The OSSS Inequality and the FKN Theorem (lecture notes)
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1 The O’Donnell-Saks-Schramm-Servedio inequality

Previously, we proved the KKL theorem, which says that for every Boolean function f: {£1}" — {£1},
there is a variable i such that Inf;[f] > Q(Var[f] - 10%) The KKL theorem is tight, as demonstrated by
the Tribes function, but we can improve the KKL theorem if we make extra assumptions about f. We
will prove that if f can be computed by a size-s decision tree, then there is a variable ¢ € [n] such that
Inf;[f] > Var[f]/log s. Equivalently, our goal is to prove that Var[f] < (logs) - max; Inf;[f]. For the sake of
induction, we will actually prove an upper bound on the covariance between f and g, where f is a size-s
decision tree and g has small influences.

Definition 1.1 (Covariance). Let f,g: {£1}" — R. We define

Cov[f,g] = E[fg] — E[f] - E[g].

The proof relies on the expectation operator. Recall that for a function f: {£1}" - R and i € N, we
define E;f = szi | (S) - xs. The following lemma provides a more intuitive interpretation of the expectation
operator.

Lemma 1.2. If f: {£1}" - R and i € N, then

(Eif)(x) = E _[f(a"")].
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Lemma 1.3. Let f,g: {£1}" — R and i € [n]. For each b € {£1}, let fy, gy denote the restrictions of f in
which we fix x; =b. Then

Covlf, gl = B [Covifo, gv]] + {f, 2i - Dig)- (1)

Proof. Without loss of generality, assume E[f] = E[g] = 0. (None of the terms in Eq. (1) are affected if we
shift f or g by an additive constant.) Then

Cov[f,g] = (f,g9) = ([, zi- Dig) + ([, Eig)
<f - Dig) + (@i - Dif, Eig) + (Eif, Eig)
= (f,x;- Dig) + (Eif, Eig)
= (f,z; - D;g) + bb/[<fb7gb’>} by Lemma 1.2.
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Theorem 1.4 (OSSS Inequality). Let f,g: {£1}" — {£1}, let T be a decision tree computing f, and let
0;(T) be the probability that T' queries x; when we plug in a uniform random x. Then

Covlf.g < 3 6,(T) - Infilg).
=1

Proof. We will prove it by induction on the depth of T'. If T has depth zero, the theorem is trivial, so
assume T has depth D > 0. Let i, be the variable queried by the root. For each b € {£1}, let f3, g, be the
restrictions of f, g given by fixing x;, = b, and let T}, be the depth-(D — 1) subtree of T' computing f,. Then

COV[f? g] = bIEb,[COV[fbv gb/]] <f7 i, Z* >
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Corollary 1.5. Let f: {£1}"™ — {£1} be a size-s decision tree. Then there is some i € [n]| such that
Inf;[f] > Var[f]/log s.

Proof. Let T be the decision tree. By the OSSS inequality, we have

n

Var[f] = Covlf, f] < Z(Si(T) <Inf;[f] < (mlaxlnfi[f]> Yy 6(T)

i=1

— <mlax Inf;| f]) - Elcostr(x)]

< <max1nfi[f]) -log s. 0

2 The Friedgut-Kalai-Naor theorem

Let f: {#1}™ — {#1}. Recall that Condorcet’s paradox is the situation f(z%) = f(2*) = f(2°*) for some
x € S%. Recall that Arrow’s theorem say that if Condorcet’s paradox never happens, then f or —f is a
dictator function. In this section, as another application of hypercontractivity, we will prove a robust version
of Arrow’s theorem, saying that if Condorcet’s paradox rarely happens, then f or —f is close to a dictator
function.



The key is the Friedgut-Kalai-Naor (FKN) theorem. Recall that in the proof of Arrow’s theorem, we
showed that if the probability of the Condorcet paradox is at most €, then W1[f] > 1 — O(g). The FKN
theorem says that this condition implies that f or —f is O(e)-close to a dictator.

Theorem 2.1 (Friedgut-Kalai-Naor). Let f: {£1}" — {£1}. Suppose W'[f] > 1 —¢c. Then there is some
i € [n] and some b € {£1} such that f is O(e)-close to by;.
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Proof. Our goal is to show that there is some ¢ such that |f(i)] ~ 1. We have

so our goal is to bound ||k||3. Recall that we used hypercontractivity to prove ||h|jz < 20(de() . ||p||;. In
our case, deg(h) = 2, so ||hll2 = O(||h[|1), and our new goal is to bound ||Al];.
Define £(z) = >°1 | f(i) - x;. Then h = ¢2 — E[(?], so
Ikl = 1€ = B[]l < € = £l + 1| £* — E[¢]]lx
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Putting everything together, we get max; ]?(z)2 > (1—¢)2—0(g) = 1-0(e), hence max; |f(z)| >1-0(g). O
Corollary 2.2 (Robust Arrow’s theorem). Let f: {+1}" — {£1}. Suppose

Pr [f(z®) = f(a") = f(=*)] <e.
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Then f is O(e)-close to either x; or —x; for some i € [n].
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