Fourier Growth and the Coin Problem (lecture notes) [Edited 2025-11-18]

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago

Instructor: William Hoza (williamhoza@uchicago.edu)

Previously, we showed that polynomial-size DNFs are concentrated up to degree $O(\log n)$, hence learnable from random examples in time $n^{O(\log n)}$. In these notes, we will prove Mansour's theorem, which says that polynomial-size DNFs are concentrated on $n^{O(\log \log n)}$ Fourier coefficients, hence learnable from queries in time $n^{O(\log \log n)}$.

The key is to bound the "Fourier growth" of DNFs. What this means is that we will bound the quantity $\sum_{S:|S|=k} |\widehat{f}(S)|$.

Definition 0.1. Let
$$f: \{\pm 1\}^n \to \mathbb{R}$$
. We define $L_{1,k}(f) = \sum_{|S|=k} |\widehat{f}(S)|$.

It turns out that Fourier growth bounds have additional applications as well, beyond Fourier concentration and learnability. For example, we will use our Fourier growth bounds to prove that AC^0 circuits do a poor job of solving the so-called *coin problem*. To further illustrate this technique, we will also prove Fourier growth bounds for *regular read-once branching programs*.

1 Fourier growth of bounded-depth circuits

Theorem 1.1. If $f: \{\pm 1\}^n \to \{\pm 1\}$ is a size-s AC_d^0 circuit, then $L_{1,k}(f) \leq O(\log s)^{(d-1)\cdot k}$.

Proof. Previously, we showed that if ρ is a restriction and x is a completion, then

$$\widehat{f|_{\rho}}(S) = \sum_{U \subseteq [n]} \widehat{f}(S \cup U) \cdot \chi_U(x) \cdot 1[S \subseteq \rho^{-1}(\star) \text{ and } U \subseteq \rho^{-1}(\{0,1\})].$$

Consequently, if we sample $\rho \sim R_p$ and let x be a uniform random completion, then

$$\mathbb{E}\left[\widehat{f|_{\rho}}(S)\right] = \sum_{U \subseteq [n]} \widehat{f}(S \cup U) \cdot \mathbb{E}[\chi_U(x)] \cdot \Pr[S \subseteq \rho^{-1}(\star) \text{ and } U \subseteq \rho^{-1}(\{0,1\})] = \widehat{f}(S) \cdot p^{|S|}.$$

Therefore,

$$\begin{split} \sum_{|S|=k} |\widehat{f}(S)| &= \sum_{|S|=k} p^{-k} \left| \mathbb{E}\left[\widehat{f|_{\rho}}(S)\right] \right| \leq p^{-k} \cdot \mathbb{E}\left[\sum_{|S|=k} \left| \widehat{f|_{\rho}}(S) \right| \right] \\ &\leq p^{-k} \cdot \sum_{D=k}^{\infty} 2^{D} \cdot \Pr[\mathsf{DTDepth}(C|_{\rho}) = D] \\ &\leq p^{-k} \cdot \sum_{D=k}^{\infty} (2p \cdot O(\log s)^{d-1})^{D}. \end{split}$$

(The second inequality uses the facts that $\deg(f) \leq \mathsf{DTDepth}(f)$ and $\|f\|_1 \leq 2^{\mathsf{DTDepth}(f)}$.) If we choose p small enough (e.g., there is a value $p = 1/O(\log s)^{d-1}$ that works), then the geometric sum is dominated by its first term:

$$\sum_{|S|=k} |\widehat{f}(S)| \le p^{-k} \cdot 2 \cdot (2p \cdot O(\log s)^{d-1})^k = O(\log s)^{(d-1) \cdot k}.$$

Corollary 1.2. Let d be a constant, for simplicity. If $f: \{\pm 1\}^n \to \{\pm 1\}$ is a size-s AC^0_d circuit, then f is ε -concentrated on a set of $2^{O((\log s)^{d-1} \cdot \log \log s \cdot \log(1/\varepsilon))}$ Fourier coefficients.

Proof. We showed previously that f is $(\varepsilon/2)$ -concentrated on degree up to some $k = O(\log s)^{d-1} \cdot \log(1/\varepsilon)$. Define

$$\mathcal{F} = \{ S \subseteq [n] : |S| \le k \text{ and } |\widehat{f}(S)| \ge \theta \}$$

for a suitable value $\theta = \varepsilon/O(\log s)^{(d-1)\cdot k}$. Then f is ε -concentrated on \mathcal{F} , because

$$\sum_{|S| \le k, |\widehat{f}(S)| < \theta} \widehat{f}(S)^2 \le \theta \cdot \sum_{|S| \le k} |\widehat{f}(S)| \le \theta \cdot O(\log s)^{(d-1) \cdot k} = \varepsilon/2,$$

provided we choose θ appropriately. Furthermore, the cardinality of \mathcal{F} is bounded by

$$|\mathcal{F}| \le \sum_{D=0}^{k} \frac{\sum_{|S|=D} |\widehat{f}(S)|}{\theta} \le O(\log s)^{(d-1)\cdot k} / \varepsilon = 2^{O((\log s)^{d-1} \cdot \log \log s \cdot \log(1/\varepsilon))}.$$

In particular, when d=2, we get:

Theorem 1.3 (Mansour's theorem). If $f: \{\pm 1\}^n \to \{\pm 1\}$ is a size-s DNF, then f is ε -concentrated on a set of $s^{O(\log \log s \cdot \log(1/\varepsilon))}$ Fourier coefficients.

When s = poly(n) and ε is a constant, the bound in Mansour's theorem is $n^{O(\log \log n)}$. The Fourier-entropy conjecture $H[S_f] \leq O(I[f])$ would imply that the bound can be improved to polynomial. This special case of the Fourier-entropy conjecture is known as "Mansour's conjecture."

Conjecture 1.4 (Mansour's conjecture). If $f: \{\pm 1\}^n \to \{\pm 1\}$ is a polynomial-size DNF and ε is a constant, then f is ε -concentrated on a set of poly(n) Fourier coefficients.

Without proving Mansour's conjecture, Jackson used different techniques to prove that polynomial-size DNFs are learnable from queries in polynomial time [Jac97]. We will not prove Jackson's result in this course.

2 The coin problem

In the *coin problem*, we are given a coin that lands one way with probability $1/2 + \varepsilon$ and lands the other way with probability $1/2 - \varepsilon$. The goal is to figure out which side is more likely. The optimal strategy is to toss the coin a number of times and take the majority vote of the observed outcomes. By the Chernoff bound, if we make some $n = O(1/\varepsilon^2)$ tosses, this strategy succeeds with high probability.

In this section, as an application of the Fourier growth bound from the previous section, we will show that AC_d^0 circuits do a very poor job of solving the coin problem. (In particular, this implies that small AC_d^0 circuits cannot compute the majority function.) We use the following notation.

Definition 2.1. For $\mu \in [-1,1]$, let X_{μ} denote the distribution over $\{\pm 1\}^n$ in which the coordinates are independent and each has expectation μ .

Theorem 2.2. For every $s, d \in \mathbb{N}$, there exists $\mu = 1/O(\log s)^{d-1}$ such that if $f : \{\pm 1\}^n \to \{\pm 1\}$ is an AC^0_d circuit of size s, then

$$|\mathbb{E}[f(X_{\mu})] - \mathbb{E}[f(X_{-\mu})]| \le 0.01.$$

Proof.

$$|\mathbb{E}[f(X_{\mu})] - \mathbb{E}[f(X_{0})]| = \left| \sum_{S \subseteq [n]} \widehat{f}(S) \cdot (\mathbb{E}[\chi_{S}(X_{\mu})] - \mathbb{E}[\chi_{S}(X_{0})]) \right| = \left| \sum_{k=1}^{n} \sum_{|S|=k} \widehat{f}(S) \cdot \mu^{k} \right|$$

$$\leq \sum_{k=1}^{n} \mu^{k} \cdot \sum_{|S|=k} |\widehat{f}(S)|$$

$$\leq \sum_{k=1}^{\infty} (\mu \cdot O(\log S)^{d-1})^{k}$$

$$\leq \sum_{k=1}^{\infty} 0.001^{k}$$

$$\leq 0.005,$$

provided we choose a small enough value $\mu = 1/O(\log s)^{d-1}$.

Corollary 2.3. If f is an AC_d^0 circuit that computes majority, then f has size at least $2^{n^{\Omega(1/d)}}$.

3 Fourier growth of regular read-once branching programs

In this section, as another example of Fourier growth bounds, we study *read-once branching programs* (ROBPs).

Definition 3.1 (Oblivious ROBPs). An oblivious ROBP is a layered digraph with layers V_0, V_1, \ldots, V_n . For every $i \in [n]$, each vertex $v \in V_{i-1}$ is labeled $x_{\pi(i)}$ for some permutation $\pi \colon [n] \to [n]$. Furthermore, v has two outgoing edges labeled 0 and 1 pointing to V_i . There is a designated "start vertex" $v_{\text{start}} \in V_0$. Given an input $x \in \{0,1\}^n$, we start at v_{start} , and in step $i \in [n]$, we query $x_{\pi(i)}$ to determine which outgoing edge to traverse. We arrive at a vertex $v \in V_n$. There is a designated set of "accept vertices" $V_{\text{acc}} \subseteq V_n$. We set f(x) = 1 if $v \in V_{\text{acc}}$ and f(x) = 0 otherwise. Thus, the program computes $f \colon \{0,1\}^n \to \{0,1\}$. The width of the program is $\max_i |V_i|$.

We say that the program is regular if every vertex in $V_1 \cup \cdots \cup V_n$ has two incoming edges.

If $u \in V_i$, then we write $f_{u\to}$ to denote the ROBP on layers $V_i, V_{i+1}, \ldots, V_n$ in which u is the start vertex. Similarly, if $S \subseteq V_i$, then $f_{\to S}$ is the ROBP on vertices V_0, \ldots, V_i in which S is the set of accepting vertices. We write $f_{\to v}$ as a shorthand for $f_{\to \{v\}}$.

Regular oblivious ROBPs are in many ways very different from AC^0 circuits. For example, we proved that AC^0 circuits are concentrated at low degree, whereas in contrast, there is a trivial width-2 regular oblivious ROBP that computes the parity function, hence regular oblivious ROBPs are *not* concentrated at low degree. In fact, one can check that the inner product function can be computed by a regular oblivious ROBP of width 4. Recall that the inner product function is "maximally non-concentrated:" every Fourier coefficient has absolute value precisely $2^{-n/2}$.

Nevertheless, we will prove that regular oblivious ROBPs satisfy a strong Fourier growth bound, similar to AC^0 circuits. The proof is completely different from the AC^0 proof. We begin by bounding the level-1 Fourier coefficients.

Lemma 3.2 (Level-1 Fourier coefficients of regular oblivious ROBPs). Let $f: \{0,1\}^n \to \{0,1\}$ be a width-w regular oblivious ROBP. Then $L_{1,1}(f) \leq \mathbb{E}[f] \cdot w$.

Proof. Let m be the number of rejecting vertices in the final layer. We will prove a bound of $\mathbb{E}[f] \cdot m$ by induction on n. The base case n = 0 is trivial, so assume n > 0. Let V_0, V_1, \ldots, V_n be the layers of f.

Partition the penultimate layer V_{n-1} into three sets, $V_{n-1} = R \cup S \cup T$, based on the number of accepting edges from each vertex:

$$R = \{v \in V_{n-1} : \mathbb{E}[f_{v \to}] = 0\}$$

$$S = \{v \in V_{n-1} : \mathbb{E}[f_{v \to}] = 1/2\}$$

$$T = \{v \in V_{n-1} : \mathbb{E}[f_{v \to}] = 1\}.$$

Because f is regular, we have $m = |R| + \frac{1}{2}|S|$. Assume without loss of generality that x_n is the variable that the program reads in step n. Then for each i < n, we have

$$\widehat{f}(i) = \mathbb{E}[f(x) \cdot (-1)^{x_i}] = \mathbb{E}_{x_1, \dots, x_{n-1}} \left[(-1)^{x_i} \cdot \left(f_{\to T}(x) + \frac{1}{2} f_{\to S}(x) \right) \right]$$

$$= \mathbb{E}_{x_1, \dots, x_{n-1}} \left[(-1)^{x_i} \cdot \left(\frac{1}{2} f_{\to T}(x) + \frac{1}{2} f_{\to S \cup T}(x) \right) \right]$$

$$= \frac{1}{2} \widehat{f_{\to T}}(i) + \frac{1}{2} \widehat{f_{\to S \cup T}}(i).$$

Therefore, by induction, we have

$$\begin{split} \sum_{i=1}^{n-1} |\widehat{f}(i)| &\leq \frac{1}{2} \operatorname{\mathbb{E}}[f_{\to T}] \cdot |R \cup S| + \frac{1}{2} \operatorname{\mathbb{E}}[f_{\to S \cup T}] \cdot |R| \\ &= \frac{1}{2} \operatorname{\mathbb{E}}[f_{\to S}] \cdot |R| + \operatorname{\mathbb{E}}[f_{\to T}] \cdot m. \end{split}$$

Meanwhile, at i = n, we have

$$|\widehat{f}(n)| = \left| \mathbb{E}[f(x) \cdot (-1)^{x_n}] \right| \leq \mathbb{E}_{x_1, \dots, x_{n-1}} \left[\left| \mathbb{E}[(-1)^{x_n} \cdot f(x)] \right| \right] = \frac{1}{2} \mathbb{E}[f_{\to S}] \leq \frac{|S| \cdot \mathbb{E}[f_{\to S}]}{4},$$

because |S| is even (recall $m = |R| + \frac{1}{2}|S|$). Combining the bounds, we get

$$\sum_{i=1}^{n} |\widehat{f}(i)| \leq \mathbb{E}[f_{\to S}] \cdot \left(\frac{|R|}{2} + \frac{|S|}{4}\right) + \mathbb{E}[f_{\to T}] \cdot m$$

$$= \mathbb{E}[f_{\to S}] \cdot m/2 + \mathbb{E}[f_{\to T}] \cdot m$$

$$= m \cdot (\mathbb{E}[f_{\to S}]/2 + \mathbb{E}[f_{\to T}])$$

$$= m \cdot \mathbb{E}[f].$$

Now we move on to the higher-order Fourier coefficients. There is a convenient formula for the Fourier coefficients of an ROBP in terms of the Fourier coefficients of its subprograms. A standard-order ROBP is an oblivious ROBP that reads the variables in the order x_1, \ldots, x_n .

Lemma 3.3. Let f be a standard-order ROBP with layers V_0, V_1, \ldots, V_n . Let $i \in \{0, 1, \ldots, n\}$, let $S \subseteq [i]$, and let $T \subseteq [n] \setminus [i]$. Then

$$\widehat{f}(S \cup T) = \sum_{v \in V_i} \widehat{f_{\to v}}(S) \cdot \widehat{f_{v \to}}(T).$$

Proof. Sample $(x,y) \in \{0,1\}^n$ uniformly at random, where |x| = i and |y| = n - i. By the Fourier coefficient formula,

$$\widehat{f}(S \cup T) = \mathbb{E}[f(x,y) \cdot \chi_{S \cup T}(x,y)] = \mathbb{E}\left[\left(\sum_{v \in V_i} f_{\to v}(x) f_{v \to}(y)\right) \cdot \chi_S(x) \cdot \chi_T(y)\right]$$

$$= \sum_{v \in V_i} \mathbb{E}[f_{\to v}(x) \cdot \chi_S(x) \cdot f_{v \to}(y) \cdot \chi_T(y)]$$

$$= \sum_{v \in V_i} \widehat{f_{\to v}}(S) \cdot \widehat{f_{v \to}}(T).$$

Our plan is to bound $L_{1,k}(f)$ by induction on k. Indeed, using Lemma 3.3, we can bound the level-(k+1) Fourier coefficients in terms of the level-k Fourier coefficients as follows:

Lemma 3.4. Let f be a standard-order oblivious ROBP with layers V_0, V_1, \ldots, V_n . Then

$$L_{1,k+1}(f) \le \sum_{i=1}^{n} \sum_{v \in V_{i-1}} L_{1,k}(f_{\to v}) \cdot |\widehat{f_{v \to}}(i)|.$$

Proof.

$$L_{1,k+1}(f) = \sum_{|S|=k+1} |\widehat{f}(S)| = \sum_{i=1}^{n} \sum_{T \subseteq [i-1], |T|=k} |\widehat{f}(T \cup \{i\})| = \sum_{i=1}^{n} \sum_{T \subseteq [i-1], |T|=k} \left| \sum_{v \in V_{i-1}} \widehat{f_{\to v}}(T) \cdot \widehat{f_{v \to}}(i) \right|$$

$$\leq \sum_{i=1}^{n} \sum_{v \in V_{i-1}} \left(\sum_{T \subseteq [i-1], |T|=k} |\widehat{f_{\to v}}(T)| \right) \cdot |\widehat{f_{v \to}}(i)|$$

$$= \sum_{i=1}^{n} \sum_{v \in V_{i-1}} L_{1,k}(f_{\to v}) \cdot |\widehat{f_{v \to}}(i)|.$$

In the bound above, the absolute value signs around $\widehat{f}_{v\to}(i)$ are annoying. Recall that if $f:\{0,1\}^n\to\{0,1\}$ is monotone, and $F=(-1)^f$, then

$$\widehat{f}(i) = -\frac{1}{2}\widehat{F}(i) = -\frac{1}{2}\operatorname{Inf}_{i}[f] \le 0,$$

so we can remove the absolute value signs and say $|\hat{f}(i)| = -\hat{f}(i)$. More generally, the same conclusion holds if f is locally monotone:

Definition 3.5 (Local monotonicity). Let $f: \{0,1\}^n \to \{0,1\}$. We say that f is *locally monotone* if for every $i \in [n]$ and every $x \in \{0,1\}^{i-1}$, we have

$$\mathbb{E}_{y \in \{0,1\}^{n-i}}[f(x0y)] \le \mathbb{E}_{y \in \{0,1\}^{n-i}}[f(x1y)].$$

Locally monotone functions are not necessarily monotone.² However, locally monotone function always have non-positive degree-1 Fourier coefficients, just like monotone functions:

Lemma 3.6. If $f: \{0,1\}^n \to \{0,1\}$ is locally monotone, then $\widehat{f}(i) \leq 0$ for every $i \in [n]$. *Proof.*

$$\widehat{f}(i) = \underset{xby \in \{0,1\}^n}{\mathbb{E}} [f(xby) \cdot (-1)^b] = \underset{x \in \{0,1\}^{i-1}}{\mathbb{E}} \left[\frac{1}{2} \sum_{b \in \{0,1\}} \underset{y \in \{0,1\}^{n-i}}{\mathbb{E}} [f(xby) \cdot (-1)^b] \right]$$

$$= \underset{x \in \{0,1\}^{i-1}}{\mathbb{E}} \left[\frac{1}{2} \left(\underset{y \in \{0,1\}^{n-i}}{\mathbb{E}} [f(x0y)] - \underset{y \in \{0,1\}^{n-i}}{\mathbb{E}} [f(x1y)] \right) \right]$$

$$< 0.$$

To bound $L_{1,k+1}(f)$, our approach is to reduce to the locally monotone case, via the following construction.

Lemma 3.7 (Local monotonization). Let $f: \{0,1\}^n \to \{0,1\}$ be a standard-order ROBP. By only relabeling the edges of f, it is possible construct another standard-order ROBP f' such that for every vertex v, the function $f_{v\to}$ is locally monotone.

¹Warning: This definition is not standard.

²For example, let $f(x, y, z) = (x \wedge y) \vee (\overline{x} \wedge z)$.

Proof. At each vertex v, swap the labels of the outgoing edges if necessary in order to ensure that $\mathbb{E}_x[f_{v\to}(1x)] \geq \mathbb{E}_x[f_{v\to}(0x)]$. The order in which we visit the vertices doesn't matter, because relabeling edges does not affect acceptance probabilities.

Theorem 3.8. Let $f: \{0,1\}^n \to \{0,1\}$ be a width-w regular oblivious ROBP. Then $L_{1,k}(f) \leq w^k$.

Proof. We will prove that $L_{1,k}(f) \leq w^k \cdot \mathbb{E}[f]$ by induction on k. The base case k = 0 is trivial. For the inductive step, assume without loss of generality that f is a standard-order ROBP. Let f' be the local monotonization from Lemma 3.7. Then

$$\begin{split} L_{1,k+1}(f) &\leq \sum_{i=1}^{n} \sum_{v \in V_{i-1}} L_{1,k}(f_{\rightarrow v}) \cdot |\widehat{f_{v \rightarrow}}(i)| \\ &\leq w^{k} \cdot \sum_{i=1}^{n} \sum_{v \in V_{i-1}} \mathbb{E}[f_{\rightarrow v}] \cdot |\widehat{f_{v \rightarrow}}(i)| \\ &= w^{k} \cdot \sum_{i=1}^{n} \left| \sum_{v \in V_{i-1}} \widehat{f'_{\rightarrow v}}(\varnothing) \cdot \widehat{f'_{v \rightarrow}}(i) \right| \\ &= w^{k} \cdot \sum_{i=1}^{n} |\widehat{f}'(i)| \\ &\leq w^{k+1} \cdot \mathbb{E}[f'] \\ &= w^{k+1} \cdot \mathbb{E}[f]. \end{split} \tag{Lemma 3.2}$$

Corollary 3.9 (Coin problem bound). If $f: \{\pm 1\}^n \to \{0,1\}$ is a width-w regular oblivious ROBP, then $|\mathbb{E}[f(X_{\mu})] - \mathbb{E}[f]| \leq O(\mu \cdot w)$.

References

[Jac97] Jeffrey C Jackson. "An Efficient Membership-Query Algorithm for Learning DNF with Respect to the Uniform Distribution". In: *Journal of Computer and System Sciences* 55.3 (1997), pp. 414–440. ISSN: 0022-0000. DOI: https://doi.org/10.1006/jcss.1997.1533.