Hypercontractivity and Friedgut’s Junta Theorem (lecture notes)

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza®@uchicago.edu)

1 The Fourier-Entropy Conjecture

We’ve seen several interesting examples of classes of Boolean functions with low total influence. What does
that buy us?

For starters, we showed previously that any f: {£1}"™ — {£1} is concentrated at degree up to O(I[f]),
hence learnable from random examples in time n®D. For example, constant-width DNFs are learnable
from random examples in poly(n) time. What more can we say?

Conjecture 1.1 (Fourier-Entropy Conjecture). Let f: {+1}" — {£1}. Then H|[S¢] < O(I[f]), where H[|
denotes Shannon entropy.

It’s okay if you aren’t comfortable with Shannon entropy. For our purposes, the important thing is that
Theorem 1.1 would imply that f is concentrated on a collection of 2°Ul/) Fourier coefficients, hence learnable
from queries in time 200D . poly(n). For example, it would immediately follow that DNFs of width logn
are learnable from queries in poly(n) time.

The current best bound, by Kelman, Kindler, Lifshitz, Minzer, and Safra, says that any Boolean function
f is concentrated on a collection of 20U/11g1lfD) Fourier coefficients [KKLMS20].! In these notes, we will
prove a classic 20Ulf 1) bound by Friedgut. For example, this will show that DNFs of width /logn are
learnable from queries in poly(n) time. The proof is based on hypercontractivity.

(Later, we will use other techniques to prove stronger bounds on the Fourier concentration and learnability
of DNFs.)

2 Hypercontractivity
Definition 2.1 (p-norm of a function). If f: {£1}" — R and p > 1, we define
1fllp = E[f ()77

Caution: We take an expectation over =, not a sum. Notably, this means that || f||, gets bigger as p gets
bigger, which is the opposite of how the standard p-norm on R™ behaves. Indeed,

£ lpse) = E [LF@P O] 70 > (21 @)P)0+2) 7T — |,

by Jensen’s inequality.

2.1 Two-function hypercontractivity

Hypercontractivity can be understood as interpolating between two familiar facts about f,g: {£1}" — R.

e Fact 1: If z,y € {£1}" are uniform and independent, then

E[f(x) - 9(y)] = E[f(2)] - Elg(y)] < [If]l1 - lgll1-

!This result isn’t explicitly stated in their paper, but it follows from their results by splitting into cases based on whether
Var[f] < 0.01.




e Fact 2: If z € {£1}" is uniform, then E[f(z) - g(x)] < VE[f(®)?] - VE[g(z)2] = ||fll2 - llgll2 by the
Cauchy-Schwarz inequality. More generally, by Holder’s inequality, for any r > 0, we have

Elf (@) g(@)] < [|fllvrr - Ngllasasr-

Theorem 2.2 (Two-Function Hypercontractivity Theorem). Let f,g: {£1}" — R, let p € [0,1], and sample
a p-correlated pair (z,y) € ({£1}™)2. Then for every r > 0, we have

E[f (@) - gl < 1 llier - Ngllisp2/r-

We recover Fact 2 by choosing p = 1. We recover Fact 1 by choosing p = 0 and taking » — 0.

2.2 Hypercontractivity in terms of the noise operator

Hypercontractivity is more commonly presented in a slightly different way, based on the following definitions.

Definition 2.3 (Noise distribution). Let € {£1}" and p € [-1,1]. The noise distribution N,(x) is
the distribution over y € {£1}" in which the coordinates are independent and for each i € [n], we have
Elyi] = px.

Note that if we sample x uniformly at random and then sample y ~ N,(z), then = and y are p-correlated.

Definition 2.4 (Noise operator). Let f: {£1}" — R and p € [-1,1]. We define (T,,f): {£1}" — R by

T,f)(x)= E
TN = B, ()
Observe that if z and y are p-correlated, then E[f(z) - g(y)| = (T),f, 9) = (f,Tpg). (The noise operator is
“self-adjoint.”) Observe also that 7, T,y f = T, f. (This is the “semigroup property.”) The hypercontractivity
theorem can be re-stated as follows.

Theorem 2.5 (Hypercontractivity Theorem). For every f: {£1}" — R, p € [0,1], and r € [0,00), we have
1o fllr < [ fll1sp2.r-

Theorem 2.5 says that T}, is not only “contractive,” meaning it decreases the norm of f, but in fact it is
“hypercontractive,” meaning it decreases the norm of f even if we switch from the (1 4 p? - 7)-norm to the
(14 7)-norm.

Theorem 2.5 implies Theorem 2.2, because Holder’s inequality gives us (T,,f,9) < [|Tpfl14r/p2 - 9]l 14p2/r-
Conversely, Theorem 2.2 implies Theorem 2.5, because Holder’s inequality is tight: there is some g such that
1T, fllvsr = (Tf,g) and gllys1r = 1.

We will not prove the Hypercontractivity Theorem in full generality. However, we will prove a special
case, which will be good enough for our applications. The proof uses the decomposition

Fla) =" F(8) 2%+ > f(8) -«

5i SFi

The first term can be rewritten as x; - D; f, where D; is the derivative operator. Meanwhile, the second term
is E;f, where E; is the expectation operator.

Definition 2.6 (Expectation operator). Let f: {£1}" — R and let i € [n]. We define (E;f): {£1}" — R by

(Eif)(@) =D F(S) - xs(@).

S%i



Proof of Theorem 2.5 when r =3 and p = 1/+/3. For brevity, let T = T,. Our goal is to prove
E(Tf)"] <E[f*]*.

We prove it by induction on n. When n = 0, the theorem is trivial, so assume n > 0. We decompose f into
the monomials involving z,, and the monomials that do not involve z,: f(z) = xy, - (Dyf)(x) + (Enf)(x).
For brevity, let us denote f = f(x), d = (D, f)(x), and e = (E, f)(z). Note that neither d nor e depends on
Tn. Then

Tf=T(dxn)+Te=p- -z, -Td+ Te,

E(Tf)Y] =E [(pznTd)* + 4(pz,Td)* - Te + 6(px,Td)?* - (Te)* + 4(px,, Td) - (Te)* + (Te)*]
é [(Td) |+ 2E[(Td)* - (Te)?] + E[(Te)']
< E[(Td)*] + 2+/E[(Td)*] - E[(Te)4] + E[(Te)*]
< E[d? ] + 2E[d?] - E[¢?] + E[e?)? (Induction)
= (E[d?] +E[e?])?.
Meanwhile,
E[f?] = E[(dzn)? + 2dzne + %] = E[d?] + E[€?]. O

2.3 Bonami’s lemma

There is a third way of understanding hypercontractivity. We have the following Fourier formula for the

Tof= > (8 Toxs= > o

SCln] SCln]

noise operator:

Basically, the noise operator dampens the high-degree Fourier coefficients of f. Intuitively, therefore, if f is a
low-degree function to begin with, then applying the noise operator shouldn’t be necessary. The simplest
formalization of this idea is called Bonami’s Lemma.

Lemma 2.7 (Bonami’s Lemma). For any f: {#1}" — R, we have ||f|s < 398)/2 || f|s.

Lemma 2.8 (Generalized Bonami’s Lemma). For any f: {£1}" — R and any r > 1, we have

1 1 < r9ED2 £,

Proof. Extend the definition of T}, to the case p > 1 using the Fourier formula:
T,f = Z ol
SCln]

Then

IN

T f 3 by the Hypercontractivity Theorem
= > (VP sy
SCln]
< sl | 1|3, 0

15 0 = 172/ 7T 7 1R

Bonami’s lemma and its generalization bound || f||bigger than 2 in terms of || f||2. We can also bound || f||2
in terms of || f|smaller than 2- We will do two versions of this bound. In the first version, instead of assuming
that f has low degree, we delete the high-degree Fourier coefficients. Define f<F = Zsc[n],\SKk f(S) - xs.
Then we have the following.



Theorem 2.9 (Hypercontractivity of the “low-degree part” operator). For any f: {£1}" - R, k € N, and
a € (0,1), we have

1F="ll2 < (1/@)*% - || flli+a-
Proof.

IF=H15 = (=5 755 = =5 ) <015 a1 £l by Holder’s inequality
< (1/a)*2 ||f=*|l2 - || flli1a by the Generalized Bonami Lemma.

If || f=F||2 # 0, we can divide both sides by || f<*||2 to complete the proof. If || f<¥||5 = 0, then the theorem is
trivial. O

In the second version, we have to assume that f has low degree, but the benefit is that we can go all the
way down to o = 0.

Theorem 2.10 (The 1-norm trick). For any f: {£1}" — R, we have || f||2 < 20e) .|| £||;.

Proof.
1713 =B [LF @2 - 1f @3] = (21022 < A2 s - 111 s o by Holder’s inequality
4/3 2/3
= 712" - 171
< (39¢8UN/2 | fl|9) 43 - HfH?/S by Bonami’s Lemma.
If ||fll2 # 0, then we can divide both sides by HfH;L/3 to get Hng/S < 3des(£):2/3. Hf||§/3, which gives us
I £ll2 < 398 || fll1.2 If || f||2 = O, the theorem is trivial. O

Hypercontractivity in terms of degree is a bit messier than hypercontractivity in terms of noise, but
hypercontractivity in terms of degree is more useful for applications.

3 Friedgut’s junta theorem
Which functions have total influence O(1)? Friedgut’s junta theorem gives a satisfying answer.
Definition 3.1. Let f: {£1}" — R. We say that f is a k-junta if f only depends on at most k variables.
Theorem 3.2 (Friedgut’s junta theorem?). Let f: {+1}" — {1} and let € € (0,1).

1. There is a set J C [n] of size 20Ulf1/e) such that f is e-concentrated on the subsets of J.

2. The function f is e-close to a k-junta where k = 20011/,

3. The function f is e-concentrated on a collection of 20Wf1*/*) Fourier coefficients.

2The bound can be improved to e2°8() . || f|;.
%Friedgut’s junta theorem” typically refers to Item 2 alone, but I would argue that Item 1 is the real meat of the theorem.



Proof. Let J = {i € [n] : Inf; > 7}, for a suitable number 7 that we will choose later. Let &k = 21[f]/e. Then

Zf(S)QZZf(S)2+Zf(S)2S +ZZ?(S)2 by choice of k
SgJ

Sg.J sgJ i¢J S3i
|S|>k |S|<k [S|<k

+ > D)= 3
i¢J

+ 3. Z HDZ-in/:,) by Theorem 2.9
i¢J

+3% - E[(Dif) (@) [V
i)

+37- ) " Infi (172
i¢J

+ 3% /7 1[f] by choice of J
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2
provided we choose T = (ﬁ) . Furthermore, |J| < I[f]/7 = 200/1/2) completing the proof of Item 1.

The junta is g(z) = sign(3_gc; f(S) - xs(z)), completing the proof of Item 2.
Finally, the computations above show that f is e-concentrated on {S C J : |S| < 21I[f]/e}, which has
cardinality at most (|.J| + 1)21/1/e = 200If1*/=*)  This completes the proof of Item 3. O

~
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