
Fourier Expansion and Linearity Testing (lecture notes)

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 Fourier expansion theorem

This course is about using Fourier analysis to reason about Boolean functions. A “Boolean function” is
a function of the form f : {0, 1}n → {0, 1}. Actually, we often prefer to encode b ∈ {0, 1} as (−1)b. We
therefore consider functions on the domain {±1}n. We will be even more flexible about the codomain: our
functions might take values in {0, 1} or {±1} or [−1, 1] or R. In this context, “Fourier analysis” refers to
studying a function f : {±1}n → R by representing it as a multilinear polynomial.

Theorem 1.1 (Fourier Expansion Theorem). Every function f : {±1}n → R can be uniquely expressed as a
multilinear polynomial.

Proof. Existence: For each a ∈ {±1}n, define 1{a}(x) =
(
1+a1x1

2

)
·
(
1+a2x2

2

)
· · ·

(
1+anxn

2

)
. Then 1{a} is a

multilinear polynomial, and 1{a}(a) = 1, and 1{a}(x) = 0 for every x ∈ {±1}n \ {a}. Therefore,

f(x) =
∑

a∈{±1}n
f(a) · 1{a}(x).

Uniqueness: The space of f : {±1}n → R is a vector space of dimension 2n. We just found 2n vectors that
span the space (namely, the 2n possible products of distinct variables), so they must be a basis.

Example 1.2. If x1, x2 ∈ {±1}, then
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)
·
(
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(
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2
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·
(
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2
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(
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2

)
·
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2
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=

1

2
+

1

2
x1 +

1

2
x2 −

1

2
x1x2.

Notation: For x ∈ {±1}n and S ⊆ [n], we write xS or χS(x) to denote
∏

i∈S xi. We use f̂(S) to denote
the coefficient of xS in the multilinear polynomial representation of f , i.e.,

f(x) =
∑
S⊆[n]

f̂(S) · χS(x). (1)

Eq. (1) is called the “Fourier expansion” of f , and f̂(S) is called the “Fourier coefficient” of f on S. Each
basis function χS is called a character or a character function. Observe that χS(x) computes the XOR of
the bits in S, encoded using ±1.

2 Linearity testing

Why study Fourier analysis? Probably the most enlightened response would be that Fourier analysis is
its own reward. It is an aesthetically beautiful and mathematically deep subject that doesn’t require any
external motivation. Fortunately, I am not very enlightened! Therefore, for the sake of motivation, we will
study many cool applications of Fourier analysis of Boolean functions. In fact, the rule I will try to hold
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myself to is: We will think of Fourier analysis purely as a proof technique, never as an end in itself. We will
only develop Fourier-analytic methods when we need them for the purpose of proving non-Fourier-analytic
theorems.

Our first motivating application will the linearity testing problem. In this problem, we have query access
to an unknown function f : Fn

2 → F2. Our goal is to distinguish between two cases:

• Case 1: f is linear, i.e., it has the form f(x) =
∑

i∈S xi mod 2 for some S ⊆ [n].

• Case 2: f is ε-far from every linear function with respect to the following metric:

dist(f, g) = Pr
x
[f(x) ̸= g(x)].

The input x is chosen uniformly at random from Fn
2 .

We will show how to solve this problem using just three queries to f . The algorithm, called the Blum-Luby-
Rubinfeld (BLR) test, is as follows.

• Pick x, y ∈ Fn
2 independently and uniformly at random.

• If f(x+ y) = f(x) + f(y), accept. Otherwise, reject.

The proof of correctness uses Fourier analysis. To accomodate the domain Fn
2 , we overload notation and

define χS : Fn
2 → {±1} by the formula

χS(x) =
∏
i∈S

(−1)xi .

This way, the Fourier expansion formula doesn’t change: Every function f : Fn
2 → R can be uniquely expressed

as
f(x) =

∑
S⊆[n]

f̂(S) · χS(x).

Note that the Fourier coefficients f̂(S) do not change if we switch to a different input encoding. However,
the Fourier coefficients do change if we switch to a different output encoding.

2.1 Inner product

Definition 2.1. If f, g : {0, 1}n → R, we define the inner product ⟨f, g⟩ = Ex[f(x) · g(x)].

Observe that the character functions are orthonormal: ⟨χS , χS⟩ = Ex[
∏

i∈S x2i ] = 1, and if S ̸= T , then
⟨χS , χT ⟩ = Ex[χS∆T (x)] = 0.

Theorem 2.2 (Plancherel’s Theorem). ⟨f, g⟩ =
∑

S⊆[n] f̂(S) · ĝ(S).

Proof. Expand f and g in the Fourier basis.

Corollary 2.3 (Fourier Coefficient Formula). f̂(S) = ⟨f, χS⟩ = Ex[f(x) · xS ].

For example, f̂(∅) = E[f ]. If f is {±1}-valued, then we have the formula f̂(S) = 1− 2 dist(f, χS).

Corollary 2.4 (Parseval’s Theorem).
∑

S⊆[n] f̂(S)
2 = Ex[f(x)

2]
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2.2 Convolution

For convenience, to analyze the BLR test, we will encode input bits using 0 and 1, but we will encode
output bits using ±1. That is, we will work with a function f : Fn

2 → {±1}. We need to prove that if
f(x+ y) = f(x) · f(y) for most x, y, then f is close to a character function. Equivalently, the assumption is
that f(x) = f(x+ y) · f(y) for most x, y. This motivates the following definition.

Definition 2.5 (Convolution). If f, g : Fn
2 → R, then

(f ∗ g)(x) = E
y
[f(x+ y) · g(y)].

(It would be more conventional to put f(x − y) rather than f(x+ y), but we are working over Fn
2 , so

addition and subtraction are equivalent.)

Theorem 2.6 (Convolution Fourier Formula). f̂ ∗ g(S) = f̂(S) · ĝ(S)

Proof.

(f ∗ g)(x) =
∑

S,T⊆[n]

f̂(S) · ĝ(T ) · E
y
[χS(x+ y) · χT (y)]

=
∑

S,T⊆[n]

f̂(S) · ĝ(T ) · χS(x) · E
y
[χS∆T (y)]

=
∑
S⊆[n]

f̂(S) · ĝ(S) · χS(x).

Theorem 2.7 (Blum-Luby-Rubinfeld). Let f : Fn
2 → {±1}. Assume that Prx,y[f(x) ·f(y) = f(x+y)] ≥ 1−ε.

Then f is ε-close to some character function χS.

Proof.

E
x,y

[f(x) · f(y) · f(x+ y)] = Pr[f(x+ y) = f(x) · f(y)]− Pr[f(x+ y) ̸= f(x) · f(y)] ≥ 1− 2ε.

Therefore,

1− 2ε ≤ E
x,y

[f(x) · f(y) · f(x+ y)] = E
x
[f(x) · (f ∗ f)(x)] = ⟨f, f ∗ f⟩ =

∑
S⊆[n]

f̂(S) · f̂ ∗ f(S)

=
∑
S⊆[n]

f̂(S)3

≤
(
max
S

f̂(S)

)
·
∑
S⊆[n]

f̂(S)2

= max
S

f̂(S).
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