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1 The O’Donnell-Saks-Schramm-Servedio inequality

Previously, we proved the KKL theorem, which says that for every Boolean function f : {±1}n → {±1},
there is a variable i such that Infi[f ] ≥ Ω(Var[f ] · logn

n ). The KKL theorem is tight, as demonstrated by
the Tribes function, but we can improve the KKL theorem if we make extra assumptions about f . We
will prove that if f can be computed by a size-s decision tree, then there is a variable i ∈ [n] such that
Infi[f ] ≥ Var[f ]/ log s. Equivalently, our goal is to prove that Var[f ] ≤ (log s) ·maxi Infi[f ]. For the sake of
induction, we will actually prove an upper bound on the covariance between f and g, where f is a size-s
decision tree and g has small influences.

Definition 1.1 (Covariance). Let f, g : {±1}n → R. We define

Cov[f, g] = E[fg]− E[f ] · E[g].

The proof relies on the expectation operator. Recall that for a function f : {±1}n → R and i ∈ N, we
define Eif =

∑
S ̸∋i f̂(S) ·χS . The following lemma provides a more intuitive interpretation of the expectation

operator.

Lemma 1.2. If f : {±1}n → R and i ∈ N, then

(Eif)(x) = E
b∈{±1}

[f(x(i7→b)].

Proof.

(Eif)(x) = f(x)− xi · (Dif)(x)

= f(x)− xi ·
f(x(i7→1))− f(x(i7→−1))

2

= E
b∈{±1}

[f(x(i7→b))].

Lemma 1.3. Let f, g : {±1}n → R and i ∈ [n]. For each b ∈ {±1}, let fb, gb denote the restrictions of f in
which we fix xi = b. Then

Cov[f, g] = E
b,b′

[Cov[fb, gb′ ]] + ⟨f, xi ·Dig⟩. (1)

Proof. Without loss of generality, assume E[f ] = E[g] = 0. (None of the terms in Eq. (1) are affected if we
shift f or g by an additive constant.) Then

Cov[f, g] = ⟨f, g⟩ = ⟨f, xi ·Dig⟩+ ⟨f,Eig⟩
= ⟨f, xi ·Dig⟩+ ⟨xi ·Dif,Eig⟩+ ⟨Eif,Eig⟩
= ⟨f, xi ·Dig⟩+ ⟨Eif,Eig⟩
= ⟨f, xi ·Dig⟩+ E

b,b′
[⟨fb, gb′⟩] by Lemma 1.2.
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Meanwhile,

E
b,b′

[Cov[fb, gb′ ]] = E
b,b′

[
E
x
[fb(x) · gb′(x)]− E

x
[fb(x)] · E

x′
[gb′(x

′)]

]
= E

b,b′
[⟨fb, gb′⟩]− E

b,x
[fb(x)] · E

b′,x′
[gb′(x

′)]

= E
b,b′

[⟨fb, gb′⟩]− E[f ] · E[g]

= E
b,b′

[⟨fb, gb′⟩].

Theorem 1.4 (OSSS Inequality). Let f, g : {±1}n → {±1}, let T be a decision tree computing f , and let
δi(T ) be the probability that T queries xi when we plug in a uniform random x. Then

Cov[f, g] ≤
n∑

i=1

δi(T ) · Infi[g].

Proof. We will prove it by induction on the depth of T . If T has depth zero, the theorem is trivial, so
assume T has depth D > 0. Let i∗ be the variable queried by the root. For each b ∈ {±1}, let fb, gb be the
restrictions of f, g given by fixing xi∗ = b, and let Tb be the depth-(D − 1) subtree of T computing fb. Then

Cov[f, g] = E
b,b′

[Cov[fb, gb′ ]] + ⟨f, xi∗ ·Di∗g⟩

≤ E
b,b′

∑
i̸=i∗

δi(Tb) · Infi[gb′ ]

+ E
x
[|Di∗g|]

=
∑
i̸=i∗

E
b
[δi(Tb)] · E

b′
[Infi[gb′ ]] + Infi∗ [g]

=
∑
i̸=i∗

δi(T ) · Infi[g] + Infi∗ [g]

=

n∑
i=1

δi(T ) · Infi[g].

Corollary 1.5. Let f : {±1}n → {±1} be a size-s decision tree. Then there is some i ∈ [n] such that
Infi[f ] ≥ Var[f ]/ log s.

Proof. Let T be the decision tree. By the OSSS inequality, we have

Var[f ] = Cov[f, f ] ≤
n∑

i=1

δi(T ) · Infi[f ] ≤
(
max

i
Infi[f ]

)
·

n∑
i=1

δi(T )

=

(
max

i
Infi[f ]

)
· E
x
[costT (x)]

≤
(
max

i
Infi[f ]

)
· log s.

2 The Friedgut-Kalai-Naor theorem

Let f : {±1}n → {±1}. Recall that Condorcet’s paradox is the situation f(xab) = f(xbc) = f(xca) for some
x ∈ Sn

3 . Recall that Arrow’s theorem say that if Condorcet’s paradox never happens, then f or −f is a
dictator function. In this section, as another application of hypercontractivity, we will prove a robust version
of Arrow’s theorem, saying that if Condorcet’s paradox rarely happens, then f or −f is close to a dictator
function.
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The key is the Friedgut-Kalai-Naor (FKN) theorem. Recall that in the proof of Arrow’s theorem, we
showed that if the probability of the Condorcet paradox is at most ε, then W 1[f ] ≥ 1 − O(ε). The FKN
theorem says that this condition implies that f or −f is O(ε)-close to a dictator.

Theorem 2.1 (Friedgut-Kalai-Naor). Let f : {±1}n → {±1}. Suppose W 1[f ] ≥ 1− ε. Then there is some
i ∈ [n] and some b ∈ {±1} such that f is O(ε)-close to bχi.

Proof. Our goal is to show that there is some i such that |f̂(i)| ≈ 1. We have

max
i

f̂(i)2 ≥
(
max

i
f̂(i)2

)
·

n∑
i=1

f̂(i)2 ≥
n∑

i=1

f̂(i)4 =

(
n∑

i=1

f̂(i)2

)2

− 2
∑

1≤i<j≤n

f̂(i)2 · f̂(j)2

≥ (1− ε)2 − 2
∑

1≤i<j≤n

f̂(i)2 · f̂(j)2.

So we would like to show that
∑

1≤i<j≤n f̂(i)
2 · f̂(j)2 is small. Define

h(x) = 2
∑

1≤i<j≤n

f̂(i) · f̂(j) · xixj ,

so our goal is to bound ∥h∥22. Recall that we used hypercontractivity to prove ∥h∥2 ≤ 2O(deg(h)) · ∥h∥1. In
our case, deg(h) = 2, so ∥h∥2 = O(∥h∥1), and our new goal is to bound ∥h∥1.

Define ℓ(x) =
∑n

i=1 f̂(i) · xi. Then h = ℓ2 − E[ℓ2], so

∥h∥1 = ∥ℓ2 − E[ℓ2]∥1 ≤ ∥ℓ2 − f2∥1 + ∥f2 − E[ℓ2]∥1
= ∥(ℓ− f) · (ℓ+ f)∥1 + |1−W 1[f ]|
≤ ∥ℓ− f∥2 · ∥ℓ+ f∥2 + ε

≤
√
ε · 2 + ε

≤ O(
√
ε).

Putting everything together, we get maxi f̂(i)
2 ≥ (1−ε)2−O(ε) = 1−O(ε), hence maxi |f̂(i)| ≥ 1−O(ε).

Corollary 2.2 (Robust Arrow’s theorem). Let f : {±1}n → {±1}. Suppose

Pr
x∈Sn

3

[f(xab) = f(xbc) = f(xca)] ≤ ε.

Then f is O(ε)-close to either χi or −χi for some i ∈ [n].

3


	The O'Donnell-Saks-Schramm-Servedio inequality
	The Friedgut-Kalai-Naor theorem

