
Fourier Concentration, Decision Trees, and Learning Theory (lecture notes)

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 Learnability of low-degree functions

Definition 1.1 (Learning from random examples). Let C be a class of functions f : {±1}n → {±1}. We
say that C can be learned from random examples with error ε in time T if there is a time-T randomized
algorithm with the following behavior.

• Initially, the algorithm is given some parameters that are part of the definition of C. These parameters
will be clear from context.

• At any time, the algorithm can press a button to receive (x, f(x)) for a uniform random x ∈ {±1}n.

• With probability at least 9/10, the algorithm outputs a hypothesis h : {±1}n → {±1} (represented by
a Boolean circuit) such that dist(f, h) ≤ ε.

Admittedly, this learning model has some major weaknesses. We assume that the input distribution is
uniform; we assume that the examples are noiseless; the output hypothesis h is not guaranteed to belong to
the concept class C. Still, it’s an interesting and appealing model.

Let us prove that depth-k decision trees can be learned from random examples with error 0 in time nO(k).
More generally, we will show how to handle degree-k Boolean functions.

Lemma 1.2. If f is a depth-k decision tree, then deg(f) ≤ k.

Proof. Express f as a sum over leaves. The contribution from a single leaf is a function of at most k variables,
hence it has degree at most k.

Lemma 1.3. For any f : {±1}n → [−1, 1], given any S ⊆ [n], using random examples, we can estimate f̂(S)
to within ±ε except with probability δ in time poly(n, 1/ε, log(1/δ)).

Proof. This follows from Hoeffding’s inequality.

Theorem 1.4. The class of Boolean functions of degree at most k can be learned from random examples
with error 0 in time nO(k).

Proof. For each set S ⊆ [n] of size at most k, estimate f̂(S) to within ±0.1 · 2−k with failure probability
n−k/10. By the union bound, we can assume that all of these estimates succeed.

In Exercise 1, you prove that the Fourier coefficients of a degree-k Boolean function are always integer
multiples of 2−k. Therefore, round all the estimated Fourier coefficients to the nearest integer multiple of
2−k. This is the exact Fourier expansion of f .

The theorem suggests that we should think of deg(f) as a measure of the “complexity” of f . It turns out
that if k ∈ N and ε ∈ (0, 1) are both held constant, then degree-k Boolean functions can be learned from
O(logn) random examples with error ε [EI22].
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2 Learnability of functions that are concentrated at low degree

In this section, we will show that size-s decision trees can be learned from random examples with error ε in
time nO(log(s/ε)).

Lemma 2.1. If f is a size-s decision tree, then f is ε-close to a decision tree of depth log(s/ε).

Proof. Define

g(x) =

{
f(x) if f makes at most log(s/ε) queries on x

+1 otherwise.

For any leaf u at depth at least k in f , the probability of reaching u is at most 2−k, so by the union bound,
the probability of reaching a deleted leaf is at most s · 2− log(s/ε) = ε.

Definition 2.2 (Total variation distance). Let D1, D2 be probability distributions over the finite set Ω. The
total variation distance between D1 and D2 is defined to be

max
F⊆Ω

∣∣∣∣ Pr
x∼D1

[x ∈ F ]− Pr
x∼D2

[x ∈ F ]

∣∣∣∣ .
Lemma 2.3. Let f, g : {±1}n → {±1}. The total variation distance between the spectral samples Sf and Sg

is O(
√
dist(f, g)).

Proof. Let F be any collection of subsets of [n]. Then∣∣∣∣ PrS∼Sf

[S ∈ F ]− Pr
S∼Sg

[S ∈ F ]

∣∣∣∣ =
∣∣∣∣∣∑
S∈F

(
f̂(S)2 − ĝ(S)2

)∣∣∣∣∣
=

∣∣∣∣∣∑
S∈F

(f̂(S)− ĝ(S)) · (f̂(S) + ĝ(S))

∣∣∣∣∣
≤
∑
S⊆[n]

|f̂(S)− ĝ(S)| · |f̂(S) + ĝ(S)|

≤

√√√√√
∑

S⊆[n]

(f̂(S)− ĝ(S))2

 ·

∑
S⊆[n]

(f̂(S) + ĝ(S))2

 (Cauchy-Schwarz)

=
√

E
x
[(f(x)− g(x))2] · E

x
[(f(x) + g(x))2] (Parseval)

≤
√

4 dist(f, g) · 4.

Definition 2.4 (Concentration at low degree). Let f : {±1}n → R and let 0 ≤ k ≤ n. We define

W>k[f ] =
∑

S⊆[n],|S|>k

f̂(S)2.

We say that (the Fourier spectrum of) f is ε-concentrated up to degree k if W>k[f ] ≤ ε. In the case that f is
{±1}-valued, it is equivalent to say that PrS∼Sf

[|S| > k] ≤ ε.

Corollary 2.5. If f : {±1}n → {±1} is a size-s decision tree, then f is ε-concentrated at degree up to
O(log(s/ε)).

Theorem 2.6 (The Low-Degree Algorithm). The class of Boolean functions that are ε-concentrated up to
degree k can be learned from random examples with error 2ε in time nO(k) · poly(1/ε).
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Proof. For each set S ⊆ [n] of size at most k, estimate f̂(S) to within ±
√

ε/(n+ 1)k with failure probability
1

10·(n+1)k
. By the union bound, we can assume that all of these estimates succeed. Let cS be the estimate for

f̂(S). Hypothesis:

h(x) = sign

 ∑
S⊆[n],|S|≤k

cS · χS(x)

 .

This works, because

dist(f, h) ≤ E
x

f(x)−
∑

S⊆[n],|S|≤k

cS · χS(x)

2 = W>k[f ] +
∑

S⊆[n],|S|≤k

(f̂(S)− cS)
2 ≤ 2ε.

3 The Kushilevitz-Mansour algorithm

In the previous section, we showed that polynomial-size decision trees can be learned from random examples
in quasipolynomial time nO(logn). It is an open question whether the time complexity can be improved to
polynomial. In this section, we will show how to improve the time complexity to polynomial if we are allowed
to make queries to the unknown function.

Definition 3.1 (Learning from queries). Let C be a class of functions f : {±1}n → {±1}. We say that C can
be learned from queries with error ε in time T if there is a time-T randomized algorithm with the following
behavior.

• Initially, the algorithm is given some parameters that are part of the definition of C. These parameters
will be clear from context.

• At any time, the algorithm can query f at any input x ∈ {±1}n of its choosing.

• With probability at least 9/10, the algorithm outputs a hypothesis h : {±1}n → {±1} such that
dist(f, h) ≤ ε.

We will prove that size-s decision trees can be learned from queries with error ε in time poly(n, s, 1/ε).
The proof is based on the Fourier 1-norm.

Definition 3.2. Let f : {±1}n → R or f : {0, 1}n → R, and let p ≥ 1. The Fourier p-norm is defined by

∥̂f ∥̂p =

∑
S⊆[n]

|f̂(S)|p
1/p

.

Lemma 3.3 (An extremely useful fact). If f : {0, 1}n → {0, 1} is a conjunction of literals, then ∥̂f ∥̂1 = 1.

Proof. Without loss of generality, assume that f depends on every variable, i.e., f(x) = 1 ⇐⇒ x = x∗ for
some x∗ ∈ {0, 1}n. Then for any S ⊆ [n], we have

f̂(S) = E
x
[f(x) · χS(x)] = 2−n · χS(x∗) = ±2−n.

Corollary 3.4. If f : {±1}n → {±1} is a size-s decision tree, then ∥̂f ∥̂1 ≤ s.

Proof. For each leaf u, there is some conjunction of literals fu that indicates whether f reaches u on a given
input x. Then f(x) =

∑
u fu · ℓu for some label ℓu ∈ {±1}. Therefore,

∥̂f ∥̂1 ≤
∑
u

|ℓu| · ∥̂fu∥̂1 = s.
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We will show that if a function has a bounded Fourier 1-norm, then its Fourier spectrum is concentrated
on a relatively small set of coefficients, albeit not necessarily the low-degree coefficients.

Definition 3.5 (Concentration on a collection). Let f : {±1}n → R and let F be a collection of subsets of
[n]. We say that (the Fourier spectrum of) f is ε-concentrated on F if∑

S⊆[n],S /∈F

f̂(S)2 ≤ ε.

If f is {±1}-valued, this is equivalent to the condition PrS∼Sf
[S /∈ F ] ≤ ε.

Lemma 3.6. Let f : {±1}n → R. Then f is ε-concentrated on a collection of at most ∥̂f ∥̂21/ε coefficients.

Proof. Let F be the set of S ⊆ [n] such that |f̂(S)| > ε/∥̂f ∥̂1. Then f is ε-concentrated on F , because∑
S⊆[n],S /∈F

f̂(S)2 ≤ ε

∥̂f ∥̂1
·

∑
S⊆[n],S /∈F

|f̂(S)| ≤ ε.

Meanwhile, the cardinality of F is bounded, because

∥̂f ∥̂1 =
∑
S⊆[n]

|f̂(S)| ≥
∑
S∈F

|f̂(S)| ≥ |F| · ε

∥̂f ∥̂1
.

Motivated by the calculations above, we wish to show that the class of functions that are concentrated
on a small set of Fourier coefficients is learnable. To prove it, it will be convenient to encode sets using
indicator vectors. So, for example, we use the notation f̂(γ) and χγ(x) where γ, x ∈ {0, 1}n. Observe that
χγ(x) = χx(γ) = (−1)

∑
i xiγi . We also use the following definition.

Definition 3.7 (The notation Wγ [f ]). Let f : {0, 1}n → {±1} and γ ∈ {0, 1}≤n. We define

Wγ [f ] =
∑

β∈{0,1}n−|γ|

f̂(γβ)2.

Equivalently, Wγ [f ] is the probability that a string drawn from the spectral sample Sf begins with γ.

The key to learning a function concentrated on a small set of Fourier coefficients is the Goldreich-Levin
algorithm, which enables us to figure out which Fourier coefficients the function is concentrated on.

Theorem 3.8 (Goldreich-Levin algorithm). Suppose we are given query access to an unknown function
f : {0, 1}n → {±1}, as well as a parameter θ ∈ (0, 1]. There is a randomized poly(n/θ)-time algorithm that
makes queries to f and outputs a collection F ⊆ {0, 1}n such that with high probability:

• For every γ ∈ {0, 1}n, if f̂(γ)2 ≥ θ, then γ ∈ F .

• For every γ ∈ F , we have f̂(γ)2 ≥ θ/4.

Proof. Algorithm: Let F0 = {0, 1}0 = {empty string}.

1. For i = 1 to n:

(a) If |Fi−1| > 4/θ, abort.

(b) For each γ ∈ Fi−1 and each b ∈ {0, 1}, estimate Wγb[f ] to within ±θ/4. [We’ll explain how to do
this momentarily.]

(c) If the estimate is at least θ/2, then include γb in Fi.

2. Output F = Fn.
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We need to explain how to estimate Wγ [f ] for a given string γ. This is based on the following calculation:

Wγ [f ] =
∑
β

f̂(γβ)2 =
∑
β

E
xy
[f(xy) · χγβ(xy)]

2 =
∑
β

E
x,x′,y,y′

[f(xy) · f(x′y′) · χγβ(xy) · χγβ(x
′y′)]

= E
x,x′,y

2−|β|
∑
y′

f(xy) · f(x′y′) · χγ(x+ x′) ·
∑
β

χy+y′(β)


= E

x,x′,y
[f(xy) · f(x′y) · χγ(x+ x′)].

By Hoeffding’s inequality, we can estimate Wγ [f ] to within ±ε with failure probability δ using O(log(1/δ)/ε2)
queries to f , hence the algorithm runs in poly(n/θ) time and we can assume that all the estimates are correct.
Now let us prove that the algorithm succeeds, assuming all the estimates are correct.

By Parseval’s theorem, the algorithm does not abort. Clearly, if γ ∈ Fn, then f̂(γ)2 ≥ θ/4. Conversely, let
γ ∈ {0, 1}n and suppose f̂(γ)2 ≥ θ. Then Wγ1...i [f ] ≥ θ for every i ≤ n. Therefore, by induction, γ1...i ∈ Fi

for every i ≤ n, and in particular γ ∈ Fn.

Corollary 3.9 (Kushilevitz-Mansour algorithm). The class of functions f : {±1}n → {±1} such that f is
ε-concentrated on a collection of at most M Fourier coefficients can be learned from queries with error 2ε in
time poly(M,n, 1/ε).

Proof. Suppose f is ε-concentrated on a collection F where |F| ≤ M . Let F ′ = {S ⊆ [n] : f̂(S)2 ≥ ε/M}.
Then f is (2ε)-concentrated on F ′:∑

S:f̂(S)2<ε/M

f̂(S)2 =
∑
S∈F

f̂(S)2<ε/M

f̂(S)2 +
∑
S/∈F

f̂(S)2<ε/M

f̂(S)2 ≤ 2ε.

Therefore, run the Goldreich-Levin algorithm with θ = ε/M , giving us a collection F ′′ of subsets of [n].
We have |F ′′| ≤ 4/θ = 4M/ε. Estimate f̂(S) to within ±

√
ε/|F ′′| for each S ∈ F ′′; let cS be the estimate.

Hypothesis:

h(x) = sign

(∑
S∈F ′′

cS · χS(x)

)
.
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