Fourier Concentration, Decision Trees, and Learning Theory (lecture notes)

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza®@uchicago.edu)

1 Learnability of low-degree functions

Definition 1.1 (Learning from random examples). Let C be a class of functions f: {£1}" — {£1}. We
say that C can be learned from random examples with error ¢ in time 7' if there is a time-T randomized
algorithm with the following behavior.

e Initially, the algorithm is given some parameters that are part of the definition of C. These parameters
will be clear from context.

e At any time, the algorithm can press a button to receive (x, f(x)) for a uniform random x € {+1}".

e With probability at least 9/10, the algorithm outputs a hypothesis h: {+1}" — {£1} (represented by
a Boolean circuit) such that dist(f,h) < e.

Admittedly, this learning model has some major weaknesses. We assume that the input distribution is
uniform; we assume that the examples are noiseless; the output hypothesis h is not guaranteed to belong to
the concept class C. Still, it’s an interesting and appealing model.

Let us prove that depth-k decision trees can be learned from random examples with error 0 in time n
More generally, we will show how to handle degree-k Boolean functions.

Ok).

Lemma 1.2. If f is a depth-k decision tree, then deg(f) < k.

Proof. Express f as a sum over leaves. The contribution from a single leaf is a function of at most k variables,
hence it has degree at most k. O

~

Lemma 1.3. For any f: {£1}" — [—1,1], given any S C [n|, using random examples, we can estimate f(.S)
to within +e except with probability ¢ in time poly(n,1/e,log(1/4)).

Proof. This follows from Hoeffding’s inequality. O

Theorem 1.4. The class of Boolean functions of degree at most k can be learned from random examples
O(k)

with error 0 in time n .
Proof. For each set S C [n] of size at most k, estimate f(S) to within +0.1 - 2% with failure probability
n~%/10. By the union bound, we can assume that all of these estimates succeed.

In Exercise 1, you prove that the Fourier coefficients of a degree-k Boolean function are always integer
multiples of 27%. Therefore, round all the estimated Fourier coefficients to the nearest integer multiple of
2=k This is the exact Fourier expansion of f. O

The theorem suggests that we should think of deg(f) as a measure of the “complexity” of f. It turns out
that if £ € N and ¢ € (0,1) are both held constant, then degree-k Boolean functions can be learned from
O(logn) random examples with error ¢ [EI22].


https://en.wikipedia.org/wiki/Hoeffding's_inequality

2 Learnability of functions that are concentrated at low degree

In this section, we will show that size-s decision trees can be learned from random examples with error € in
time nO(IOg(s/E)).

Lemma 2.1. If f is a size-s decision tree, then f is e-close to a decision tree of depth log(s/e).

Proof. Define

f(x) if f makes at most log(s/e) queries on x
g9(x) = .
+1  otherwise.

For any leaf u at depth at least k in f, the probability of reaching u is at most 27%, so by the union bound,
the probability of reaching a deleted leaf is at most s - 27108(s/¢) = ¢, 0

Definition 2.2 (Total variation distance). Let Di, D be probability distributions over the finite set Q2. The
total variation distance between D and Ds is defined to be

max
FCQ

Pr [x € F]— Pr [xE.F]’.
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Lemma 2.3. Let f,g: {£1}" — {£1}. The total variation distance between the spectral samples Sy and S

is O(\/dist(f, g)).

Proof. Let F be any collection of subsets of [n]. Then
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Definition 2.4 (Concentration at low degree). Let f: {£1}" — R and let 0 < k < n. We define
W= Y (S
SCn],|S|>k

We say that (the Fourier spectrum of) f is e-concentrated up to degree k if W>F[f] < e. In the case that f is
{#£1}-valued, it is equivalent to say that Prg.s,[|S] > k] <e.

Corollary 2.5. If f: {£1}" — {£1} is a size-s decision tree, then f is e-concentrated at degree up to
O(log(s/¢)).

Theorem 2.6 (The Low-Degree Algorithm). The class of Boolean functions that are e-concentrated up to
degree k can be learned from random examples with error 2¢ in time n®®) -poly(1/e).



Proof. For cach set S C [n] of size at most k, estimate f(.S) to within ++/e/(n + 1)F with failure probability

m. By the union bound, we can assume that all of these estimates succeed. Let cg be the estimate for

f(S). Hypothesis:
h(z) = sign Z cs - xs(w)
SClnl,|S|<k
This works, because

2

dist(f,h) <E || f(z) — Z cs - xs(z) =W>k[f] + (f(S) —cs)? < 2e. O
’ SClnl.[S|<k SClnl.[S|<k

3 The Kushilevitz-Mansour algorithm

In the previous section, we showed that polynomial-size decision trees can be learned from random examples
in quasipolynomial time n©(°8™) It is an open question whether the time complexity can be improved to
polynomial. In this section, we will show how to improve the time complexity to polynomial if we are allowed
to make queries to the unknown function.

Definition 3.1 (Learning from queries). Let C be a class of functions f: {£1}" — {£1}. We say that C can
be learned from queries with error € in time T if there is a time-T randomized algorithm with the following
behavior.

e Initially, the algorithm is given some parameters that are part of the definition of C. These parameters
will be clear from context.

e At any time, the algorithm can query f at any input « € {£1}" of its choosing.

e With probability at least 9/10, the algorithm outputs a hypothesis h: {£1}" — {£1} such that
dist(f,h) <e.

We will prove that size-s decision trees can be learned from queries with error € in time poly(n, s, 1/¢).
The proof is based on the Fourier 1-norm.

Definition 3.2. Let f: {£1}" — Ror f: {0,1}" — R, and let p > 1. The Fourier p-norm is defined by

1/p

£l = S IFs)P

SC[n]

Lemma 3.3 (An extremely useful fact). If f: {0,1}" — {0,1} is a conjunction of literals, then Hfﬂl =1.

Proof. Without loss of generality, assume that f depends on every variable, i.e., f(z) =1 <= x =z, for
some z, € {0,1}". Then for any S C [n], we have

F(8) =E[f(z) - xs(z)] = 27"  xs(z:) = £27". 0

T

Corollary 3.4. If f: {£1}"™ — {£1} is a size-s decision tree, then Hfﬂl <s.

Proof. For each leaf u, there is some conjunction of literals f, that indicates whether f reaches u on a given
input . Then f(z) =), fu - £y for some label ¢, € {£1}. Therefore,

A~

1< S 1] - I fulla = s. 0
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We will show that if a function has a bounded Fourier 1-norm, then its Fourier spectrum is concentrated
on a relatively small set of coefficients, albeit not necessarily the low-degree coefficients.

Definition 3.5 (Concentration on a collection). Let f: {£1}" — R and let F be a collection of subsets of
[n]. We say that (the Fourier spectrum of) f is e-concentrated on F if

> H8)P<
SCln],S¢F
If f is {£1}-valued, this is equivalent to the condition Prg.s,[S ¢ F] < ¢
Lemma 3.6. Let f: {£1}" — R. Then f is e-concentrated on a collection of at most ﬂfﬂ%/s coefficients.

Proof. Let F be the set of S C [n] such that |f(S )| > ¢/ H fﬂl. Then f is e-concentrated on F, because

> f()sM- S Ifs) <

SCin],S¢F H H Cln],S¢F

Meanwhile, the cardinality of F is bounded, because

Il =S 1) = SIS =2 17— 0

SCn) SeF [FalF!

Motivated by the calculations above, we wish to show that the class of functions that are concentrated
on a small set of Fourier coefficients is learnable. To prove it, it will be convenient to encode sets using
indicator vectors. So, for example, we use the notation f(y) and x-(x) where v,z € {0,1}". Observe that
XA () = Xz(7) = (=1)Z: %%, We also use the following definition.

Definition 3.7 (The notation W,[f]). Let f: {0,1}" — {£1} and v € {0,1}=". We define
WLlfl= Y OB
Be{0,1}n— 1l
Equivalently, W, [f] is the probability that a string drawn from the spectral sample Sy begins with ~.

The key to learning a function concentrated on a small set of Fourier coefficients is the Goldreich-Levin
algorithm, which enables us to figure out which Fourier coefficients the function is concentrated on.

Theorem 3.8 (Goldreich-Levin algorithm). Suppose we are given query access to an unknown function
f:{0,1}" — {£1}, as well as a parameter 6 € (0,1]. There is a randomized poly(n/0)-time algorithm that
makes queries to f and outputs a collection F C {0,1}" such that with high probability:

e For every v € {0,1}", if f(7)2 >0, then v € F.
o For every v € F, we have J?(fy)2 >0/4.

Proof. Algorithm: Let Fy = {0,1}" = {empty string}.
1. Fori =1 ton:

(a) If |Fi—1]| > 4/6, abort.

(b) For each v € F;_; and each b € {0, 1}, estimate W.,[f] to within £60/4. [We’ll explain how to do
this momentarily.]

(c) If the estimate is at least §/2, then include b in F;.

2. Output F = F,.



We need to explain how to estimate W, [f] for a given string +. This is based on the following calculation:

Zf vB8)° Z E(f(zy) xpley) =D B [f(2y)- [@y) xyn(2y) - xas(a'y)]
5
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By Hoeffding’s inequality, we can estimate W, [f] to within ¢ with failure probability § using O(log(1/5)/e?)
queries to f, hence the algorithm runs in poly(n/6) time and we can assume that all the estimates are correct.
Now let us prove that the algorithm succeeds, assuming all the estimates are correct.

By Parseval’s theorem, the algorithm does not abort. Clearly, if v € F,, then f (7)? > 0/4. Conversely, let
v € {0,1}" and suppose f(v)? > 0. Then W,, .[f] > 6 for every i < n. Therefore, by induction, v;._; € F;
for every ¢ < n, and in particular v € F,. O

Corollary 3.9 (Kushilevitz-Mansour algorithm). The class of functions f: {£1}"™ — {£1} such that f is
g-concentrated on a collection of at most M Fourier coefficients can be learned from queries with error 2¢ in
time poly(M,n,1/¢).

~

Proof. Suppose f is e-concentrated on a collection F where |F| < M. Let 7' = {S C [n] : f(S)? > ¢/M}.
Then f is (2¢)-concentrated on F':

Yoo fS)?r= > 9P+ D> f9)2<

e _ SeF S¢F
S:f(S)2<e/M F(S)2<e/M F(8)2<e/M

Therefore, run the Goldreich-Levin algorithm with 6 = ¢/M, giving us a collection F” of subsets of [n].
We have |F”| < 4/0 = 4M/=. Estimate f(S) to within &+/e/[F"| for each S € F”; let cg be the estimate.

Hypothesis:
x) = sign ( Z cs - XS(Q:)) : O

SeF
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