The OSSS Inequality and the FKN Theorem (lecture notes)

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago

Instructor: William Hoza (williamhoza@uchicago.edu)

1 The O'Donnell-Saks-Schramm-Servedio inequality

Previously, we proved the KKL theorem, which says that for every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$, there is a variable i such that $\operatorname{Inf}_i[f] \geq \Omega(\operatorname{Var}[f] \cdot \frac{\log n}{n})$. The KKL theorem is tight, as demonstrated by the Tribes function, but we can improve the KKL theorem if we make extra assumptions about f. We will prove that if f can be computed by a size-s decision tree, then there is a variable $i \in [n]$ such that $\operatorname{Inf}_i[f] \geq \operatorname{Var}[f]/\log s$. Equivalently, our goal is to prove that $\operatorname{Var}[f] \leq (\log s) \cdot \max_i \operatorname{Inf}_i[f]$. For the sake of induction, we will actually prove an upper bound on the *covariance* between f and g, where f is a size-s decision tree and g has small influences.

Definition 1.1 (Covariance). Let $f, g: \{\pm 1\}^n \to \mathbb{R}$. We define

$$Cov[f, g] = \mathbb{E}[fg] - \mathbb{E}[f] \cdot \mathbb{E}[g].$$

The proof relies on the expectation operator. Recall that for a function $f: \{\pm 1\}^n \to \mathbb{R}$ and $i \in \mathbb{N}$, we define $E_i f = \sum_{S \not\supseteq i} \widehat{f}(S) \cdot \chi_S$. The following lemma provides a more intuitive interpretation of the expectation operator.

Lemma 1.2. If $f: \{\pm 1\}^n \to \mathbb{R}$ and $i \in \mathbb{N}$, then

$$(E_i f)(x) = \underset{b \in \{\pm 1\}}{\mathbb{E}} [f(x^{(i \mapsto b)})].$$

Proof.

$$(E_{i}f)(x) = f(x) - x_{i} \cdot (D_{i}f)(x)$$

$$= f(x) - x_{i} \cdot \frac{f(x^{(i \mapsto 1)}) - f(x^{(i \mapsto -1)})}{2}$$

$$= \underset{b \in \{\pm 1\}}{\mathbb{E}} [f(x^{(i \mapsto b)})].$$

Lemma 1.3. Let $f, g: \{\pm 1\}^n \to \mathbb{R}$ and $i \in [n]$. For each $b \in \{\pm 1\}$, let f_b, g_b denote the restrictions of f in which we fix $x_i = b$. Then

$$Cov[f, g] = \underset{b, b'}{\mathbb{E}} [Cov[f_b, g_{b'}]] + \langle f, x_i \cdot D_i g \rangle.$$
 (1)

Proof. Without loss of generality, assume $\mathbb{E}[f] = \mathbb{E}[g] = 0$. (None of the terms in Eq. (1) are affected if we shift f or g by an additive constant.) Then

$$Cov[f,g] = \langle f,g \rangle = \langle f, x_i \cdot D_i g \rangle + \langle f, E_i g \rangle$$

$$= \langle f, x_i \cdot D_i g \rangle + \langle x_i \cdot D_i f, E_i g \rangle + \langle E_i f, E_i g \rangle$$

$$= \langle f, x_i \cdot D_i g \rangle + \langle E_i f, E_i g \rangle$$

$$= \langle f, x_i \cdot D_i g \rangle + \underset{b \ b'}{\mathbb{E}} [\langle f_b, g_{b'} \rangle]$$
 by Lemma 1.2.

Meanwhile,

$$\mathbb{E}\left[\operatorname{Cov}[f_{b}, g_{b'}]\right] = \mathbb{E}\left[\mathbb{E}\left[f_{b}(x) \cdot g_{b'}(x)\right] - \mathbb{E}\left[f_{b}(x)\right] \cdot \mathbb{E}\left[g_{b'}(x')\right]\right] \\
= \mathbb{E}\left[\left\langle f_{b}, g_{b'} \right\rangle\right] - \mathbb{E}\left[f_{b}(x)\right] \cdot \mathbb{E}\left[g_{b'}(x')\right] \\
= \mathbb{E}\left[\left\langle f_{b}, g_{b'} \right\rangle\right] - \mathbb{E}\left[f\right] \cdot \mathbb{E}\left[g\right] \\
= \mathbb{E}\left[\left\langle f_{b}, g_{b'} \right\rangle\right]. \qquad \square$$

Theorem 1.4 (OSSS Inequality). Let $f, g: \{\pm 1\}^n \to \{\pm 1\}$, let T be a decision tree computing f, and let $\delta_i(T)$ be the probability that T queries x_i when we plug in a uniform random x. Then

$$\operatorname{Cov}[f, g] \leq \sum_{i=1}^{n} \delta_i(T) \cdot \operatorname{Inf}_i[g].$$

Proof. We will prove it by induction on the depth of T. If T has depth zero, the theorem is trivial, so assume T has depth D > 0. Let i_* be the variable queried by the root. For each $b \in \{\pm 1\}$, let f_b, g_b be the restrictions of f, g given by fixing $x_{i_*} = b$, and let T_b be the depth-(D-1) subtree of T computing f_b . Then

$$\operatorname{Cov}[f,g] = \underset{b,b'}{\mathbb{E}}[\operatorname{Cov}[f_b,g_{b'}]] + \langle f, x_{i_*} \cdot D_{i_*}g \rangle$$

$$\leq \underset{b,b'}{\mathbb{E}} \left[\sum_{i \neq i_*} \delta_i(T_b) \cdot \operatorname{Inf}_i[g_{b'}] \right] + \underset{x}{\mathbb{E}}[|D_{i_*}g|]$$

$$= \sum_{i \neq i_*} \underset{b}{\mathbb{E}}[\delta_i(T_b)] \cdot \underset{b'}{\mathbb{E}}[\operatorname{Inf}_i[g_{b'}]] + \operatorname{Inf}_{i_*}[g]$$

$$= \sum_{i \neq i_*} \delta_i(T) \cdot \operatorname{Inf}_i[g] + \operatorname{Inf}_{i_*}[g]$$

$$= \sum_{i=1}^n \delta_i(T) \cdot \operatorname{Inf}_i[g].$$

Corollary 1.5. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be a size-s decision tree. Then there is some $i \in [n]$ such that $\operatorname{Inf}_i[f] \geq \operatorname{Var}[f]/\log s$.

Proof. Let T be the decision tree. By the OSSS inequality, we have

$$\operatorname{Var}[f] = \operatorname{Cov}[f, f] \leq \sum_{i=1}^{n} \delta_{i}(T) \cdot \operatorname{Inf}_{i}[f] \leq \left(\max_{i} \operatorname{Inf}_{i}[f] \right) \cdot \sum_{i=1}^{n} \delta_{i}(T)$$

$$= \left(\max_{i} \operatorname{Inf}_{i}[f] \right) \cdot \mathbb{E}[\operatorname{cost}_{T}(x)]$$

$$\leq \left(\max_{i} \operatorname{Inf}_{i}[f] \right) \cdot \log s. \qquad \Box$$

2 The Friedgut-Kalai-Naor theorem

Let $f: \{\pm 1\}^n \to \{\pm 1\}$. Recall that Condorcet's paradox is the situation $f(x^{ab}) = f(x^{bc}) = f(x^{ca})$ for some $x \in S_3^n$. Recall that Arrow's theorem say that if Condorcet's paradox never happens, then f or -f is a dictator function. In this section, as another application of hypercontractivity, we will prove a robust version of Arrow's theorem, saying that if Condorcet's paradox rarely happens, then f or -f is close to a dictator function.

The key is the Friedgut-Kalai-Naor (FKN) theorem. Recall that in the proof of Arrow's theorem, we showed that if the probability of the Condorcet paradox is at most ε , then $W^1[f] \geq 1 - O(\varepsilon)$. The FKN theorem says that this condition implies that f or -f is $O(\varepsilon)$ -close to a dictator.

Theorem 2.1 (Friedgut-Kalai-Naor). Let $f: \{\pm 1\}^n \to \{\pm 1\}$. Suppose $W^1[f] \ge 1 - \varepsilon$. Then there is some $i \in [n]$ and some $b \in \{\pm 1\}$ such that f is $O(\varepsilon)$ -close to $b\chi_i$.

Proof. Our goal is to show that there is some i such that $|\widehat{f}(i)| \approx 1$. We have

$$\max_{i} \hat{f}(i)^{2} \ge \left(\max_{i} \hat{f}(i)^{2}\right) \cdot \sum_{i=1}^{n} \hat{f}(i)^{2} \ge \sum_{i=1}^{n} \hat{f}(i)^{4} = \left(\sum_{i=1}^{n} \hat{f}(i)^{2}\right)^{2} - 2 \sum_{1 \le i < j \le n} \hat{f}(i)^{2} \cdot \hat{f}(j)^{2}$$

$$\ge (1 - \varepsilon)^{2} - 2 \sum_{1 \le i < j \le n} \hat{f}(i)^{2} \cdot \hat{f}(j)^{2}.$$

So we would like to show that $\sum_{1 \leq i < j \leq n} \hat{f}(i)^2 \cdot \hat{f}(j)^2$ is small. Define

$$h(x) = 2 \sum_{1 \le i < j \le n} \widehat{f}(i) \cdot \widehat{f}(j) \cdot x_i x_j,$$

so our goal is to bound $||h||_2^2$. Recall that we used hypercontractivity to prove $||h||_2 \le 2^{O(\deg(h))} \cdot ||h||_1$. In our case, $\deg(h) = 2$, so $||h||_2 = O(||h||_1)$, and our new goal is to bound $||h||_1$. Define $\ell(x) = \sum_{i=1}^n \widehat{f}(i) \cdot x_i$. Then $h = \ell^2 - \mathbb{E}[\ell^2]$, so

$$||h||_{1} = ||\ell^{2} - \mathbb{E}[\ell^{2}]||_{1} \leq ||\ell^{2} - f^{2}||_{1} + ||f^{2} - \mathbb{E}[\ell^{2}]||_{1}$$

$$= ||(\ell - f) \cdot (\ell + f)||_{1} + |1 - W^{1}[f]|$$

$$\leq ||\ell - f||_{2} \cdot ||\ell + f||_{2} + \varepsilon$$

$$\leq \sqrt{\varepsilon} \cdot 2 + \varepsilon$$

$$\leq O(\sqrt{\varepsilon}).$$

Putting everything together, we get $\max_i \widehat{f}(i)^2 \geq (1-\varepsilon)^2 - O(\varepsilon) = 1 - O(\varepsilon)$, hence $\max_i |\widehat{f}(i)| \geq 1 - O(\varepsilon)$. \square

Corollary 2.2 (Robust Arrow's theorem). Let $f: \{\pm 1\}^n \to \{\pm 1\}$. Suppose

$$\Pr_{x \in S_3^n}[f(x^{ab}) = f(x^{bc}) = f(x^{ca})] \le \varepsilon.$$

Then f is $O(\varepsilon)$ -close to either χ_i or $-\chi_i$ for some $i \in [n]$.