k] ≤ 2 · 2−pk/2.

3 Deeper circuits

An AC0
d circuit is a depth-d circuit consisting of alternating layers of AND gates and OR gates with unbounded

fan-in, ultimately applied to variables and negated variables. The size of the circuit is the total number of
gates. Let’s analyze the total influence of such a circuit. Once again, the first step is to analyze the effect of
a random restriction on such a circuit. The “AC0 Criticality Theorem” is analogous to the Switching Lemma.

Theorem 3.1 (AC0 Criticality Theorem). Let f be a size-s AC0
d circuit, let p ∈ (0, 1), and let k ∈ N. Then

Pr
p∼Rp

[DTDepth(f |ρ) ≥ k] ≤ (p ·O(log s)d−1)k.

1An alternative and more elementary approach is to use Cantelli’s inequality to prove Pr[|T ∩ ρ−1(⋆)| ≥ ⌊pk/2⌋] ≥ 1/3.

3

https://en.wikipedia.org/wiki/Cantelli%27s_inequality


We omit the proof of Theorem 3.1. Let’s take Theorem 3.1 for granted and use it to bound the total
influence of AC0 circuits.

Corollary 3.2. Let f be a size-s AC0
d circuit. Then

I[f ] ≤ O(log s)d−1.

Proof. For a suitable value p = 1/O(log s)d−1, Theorem 3.1 implies

E
p∼Rp

[DTDepth(f |ρ)] ≤
∞∑
k=1

2−k = 1.

If f is a depth-k decision tree, then sensf (x) ≤ k for every x, hence I[f ] ≤ k. Applying Lemma 1.2 completes
the proof.

Similarly, one can prove that AC0 circuits have exponentially small Fourier tails:

Theorem 3.3 (Linial-Mansour-Nisan). If f : {±1}n → {±1} is a size-s AC0
d circuit, then W≥k[f ] ≤

2 · 2−k/O(log s)d−1
, hence f is ε-concentrated on degree at most O(log s)d−1 · log(1/ε).
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