
Hypercontractivity and Friedgut’s Junta Theorem (lecture notes)

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 The Fourier-Entropy Conjecture

We’ve seen several interesting examples of classes of Boolean functions with low total influence. What does
that buy us?

For starters, we showed previously that any f : {±1}n → {±1} is concentrated at degree up to O(I[f ]),
hence learnable from random examples in time nO(I[f ]). For example, constant-width DNFs are learnable
from random examples in poly(n) time. What more can we say?

Conjecture 1.1 (Fourier-Entropy Conjecture). Let f : {±1}n → {±1}. Then H[Sf ] ≤ O(I[f ]), where H[·]
denotes Shannon entropy.

It’s okay if you aren’t comfortable with Shannon entropy. For our purposes, the important thing is that
Theorem 1.1 would imply that f is concentrated on a collection of 2O(I[f ]) Fourier coefficients, hence learnable
from queries in time 2O(I[f ]) · poly(n). For example, it would immediately follow that DNFs of width log n
are learnable from queries in poly(n) time.

The current best bound, by Kelman, Kindler, Lifshitz, Minzer, and Safra, says that any Boolean function
f is concentrated on a collection of 2O(I[f ]·log I[f ]) Fourier coefficients [KKLMS20].1 In these notes, we will
prove a classic 2O(I[f ]2) bound by Friedgut. For example, this will show that DNFs of width

√
log n are

learnable from queries in poly(n) time. The proof is based on hypercontractivity.
(Later, we will use other techniques to prove stronger bounds on the Fourier concentration and learnability

of DNFs.)

2 Hypercontractivity

Definition 2.1 (p-norm of a function). If f : {±1}n → R and p ≥ 1, we define

∥f∥p = E
x
[|f(x)|p]1/p.

Caution: We take an expectation over x, not a sum. Notably, this means that ∥f∥p gets bigger as p gets
bigger, which is the opposite of how the standard p-norm on Rn behaves. Indeed,

∥f∥p·(1+ε) = E
x

[
|f(x)|p·(1+ε)

] 1
p·(1+ε) ≥

(
E
x
[|f(x)|p](1+ε)

) 1
p·(1+ε)

= ∥f∥p,

by Jensen’s inequality.

2.1 Two-function hypercontractivity

Hypercontractivity can be understood as interpolating between two familiar facts about f, g : {±1}n → R.

• Fact 1: If x, y ∈ {±1}n are uniform and independent, then

E[f(x) · g(y)] = E[f(x)] · E[g(y)] ≤ ∥f∥1 · ∥g∥1.
1This result isn’t explicitly stated in their paper, but it follows from their results by splitting into cases based on whether

Var[f ] ≤ 0.01.
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• Fact 2: If x ∈ {±1}n is uniform, then E[f(x) · g(x)] ≤
√
E[f(x)2] ·

√
E[g(x)2] = ∥f∥2 · ∥g∥2 by the

Cauchy-Schwarz inequality. More generally, by Hölder’s inequality, for any r > 0, we have

E[f(x) · g(x)] ≤ ∥f∥1+r · ∥g∥1+1/r.

Theorem 2.2 (Two-Function Hypercontractivity Theorem). Let f, g : {±1}n → R, let ρ ∈ [0, 1], and sample
a ρ-correlated pair (x, y) ∈ ({±1}n)2. Then for every r > 0, we have

E[f(x) · g(y)] ≤ ∥f∥1+r · ∥g∥1+ρ2/r.

We recover Fact 2 by choosing ρ = 1. We recover Fact 1 by choosing ρ = 0 and taking r → 0.

2.2 Hypercontractivity in terms of the noise operator

Hypercontractivity is more commonly presented in a slightly different way, based on the following definitions.

Definition 2.3 (Noise distribution). Let x ∈ {±1}n and ρ ∈ [−1, 1]. The noise distribution Nρ(x) is
the distribution over y ∈ {±1}n in which the coordinates are independent and for each i ∈ [n], we have
E[yi] = ρxi.

Note that if we sample x uniformly at random and then sample y ∼ Nρ(x), then x and y are ρ-correlated.

Definition 2.4 (Noise operator). Let f : {±1}n → R and ρ ∈ [−1, 1]. We define (Tρf) : {±1}n → R by

(Tρf)(x) = E
y∼Nρ(x)

[f(y)].

Observe that if x and y are ρ-correlated, then E[f(x) · g(y)] = ⟨Tρf, g⟩ = ⟨f, Tρg⟩. (The noise operator is
“self-adjoint.”) Observe also that TρTρ′f = Tρρ′f . (This is the “semigroup property.”) The hypercontractivity
theorem can be re-stated as follows.

Theorem 2.5 (Hypercontractivity Theorem). For every f : {±1}n → R, ρ ∈ [0, 1], and r ∈ [0,∞), we have
∥Tρf∥1+r ≤ ∥f∥1+ρ2·r.

Theorem 2.5 says that Tρ is not only “contractive,” meaning it decreases the norm of f , but in fact it is
“hypercontractive,” meaning it decreases the norm of f even if we switch from the (1 + ρ2 · r)-norm to the
(1 + r)-norm.

Theorem 2.5 implies Theorem 2.2, because Hölder’s inequality gives us ⟨Tρf, g⟩ ≤ ∥Tρf∥1+r/ρ2 · ∥g∥1+ρ2/r.
Conversely, Theorem 2.2 implies Theorem 2.5, because Hölder’s inequality is tight: there is some g such that
∥Tρf∥1+r = ⟨Tf, g⟩ and ∥g∥1+1/r = 1.

We will not prove the Hypercontractivity Theorem in full generality. However, we will prove a special
case, which will be good enough for our applications. The proof uses the decomposition

f(x) =
∑
S∋i

f̂(S) · xS +
∑
S ̸∋i

f̂(S) · xS .

The first term can be rewritten as xi ·Dif , where Di is the derivative operator. Meanwhile, the second term
is Eif , where Ei is the expectation operator.

Definition 2.6 (Expectation operator). Let f : {±1}n → R and let i ∈ [n]. We define (Eif) : {±1}n → R by

(Eif)(x) =
∑
S ̸∋i

f̂(S) · χS(x).
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Proof of Theorem 2.5 when r = 3 and ρ = 1/
√
3. For brevity, let T = Tρ. Our goal is to prove

E[(Tf)4] ≤ E[f2]2.

We prove it by induction on n. When n = 0, the theorem is trivial, so assume n > 0. We decompose f into
the monomials involving xn and the monomials that do not involve xn: f(x) = xn · (Dnf)(x) + (Enf)(x).
For brevity, let us denote f = f(x), d = (Dnf)(x), and e = (Enf)(x). Note that neither d nor e depends on
xn. Then

Tf = T (dxn) + Te = ρ · xn · Td+ Te,

so

E[(Tf)4] = E
[
(ρxnTd)

4 + 4(ρxnTd)
3 · Te+ 6(ρxnTd)

2 · (Te)2 + 4(ρxnTd) · (Te)3 + (Te)4
]

=
1

9
· E[(Td)4] + 2E[(Td)2 · (Te)2] + E[(Te)4]

≤ E[(Td)4] + 2
√
E[(Td)4] · E[(Te)4] + E[(Te)4]

≤ E[d2]2 + 2E[d2] · E[e2] + E[e2]2 (Induction)

=
(
E[d2] + E[e2]

)2
.

Meanwhile,
E[f2] = E[(dxn)2 + 2dxne+ e2] = E[d2] + E[e2].

2.3 Bonami’s lemma

There is a third way of understanding hypercontractivity. We have the following Fourier formula for the
noise operator:

Tρf =
∑
S⊆[n]

f̂(S) · TρχS =
∑
S⊆[n]

ρ|S| · f̂(S) · χS .

Basically, the noise operator dampens the high-degree Fourier coefficients of f . Intuitively, therefore, if f is a
low-degree function to begin with, then applying the noise operator shouldn’t be necessary. The simplest
formalization of this idea is called Bonami’s Lemma.

Lemma 2.7 (Bonami’s Lemma). For any f : {±1}n → R, we have ∥f∥4 ≤ 3deg(f)/2 · ∥f∥2.

Lemma 2.8 (Generalized Bonami’s Lemma). For any f : {±1}n → R and any r ≥ 1, we have

∥f∥1+r ≤ rdeg(f)/2 · ∥f∥2.

Proof. Extend the definition of Tρ to the case ρ > 1 using the Fourier formula:

Tρf =
∑
S⊆[n]

ρ|S| · f̂(S) · χS .

Then

∥f∥21+r = ∥T1/
√
rT

√
rf∥21+r ≤ ∥T√

rf∥22 by the Hypercontractivity Theorem

=
∑
S⊆[n]

(
√
r)2|S| · f̂(S)2

≤ rdeg(f) · ∥f∥22.

Bonami’s lemma and its generalization bound ∥f∥bigger than 2 in terms of ∥f∥2. We can also bound ∥f∥2
in terms of ∥f∥smaller than 2. We will do two versions of this bound. In the first version, instead of assuming
that f has low degree, we delete the high-degree Fourier coefficients. Define f≤k =

∑
S⊆[n],|S|≤k f̂(S) · χS .

Then we have the following.
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Theorem 2.9 (Hypercontractivity of the “low-degree part” operator). For any f : {±1}n → R, k ∈ N, and
α ∈ (0, 1), we have

∥f≤k∥2 ≤ (1/α)k/2 · ∥f∥1+α.

Proof.

∥f≤k∥22 = ⟨f≤k, f≤k⟩ = ⟨f≤k, f⟩ ≤ ∥f≤k∥1+1/α · ∥f∥1+α by Hölder’s inequality

≤ (1/α)k/2 · ∥f≤k∥2 · ∥f∥1+α by the Generalized Bonami Lemma.

If ∥f≤k∥2 ≠ 0, we can divide both sides by ∥f≤k∥2 to complete the proof. If ∥f≤k∥2 = 0, then the theorem is
trivial.

In the second version, we have to assume that f has low degree, but the benefit is that we can go all the
way down to α = 0.

Theorem 2.10 (The 1-norm trick). For any f : {±1}n → R, we have ∥f∥2 ≤ 2O(deg(f)) · ∥f∥1.

Proof.

∥f∥22 = E
x

[
|f(x)|4/3 · |f(x)|2/3

]
= ⟨|f |4/3, |f |2/3⟩ ≤ ∥|f |4/3∥3 · ∥|f |2/3∥3/2 by Hölder’s inequality

= ∥f∥4/34 · ∥f∥2/31

≤ (3deg(f)/2 · ∥f∥2)4/3 · ∥f∥2/31 by Bonami’s Lemma.

If ∥f∥2 ≠ 0, then we can divide both sides by ∥f∥4/32 to get ∥f∥2/32 ≤ 3deg(f)·2/3 · ∥f∥2/31 , which gives us
∥f∥2 ≤ 3deg(f) · ∥f∥1.2 If ∥f∥2 = 0, the theorem is trivial.

Hypercontractivity in terms of degree is a bit messier than hypercontractivity in terms of noise, but
hypercontractivity in terms of degree is more useful for applications.

3 Friedgut’s junta theorem

Which functions have total influence O(1)? Friedgut’s junta theorem gives a satisfying answer.

Definition 3.1. Let f : {±1}n → R. We say that f is a k-junta if f only depends on at most k variables.

Theorem 3.2 (Friedgut’s junta theorem3). Let f : {±1}n → {±1} and let ε ∈ (0, 1).

1. There is a set J ⊆ [n] of size 2O(I[f ]/ε) such that f is ε-concentrated on the subsets of J .

2. The function f is ε-close to a k-junta where k = 2O(I[f ]/ε).

3. The function f is ε-concentrated on a collection of 2O(I[f ]2/ε2) Fourier coefficients.

2The bound can be improved to edeg(f) · ∥f∥1.
3“Friedgut’s junta theorem” typically refers to Item 2 alone, but I would argue that Item 1 is the real meat of the theorem.
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Proof. Let J = {i ∈ [n] : Infi ≥ τ}, for a suitable number τ that we will choose later. Let k = 2 I[f ]/ε. Then∑
S ̸⊆J

f̂(S)2 =
∑
S ̸⊆J
|S|>k

f̂(S)2 +
∑
S ̸⊆J
|S|≤k

f̂(S)2 ≤ ε

2
+
∑
i/∈J

∑
S∋i
|S|≤k

f̂(S)2 by choice of k

=
ε

2
+
∑
i/∈J

∥(Dif)
≤k−1∥22

≤ ε

2
+ 3k ·

∑
i/∈J

∥Dif∥24/3 by Theorem 2.9

=
ε

2
+ 3k ·

∑
i/∈J

E
x
[|(Dif)(x)|4/3]3/2

=
ε

2
+ 3k ·

∑
i/∈J

Infi[f ]
3/2

≤ ε

2
+ 3k ·

√
τ · I[f ] by choice of J

≤ ε,

provided we choose τ =
(

ε
3k·I[f ]

)2
. Furthermore, |J | ≤ I[f ]/τ = 2O(I[f ]/ε), completing the proof of Item 1.

The junta is g(x) = sign(
∑

S⊆J f̂(S) · χS(x)), completing the proof of Item 2.
Finally, the computations above show that f is ε-concentrated on {S ⊆ J : |S| ≤ 2 I[f ]/ε}, which has

cardinality at most (|J |+ 1)2 I[f ]/ε = 2O(I[f ]2/ε2). This completes the proof of Item 3.
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