
Fourier Growth and the Coin Problem (lecture notes) [Edited 2025-11-18]

Course: Analysis of Boolean Functions, Autumn 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

Previously, we showed that polynomial-size DNFs are concentrated up to degree O(log n), hence learnable
from random examples in time nO(logn). In these notes, we will prove Mansour’s theorem, which says that
polynomial-size DNFs are concentrated on nO(log logn) Fourier coefficients, hence learnable from queries in
time nO(log logn).

The key is to bound the “Fourier growth” of DNFs. What this means is that we will bound the quantity∑
S:|S|=k |f̂(S)|.

Definition 0.1. Let f : {±1}n → R. We define L1,k(f) =
∑

|S|=k |f̂(S)|.

It turns out that Fourier growth bounds have additional applications as well, beyond Fourier concentration
and learnability. For example, we will use our Fourier growth bounds to prove that AC0 circuits do a poor
job of solving the so-called coin problem. To further illustrate this technique, we will also prove Fourier
growth bounds for regular read-once branching programs.

1 Fourier growth of bounded-depth circuits

Theorem 1.1. If f : {±1}n → {±1} is a size-s AC0
d circuit, then L1,k(f) ≤ O(log s)(d−1)·k.

Proof. Previously, we showed that if ρ is a restriction and x is a completion, then

f̂ |ρ(S) =
∑
U⊆[n]

f̂(S ∪ U) · χU (x) · 1[S ⊆ ρ−1(⋆) and U ⊆ ρ−1({0, 1})].

Consequently, if we sample ρ ∼ Rp and let x be a uniform random completion, then

E
[
f̂ |ρ(S)

]
=

∑
U⊆[n]

f̂(S ∪ U) · E[χU (x)] · Pr[S ⊆ ρ−1(⋆) and U ⊆ ρ−1({0, 1})] = f̂(S) · p|S|.

Therefore,

∑
|S|=k

|f̂(S)| =
∑
|S|=k

p−k
∣∣∣E [

f̂ |ρ(S)
]∣∣∣ ≤ p−k · E

 ∑
|S|=k

∣∣∣f̂ |ρ(S)∣∣∣


≤ p−k ·
∞∑

D=k

2D · Pr[DTDepth(C|ρ) = D]

≤ p−k ·
∞∑

D=k

(2p ·O(log s)d−1)D.

(The second inequality uses the facts that deg(f) ≤ DTDepth(f) and ∥̂f ∥̂1 ≤ 2DTDepth(f).) If we choose p
small enough (e.g., there is a value p = 1/O(log s)d−1 that works), then the geometric sum is dominated by
its first term: ∑

|S|=k

|f̂(S)| ≤ p−k · 2 · (2p ·O(log s)d−1)k = O(log s)(d−1)·k.

Corollary 1.2. Let d be a constant, for simplicity. If f : {±1}n → {±1} is a size-s AC0
d circuit, then f is

ε-concentrated on a set of 2O((log s)d−1·log log s·log(1/ε)) Fourier coefficients.

1

Proof. We showed previously that f is (ε/2)-concentrated on degree up to some k = O(log s)d−1 · log(1/ε).
Define

F = {S ⊆ [n] : |S| ≤ k and |f̂(S)| ≥ θ}

for a suitable value θ = ε/O(log s)(d−1)·k. Then f is ε-concentrated on F , because∑
|S|≤k,|f̂(S)|<θ

f̂(S)2 ≤ θ ·
∑
|S|≤k

|f̂(S)| ≤ θ ·O(log s)(d−1)·k = ε/2,

provided we choose θ appropriately. Furthermore, the cardinality of F is bounded by

|F| ≤
k∑

D=0

∑
|S|=D |f̂(S)|

θ
≤ O(log s)(d−1)·k/ε = 2O((log s)d−1·log log s·log(1/ε)).

In particular, when d = 2, we get:

Theorem 1.3 (Mansour’s theorem). If f : {±1}n → {±1} is a size-s DNF, then f is ε-concentrated on a
set of sO(log log s·log(1/ε)) Fourier coefficients.

When s = poly(n) and ε is a constant, the bound in Mansour’s theorem is nO(log logn). The Fourier-entropy
conjecture H[Sf] ≤ O(I[f]) would imply that the bound can be improved to polynomial. This special case of
the Fourier-entropy conjecture is known as “Mansour’s conjecture.”

Conjecture 1.4 (Mansour’s conjecture). If f : {±1}n → {±1} is a polynomial-size DNF and ε is a constant,
then f is ε-concentrated on a set of poly(n) Fourier coefficients.

Without proving Mansour’s conjecture, Jackson used different techniques to prove that polynomial-size
DNFs are learnable from queries in polynomial time [Jac97]. We will not prove Jackson’s result in this course.

2 The coin problem

In the coin problem, we are given a coin that lands one way with probability 1/2 + ε and lands the other way
with probability 1/2− ε. The goal is to figure out which side is more likely. The optimal strategy is to toss
the coin a number of times and take the majority vote of the observed outcomes. By the Chernoff bound, if
we make some n = O(1/ε2) tosses, this strategy succeeds with high probability.

In this section, as an application of the Fourier growth bound from the previous section, we will show
that AC0

d circuits do a very poor job of solving the coin problem. (In particular, this implies that small AC0
d

circuits cannot compute the majority function.) We use the following notation.

Definition 2.1. For µ ∈ [−1, 1], let Xµ denote the distribution over {±1}n in which the coordinates are
independent and each has expectation µ.

Theorem 2.2. For every s, d ∈ N, there exists µ = 1/O(log s)d−1 such that if f : {±1}n → {±1} is an AC0
d

circuit of size s, then
|E[f(Xµ)]− E[f(X−µ)]| ≤ 0.01.

2

Proof.

|E[f(Xµ)]− E[f(X0)]| =

∣∣∣∣∣∣
∑
S⊆[n]

f̂(S) · (E[χS(Xµ)]− E[χS(X0)])

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
k=1

∑
|S|=k

f̂(S) · µk

∣∣∣∣∣∣
≤

n∑
k=1

µk ·
∑
|S|=k

|f̂(S)|

≤
∞∑
k=1

(µ ·O(logS)d−1)k

≤
∞∑
k=1

0.001k

≤ 0.005,

provided we choose a small enough value µ = 1/O(log s)d−1.

Corollary 2.3. If f is an AC0
d circuit that computes majority, then f has size at least 2n

Ω(1/d)
.

3 Fourier growth of regular read-once branching programs

In this section, as another example of Fourier growth bounds, we study read-once branching programs
(ROBPs).

Definition 3.1 (Oblivious ROBPs). An oblivious ROBP is a layered digraph with layers V0, V1, . . . , Vn. For
every i ∈ [n], each vertex v ∈ Vi−1 is labeled xπ(i) for some permutation π : [n] → [n]. Furthermore, v has
two outgoing edges labeled 0 and 1 pointing to Vi. There is a designated “start vertex” vstart ∈ V0. Given an
input x ∈ {0, 1}n, we start at vstart, and in step i ∈ [n], we query xπ(i) to determine which outgoing edge
to traverse. We arrive at a vertex v ∈ Vn. There is a designated set of “accept vertices” Vacc ⊆ Vn. We set
f(x) = 1 if v ∈ Vacc and f(x) = 0 otherwise. Thus, the program computes f : {0, 1}n → {0, 1}. The width of
the program is maxi |Vi|.

We say that the program is regular if every vertex in V1 ∪ · · · ∪ Vn has two incoming edges.
If u ∈ Vi, then we write fu→ to denote the ROBP on layers Vi, Vi+1, . . . , Vn in which u is the start vertex.

Similarly, if S ⊆ Vi, then f→S is the ROBP on vertices V0, . . . , Vi in which S is the set of accepting vertices.
We write f→v as a shorthand for f→{v}.

Regular oblivious ROBPs are in many ways very different from AC0 circuits. For example, we proved that
AC0 circuits are concentrated at low degree, whereas in contrast, there is a trivial width-2 regular oblivious
ROBP that computes the parity function, hence regular oblivious ROBPs are not concentrated at low degree.
In fact, one can check that the inner product function can be computed by a regular oblivious ROBP of
width 4. Recall that the inner product function is “maximally non-concentrated:” every Fourier coefficient
has absolute value precisely 2−n/2.

Nevertheless, we will prove that regular oblivious ROBPs satisfy a strong Fourier growth bound, similar
to AC0 circuits. The proof is completely different from the AC0 proof. We begin by bounding the level-1
Fourier coefficients.

Lemma 3.2 (Level-1 Fourier coefficients of regular oblivious ROBPs). Let f : {0, 1}n → {0, 1} be a width-w
regular oblivious ROBP. Then L1,1(f) ≤ E[f] · w.

Proof. Let m be the number of rejecting vertices in the final layer. We will prove a bound of E[f] ·m by
induction on n. The base case n = 0 is trivial, so assume n > 0. Let V0, V1, . . . , Vn be the layers of f .

3

Partition the penultimate layer Vn−1 into three sets, Vn−1 = R ∪ S ∪ T , based on the number of accepting
edges from each vertex:

R = {v ∈ Vn−1 : E[fv→] = 0}
S = {v ∈ Vn−1 : E[fv→] = 1/2}
T = {v ∈ Vn−1 : E[fv→] = 1}.

Because f is regular, we have m = |R|+ 1
2 |S|. Assume without loss of generality that xn is the variable that

the program reads in step n. Then for each i < n, we have

f̂(i) = E
x
[f(x) · (−1)xi] = E

x1,...,xn−1

[
(−1)xi ·

(
f→T (x) +

1

2
f→S(x)

)]
= E

x1,...,xn−1

[
(−1)xi ·

(
1

2
f→T (x) +

1

2
f→S∪T (x)

)]
=

1

2
f̂→T (i) +

1

2
f̂→S∪T (i).

Therefore, by induction, we have

n−1∑
i=1

|f̂(i)| ≤ 1

2
E[f→T] · |R ∪ S|+ 1

2
E[f→S∪T] · |R|

=
1

2
E[f→S] · |R|+ E[f→T] ·m.

Meanwhile, at i = n, we have

|f̂(n)| =
∣∣∣E
x
[f(x) · (−1)xn]

∣∣∣ ≤ E
x1,...,xn−1

[∣∣∣∣Exn

[(−1)xn · f(x)]
∣∣∣∣] =

1

2
E[f→S] ≤

|S| · E[f→S]

4
,

because |S| is even (recall m = |R|+ 1
2 |S|). Combining the bounds, we get

n∑
i=1

|f̂(i)| ≤ E[f→S] ·
(
|R|
2

+
|S|
4

)
+ E[f→T] ·m

= E[f→S] ·m/2 + E[f→T] ·m
= m · (E[f→S]/2 + E[f→T])

= m · E[f].

Now we move on to the higher-order Fourier coefficients. There is a convenient formula for the Fourier
coefficients of an ROBP in terms of the Fourier coefficients of its subprograms. A standard-order ROBP is
an oblivious ROBP that reads the variables in the order x1, . . . , xn.

Lemma 3.3. Let f be a standard-order ROBP with layers V0, V1, . . . , Vn. Let i ∈ {0, 1, . . . , n}, let S ⊆ [i],
and let T ⊆ [n] \ [i]. Then

f̂(S ∪ T) =
∑
v∈Vi

f̂→v(S) · f̂v→(T).

Proof. Sample (x, y) ∈ {0, 1}n uniformly at random, where |x| = i and |y| = n− i. By the Fourier coefficient
formula,

f̂(S ∪ T) = E[f(x, y) · χS∪T (x, y)] = E

∑
v∈Vi

f→v(x)fv→(y)

 · χS(x) · χT (y)


=

∑
v∈Vi

E[f→v(x) · χS(x) · fv→(y) · χT (y)]

=
∑
v∈Vi

f̂→v(S) · f̂v→(T).

4

Our plan is to bound L1,k(f) by induction on k. Indeed, using Lemma 3.3, we can bound the level-(k+1)
Fourier coefficients in terms of the level-k Fourier coefficients as follows:

Lemma 3.4. Let f be a standard-order oblivious ROBP with layers V0, V1, . . . , Vn. Then

L1,k+1(f) ≤
n∑

i=1

∑
v∈Vi−1

L1,k(f→v) · |f̂v→(i)|.

Proof.

L1,k+1(f) =
∑

|S|=k+1

|f̂(S)| =
n∑

i=1

∑
T⊆[i−1],|T |=k

|f̂(T ∪ {i})| =
n∑

i=1

∑
T⊆[i−1],|T |=k

∣∣∣∣∣∣
∑

v∈Vi−1

f̂→v(T) · f̂v→(i)

∣∣∣∣∣∣
≤

n∑
i=1

∑
v∈Vi−1

 ∑
T⊆[i−1],|T |=k

|f̂→v(T)|

 · |f̂v→(i)|

=

n∑
i=1

∑
v∈Vi−1

L1,k(f→v) · |f̂v→(i)|.

In the bound above, the absolute value signs around f̂v→(i) are annoying. Recall that if f : {0, 1}n → {0, 1}
is monotone, and F = (−1)f , then

f̂(i) = −1

2
F̂ (i) = −1

2
Infi[f] ≤ 0,

so we can remove the absolute value signs and say |f̂(i)| = −f̂(i). More generally, the same conclusion holds
if f is locally monotone:1

Definition 3.5 (Local monotonicity). Let f : {0, 1}n → {0, 1}. We say that f is locally monotone if for every
i ∈ [n] and every x ∈ {0, 1}i−1, we have

E
y∈{0,1}n−i

[f(x0y)] ≤ E
y∈{0,1}n−i

[f(x1y)].

Locally monotone functions are not necessarily monotone.2 However, locally monotone function always
have non-positive degree-1 Fourier coefficients, just like monotone functions:

Lemma 3.6. If f : {0, 1}n → {0, 1} is locally monotone, then f̂(i) ≤ 0 for every i ∈ [n].

Proof.

f̂(i) = E
xby∈{0,1}n

[f(xby) · (−1)b] = E
x∈{0,1}i−1

1

2

∑
b∈{0,1}

E
y∈{0,1}n−i

[f(xby) · (−1)b]


= E

x∈{0,1}i−1

[
1

2

(
E

y∈{0,1}n−i
[f(x0y)]− E

y∈{0,1}n−i
[f(x1y)]

)]
≤ 0.

To bound L1,k+1(f), our approach is to reduce to the locally monotone case, via the following construction.

Lemma 3.7 (Local monotonization). Let f : {0, 1}n → {0, 1} be a standard-order ROBP. By only relabeling
the edges of f , it is possible construct another standard-order ROBP f ′ such that for every vertex v, the
function fv→ is locally monotone.

1Warning: This definition is not standard.
2For example, let f(x, y, z) = (x ∧ y) ∨ (x ∧ z).

5

Proof. At each vertex v, swap the labels of the outgoing edges if necessary in order to ensure that
Ex[fv→(1x)] ≥ Ex[fv→(0x)]. The order in which we visit the vertices doesn’t matter, because relabel-
ing edges does not affect acceptance probabilities.

Theorem 3.8. Let f : {0, 1}n → {0, 1} be a width-w regular oblivious ROBP. Then L1,k(f) ≤ wk.

Proof. We will prove that L1,k(f) ≤ wk · E[f] by induction on k. The base case k = 0 is trivial. For the
inductive step, assume without loss of generality that f is a standard-order ROBP. Let f ′ be the local
monotonization from Lemma 3.7. Then

L1,k+1(f) ≤
n∑

i=1

∑
v∈Vi−1

L1,k(f→v) · |f̂v→(i)| (Lemma 3.4)

≤ wk ·
n∑

i=1

∑
v∈Vi−1

E[f→v] · |f̂v→(i)|

= wk ·
n∑

i=1

∣∣∣∣∣∣
∑

v∈Vi−1

f̂ ′
→v(∅) · f̂ ′

v→(i)

∣∣∣∣∣∣
= wk ·

n∑
i=1

|f̂ ′(i)|

≤ wk+1 · E[f ′] (Lemma 3.2)

= wk+1 · E[f].

Corollary 3.9 (Coin problem bound). If f : {±1}n → {0, 1} is a width-w regular oblivious ROBP, then
|E[f(Xµ)]− E[f]| ≤ O(µ · w).

References

[Jac97] Jeffrey C Jackson. “An Efficient Membership-Query Algorithm for Learning DNF with Respect to
the Uniform Distribution”. In: Journal of Computer and System Sciences 55.3 (1997), pp. 414–440.
issn: 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1533.

6

https://doi.org/https://doi.org/10.1006/jcss.1997.1533

	Fourier growth of bounded-depth circuits
	The coin problem
	Fourier growth of regular read-once branching programs

