Small-Bias Distributions and Almost k-wise Uniformity (lecture notes)

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza®@uchicago.edu)

In these lecture notes, we will see some applications of Fourier analysis to the problem of constructing
pseudorandom generators (PRGs). The general definition is as follows.

Definition 0.1 (Fooling). Let D be a distribution over {+1}", let f: {£1}" — R, and let € € (0,1). We say
that D fools f with error ¢ if | E,p[f(x)] — E[f]| < e.

Definition 0.2 (PRG). A PRG is a function G: {£1}" — {£1}". We say that G fools f: {£1}" — R with
error ¢ if G(U,) fools f with error €. Here U, denotes the uniform distribution over {+1}".

We want the seed length r and the error € to be as small as possible. We want to fool as rich a class of
functions f as possible. The function f represents a “user” of the PRG. For example, f might represent a
randomized algorithm, and saying that G fools f means that we can safely use G to simulate the randomized
algorithm without significantly distorting its behavior.

We also want the generator to be efficiently computable. We say that G is ezplicit if G(x) can be
computed in polynomial time, given x, n, €, and any parameters that define the class of functions that we
are trying to fool (hopefully clear from context).

The PRGs we will present will use finite field arithmetic, so we’ll begin by reviewing some basic facts
about finite fields.

1 Finite fields

As a reminder, a field is a set equipped with two binary operations, addition and multiplication, such that
the following axioms hold: addition and multiplication satisfy the associative, commutative, and distributive
laws; there are additive and multiplicative identities (0 and 1); every element = has an additive inverse —zx;
and every nonzero element z has a multiplicative inverse z—!. For example, R, Q, and C are all infinite fields.
We are more interested in finite fields, which are described by the following two theorems.

Theorem 1.1 (Finite field existence). Let q be a positive integer. There exists a finite field with cardinality
q if and only if q is a power of a prime.

Theorem 1.2 (Finite field uniqueness). Every two finite fields of the same cardinality are isomorphic.

In light of Theorems 1.1 and 1.2, for each prime power g, we can sensibly speak of “the” finite field of
cardinality ¢, denoted IF,. We won’t fully prove Theorems 1.1 and 1.2, but we’ll say a bit more about how to
construct F,. The simplest case is [F,, where p is prime. As a set, we have F, = {0,1,...,p—1}. We add and
multiply elements modulo p. (Caution: If m is composite, then the integers modulo m do not satisfy the
field axioms!)

To construct more fields, we draw inspiration from the complex numbers. Recall that C can be constructed
by starting from R, introducing a new “imaginary unit” i, and declaring that i> = —1, or equivalently
i +1 = 0. It is only natural to try using a different polynomial instead of 2 + 1. Such a construction
still gives us a field, provided we work with an irreducible polynomial. We say that a polynomial F(z) is
irreducible if it cannot be factored into two non-constant polynomials.

Theorem 1.3. For every prime number p and every positive integer d, there exists a degree-d irreducible
polynomial E(z) € Fp[z].


https://en.wikipedia.org/wiki/Field_(mathematics)

Theorem 1.3 can be proven using a counting argument: one shows that a noticeable fraction of all degree-d
monic polynomials are in fact irreducible. Such a proof is rather unsatisfying, because it doesn’t actually
give us any explicit ezamples of irreducible polynomials. Fortunately, it is possible to cook up some very nice
explicit examples:

Theorem 1.4. For every nonnegative integer m, the polynomial >3 + 23" + 1 is irreducible over Fs.

We’ll skip the proofs of Theorems 1.3 and 1.4. See the textbook “Introduction to Coding Theory” by van
Lint if you're curious.

Suppose E(z) is a degree-d polynomial that is irreducible over F,. Then we can construct Fpa as
F,[x]/E(x), i.e., the set of polynomials over [, modulo E(x). This is completely analogous to the construction
C =R[i]/(#* +1).

For example, suppose d is two times a power of three. In this case, we can explicitly construct Foa
using Theorem 1.4. As a set, we can take Fos = {0, 1}%. Addition is simply bitwise XOR. Multiplication is
only slightly more complicated. We interpret each field element u € {0,1}¢ as a vector of coefficients of a
polynomial over Fy. To multiply two field elements, first we do ordinary polynomial multiplication, then we
repeatedly replace each occurrence of z¢ with %2 4+ 1 until the degree is less than d.

2 Limited independence

One of the most “basic” types of PRGs is a PRG for generating k-wise independent bits.

Definition 2.1 (k-wise uniformity). Let D be a distribution over {£1}" and let k € [n]. We say that D is
k-wise uniform if every k coordinates of D are distributed uniformly over {0,1}*. Equivalently, this means
that D fools k-juntas with error 0. A k-wise uniform generator is a PRG G: {0,1}" — {0,1}" such that
G(Uy) is k-wise uniform.

We can construct a k-wise uniform generator using the fact that low degree polynomials have few roots
over any field.

Lemma 2.2 (The degree mantra). Let F be a field, and let p be a nonzero polynomial over F of degree at
most d. Then p has at most d distinct roots.

Proof. If d = 0, this is obvious. Now suppose d > 0. Let a be a root of p. By polynomial long division, we
can write p(z) = (z — a) - ¢(x) + b for some ¢(z) € Flz] and some b € F. By plugging in x = a, we see that
b=0,s0p(z) = (r—a)-q(x). Every root of p other than a must be a root of ¢, because in a field, a product
of nonzero elements is always nonzero. Finally, deg(q) < d — 1, so by induction, ¢ has at most d — 1 distinct
roots. 0

Theorem 2.3. For everyn, k € N, there exists an explicit k-wise uniform generator G: {0,1}" — {0, 1}"™ with
seed length r = O(k - logn). Furthermore, as a map G: Fy — F3, the generator G is a linear transformation.

Proof.

e Construction: Let d be a number of the form 2 - 3™ such that logn < d < 3logn. Since d is two times a
power of three, we can construct Fos using Theorem 1.4. Let P be the set of polynomials p(x) € Fya[z]
of degree less than k. Let z1, 29, ..., 2z, be distinct elements of Foq. Define G: P — {0,1}" by

G(p) = (p(z1)1,- - - p(zn)1),
where u; denotes the first bit of u € {0,1}¢ = Foa.

e Seed length: A polynomial p € P can be represented as a vector of k coefficients, which consists of
r=k-d=0O(klogn) bits.



e Correctness: Fix any k distinct coordinates i1, g, ..., i € [n]. Define H: P — ng by

H(p) = (p(zi,), - -, (2i,,))-

Then H is injective, because if H(p) = H(p'), then p — p’ is a polynomial of degree at most k — 1 with
at least k zeroes, hence p — p’ = 0 by the degree mantra. Furthermore, the domain and codomain of H
are finite sets of equal cardinality. Therefore, H is bijective. So if we pick p € P uniformly at random,
then H(p) is a uniform random element of F’;d. It follows that coordinates i1, 19, ..., of G(p) are
distributed uniformly over {0, 1}*.

e Linearity: Addition in the vector space F¢ is just bitwise XOR, the same as addition in the field Fya.
Therefore, G(p + p') = G(p) + G(p').
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3 Small-bias distributions

The Fourier-analytic perspective is that every Boolean function is a linear combination of character functions.
Therefore, from a Fourier-analytic perspective, the most “basic” type of PRG is one that fools character
functions.

Definition 3.1 (Bias). Let D be a distribution over {£1}" and let € € (0,1). We say that D is e-biased if
D fools all character functions g with error €. An e-biased generator is a PRG with an e-biased output
distribution.

Another way of understanding the definition is to consider the probability density function of D. This is
the function pp: {£1}" — R defined by

ep(z) =2"- Pr [y =z
y~D

In other words, its the probability mass function of D, scaled by a factor of 2. Every probability density
function satisfies op (@) = 1.

Claim 3.2. D is e-biased if and only if for every nonempty S C [n], we have |gop(S)| < e.

Proof.
Po(S)=2"" > ¢p(a)-xs@@)= Y xs(@) Priy=a]= E [xs()] m
ze{x1}" ze{£1}" v o

We now present an explicit construction of a small-bias generator. The construction once again uses
low-degree polynomials over a finite field, just like our k-wise uniform generator, but the details are different.

Theorem 3.3. For everyn € N and e € (0, 1), there exists an explicit e-biased generator G: {0,1}" — {0,1}"
with seed length r = O(log(n/¢)).

Proof. Let d be a number of the form 2 - 3™ such that log(n/c) < d < 3log(n/e). Since d is two times a
power of three, we can construct Fys using Theorem 1.4. We think of G as a map G: Fya x Foa — F3, so the
seed length is 7 = 2d = O(log(n/c)). The generator is given by

G(u,v) = (IP(u',v),IP(u? v),...,IP(u",v)),

where IP: {0,1}¢ x {0,1}¢ — {0,1} is inner product modulo 2, i.e., IP(u,v) = @?:1 u;v;. To prove
that this works, consider any character function x,(x) where a is a nonzero element of Fy. We have
Xa(z) = (—1)Zi=1 %% Therefore,

n

Xa(G(u,v)) = (=1)Zim e TPlute) — (LIPSl ereto) — (),



where p,(u) = 31 | a;-u’ € F4. Observe that p, is a polynomial over Foa of degree at most n. By the degree
mantra, p, has at most n roots. Therefore,

Xpa () (V)]
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4 Almost k-wise uniformity

Theorem 2.3 shows how to sample k-wise uniform bits using O(k - logn) truly random bits. The factor of
log n in this seed length is perhaps a bit disappointing. Unfortunately, it turns out that O(k-logn) is optimal,
unless k£ =~ n. The good news is that it is possible to improve the seed length, if we are willing to tolerate a
small amount of error.

Definition 4.1 (Almost k-wise uniformity). Let D be a distribution over {£1}", let k € [n], and let € € (0, 1).
We say that D is e-almost k-wise uniform if D fools {0, 1}-valued k-juntas with error €. Equivalently, every
k coordinates of D are distributed within total variation distance € of Ug. An e-almost k-wise uniform
generator is a PRG G: {0,1}" — {0,1}" such that G(U,) is e-almost k-wise uniform.

4.1 Warm-up

As an application of small-bias distributions, we will construct an e-almost k-wise uniform generator with
seed length O(k + log(1/¢) + loglogn). First, as a warm-up, let’s construct a generator with seed length
O(k +log(n/e)). The key is the following lemma.

Lemma 4.2. Let f: {£1}" — R, and let D be a distribution over {£1}". If D is e-biased, then D fools f
with error e - || f|l1.

Proof.

E Ixs@)]|<e-[[flli. O

x~D

E [f(x)J—Em]— 3 f(S)-(E [xS<x>1—E[xS]) < SIS
SCln|

S#+2

Corollary 4.3 (Warm-up). For every n,k € N and € € (0,1), there is an explicit e-almost k-wise uniform
PRG G: {£1}" — {£1}"™ with seed length r = O(k + log(n/¢)).

Proof. Let G be an (e - 27%/2)-biased generator. Then for any k-junta f: {£1}" — [~1, 1], we have

|E[f(G(U;))] —E[f]| <e- 97k/2. ﬂfﬂl by the lemma
<e-27R29R2 10 by Exercise 3a
<e. O

4.2 The improved PRG

To improve the seed length, we will compose an exact k-wise uniform generator with a small-bias generator.
For the analysis, it is helpful to define a notion of k-wise small-bias distributions.

Definition 4.4 (k-wise small-bias). Let D be a distribution over {£1}", let k € [n], and let ¢ € (0,1). We
say that D is k-wise e-biased if, for every S C [n] with |S| < k, the distribution D fools the character function
Xxs with error e. We say that a PRG G: {£1}" — {£1}" is a k-wise e-biased generator if G(U,) is k-wise
e-biased.

Theorem 4.5. For every n,k € N and ¢ € (0,1), there exists an explicit k-wise e-biased generator
G:{0,1}" — {0, 1}"™ with seed length r = O(log(k/e) + loglogn).



Proof. Let M € F3*" be the matrix representation of the k-wise uniform generator from Theorem 2.3. The
generator G samples an e-biased seed u € F7°, then outputs Mu. To prove that this works, consider any
character function x,: Fy — {1}, where a € F} and a has Hamming weight at most k. Then

0

Xa(Mu) = (—1)Zimai-(Mu)i _ (_1)2?:1%'2?’:1 Miju; _ (_I)Ejzl(Z?:lai‘Mi‘)'uj — E[xs(w)],

where b; = > | a; - M;; for each j € [rg]. Since u is sampled from an e-biased distribution, we have
|E[xp(u)] — E[xs(u)]| < e, where v’ € Fi® is selected uniformly at random. Therefore,

| E[xa(Mu)] — E[xo(Mu')]| < e.
Finally, x, is a k-junta, so k-wise uniformity tells us E[xq(Mu')] = E[xa]. O

Lemma 4.6. Let f: {£1}" — R, and let D be a distribution over {£1}". If D is k-wise e-biased and
deg(f) <k, then D fools f with error e - || f||1.

Proof.
EJ@] -5 =| & 7) (sl -Exsl)| < 5 A B s <2 ffh. O
SCln]

0<|S|<deg(f)

Corollary 4.7. For every n,k € N, there exists an explicit e-almost k-wise uniform PRG G: {£1}" — {£1}"
with seed length r = O(k + log(1/e) + loglogn).

Proof. Let G be a k-wise (¢ - 27%/?)-biased generator. Then for any k-junta f: {£1}" — [—1, 1], we have

|E[f(G(U;))] —E[f]| <e- 27k/2. ﬂfﬂ1 by the lemma
<e-27R2 k2 1), by Exercise 3a
<e. O

The seed length in Theorem 4.7 is shockingly small. For example, if k and ¢ are constants, then the
generator has do)ubly exponential stretch, i.e., it stretches a seed of length r out to a pseudorandom string of
length n = 227"
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