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1 The Poincaré inequality and the Kahn-Kalai-Linial theorem

Suppose n parties wish to play a game of chance via group chat. However, there might be a few dishonest
parties, so no individual party can be trusted to roll the dice. There is no public source of randomness. What
should they do?

Let’s focus on the case of generating just one shared random bit – the “collective coin flipping” problem.
We will investigate the following approach. Each party i ∈ [n] is instructed to generate a random bit xi ∈ {±1}.
Then, the shared random bit is f(x1, . . . , xn) for some function f : {±1}n → {±1}. Pessimistically, we suppose
that the dishonest parties manage to observe all of the other xi values before choosing their own xi values. Is
there a choice of f that prevents the dishonest parties from significantly biasing the shared random bit?

Let’s begin by supposing there is just one dishonest party i∗ ∈ [n]. In this case, the probability that
the dishonest party has control over the outcome is precisely Infi∗ [f ]. Therefore, we are looking for a
near-balanced function f in which every variable has tiny influence. The majority function is a decent choice;
each variable has influence O(1/

√
n). We can do better using the “tribes” function.

Definition 1.1 (Tribes). Tribesw,s : ({±1}w)s → {±1} is defined by

Tribesw,s(x) =

s∨
i=1

w∧
j=1

xi,j .

Let s = ⌈(ln 2) · 2w⌉ and n = ws. Then

Pr
x
[Tribesw,s(x) = +1] = (1− 2−w)⌈(ln 2)·2w⌉ =

1

2
± o(1),

so Tribesw,s is near-balanced. But, at the same time,

Infi[Tribesw,s] ≤ 2−(w−1) = O

(
log n

n

)
.

Is there a near-balanced Boolean function with even smaller influences? There is an elementary Ω(1/n)
influence lower bound. More precisely, we can prove a lower bound in terms of the variance of the random
variable f(x) when x is chosen uniformly at random, which we denote Var[f ]. The following observation
confirms that Var[f ] is a good way to quantify “how well-balanced” f is.

Lemma 1.2. Let f : {±1}n → {±1} and let δ ∈ [0, 1].

• If −1 + δ ≤ E[f ] ≤ 1− δ, then Var[f ] ≥ δ. For example, if E[f ] = 0, then Var[f ] = 1.

• If Var[f ] ≥ δ, then −1 + δ
2 ≤ E[f ] ≤ 1− δ

2 .

Proof. Let β = 1− |E[f ]|. Then

Var[f ] = E[f2]− E[f ]2 = 1− E[f ]2 = 1− (1− β)2 = β · (2− β) ∈ [β, 2β].

Proposition 1.3 (Poincaré inequality). For any f : {±1}n → {±1}, we have I[f ] ≥ Var[f ], hence there is
some i ∈ [n] such that Infi[f ] ≥ Var[f ]/n.
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Proof. We use a convenient Fourier formula for variance:

Var[f ] = E[f2]− E[f ]2 =
∑
S ̸=∅

f̂(S)2.

Meanwhile, recall that we also have a Fourier formula for total influence:

I[f ] =
n∑

k=0

k ·W k[f ] ≥
n∑

k=1

W k[f ] = Var[f ].

The KKL theorem gives a tight Ω((log n)/n) lower bound.

Theorem 1.4 (Kahn-Kalai-Linial). For every f : {±1}n → {±1}, there is some i ∈ [n] such that Infi[f ] ≥
Ω(Var[f ] · logn

n ).

Proof. Let c ∈ (0, 1) be an appropriate constant. Case 1: Suppose I[f ] > c ·Var[f ] · log n. The best case is at
least as good as the average case, so we are done.

Case 2: Suppose I[f ] ≤ c ·Var[f ] · log n. Intuition: Friedgut’s junta theorem tells us that f is close to a
k-junta where k = 2O(I[f ]) ≤

√
n. If f actually were a k-junta, then we could apply the Poincaré inequality

to conclude that f has a variable with influence at least Var[f ]/k. To deal with the error in Friedgut’s junta
theorem, we’ll need to re-do the proof of the Poincaré inequality. The details follow.

Let ε = Var[f ]/2. By Friedgut’s junta theorem, there is a set J ⊆ [n] of size 2O(I[f ]/ε) ≤
√
n such that f

is ε-concentrated on the subsets of J . Therefore,

max
i

Infi[f ] ≥
1√
n
·
∑
i∈J

Infi[f ] =
1√
n
·
∑
i∈J

∑
S∋i

f̂(S)2 ≥ 1√
n

∑
∅̸=S⊆J

f̂(S)2

=
1√
n

∑
S ̸=∅

f̂(S)2 −
∑
S ̸⊆J

f̂(S)2


=

Var[f ]− ε√
n

=
Var[f ]

2
√
n

.

2 Limitations of resilient functions

Having proven the KKL theorem, let us return to the collective coin flipping problem and consider the
case of multiple dishonest parties. We will use the KKL theorem to prove that if 1% of the parties are
dishonest, then the dishonest parties can control the outcome with probability 1− o(1). We emphasize that
the elementary Poincaré inequality would not suffice for this argument! The log-factor distinction between
Poincaré and KKL might appear minor at first glance, but it has a significant qualitative impact.

2.1 The monotone case

We begin with the simplest case: f is monotone and the dishonest parties wish to cause f to output +1.
Throughout this section, we use the following convenient notation. If J ⊆ [n], x ∈ {0, 1}J , and y ∈ {0, 1}[n]\J ,
then xy denotes the string in {0, 1}n in which we put x in the J coordinates and y in the J coordinates.

Lemma 2.1. Let f : {±1}n → {±1} be a monotone Boolean function such that E[f ] = −1 + δ, where
δ ∈ (0, 2]. For every ε ∈ (0, 1/2), there exists J ⊆ [n] of size |J | = O( n

logn · log( 1
εδ )) such that

E
y∈{0,1}[n]\J

[f(1Jy)] ≥ 1− ε.
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Proof. Let f0 = f . In step j, we select the variable i that maximizes Infi[fj−1]. We set that variable to
+1, giving us a function fj , and we add that variable to J . We continue until we reach a function with
E[fj ] ≥ 1− ε.

Now let us compute how many steps this process takes. We think of each fj as being on n variables (and
just ignoring some of them). By the KKL theorem, we have

E[fj ] = E[fj−1] + 2max
i

Infi[fj−1] ≥ E[fj−1] + Ω

(
Var[fj−1] ·

log n

n

)
.

From here, we divide into two phases: the phase in which the expectation rises from −1 + δ up to 0, and the
phase in which the expectation rises from 0 up to 1− ε.

To analyze the first phase, suppose E[fj−1] < 0, say E[fj−1] = −1 + δj−1. By Lemma 1.2, we have
Var[fj−1] ≥ δj−1, hence

δj ≥ δj−1 ·
(
1 + Ω

(
logn

n

))
.

By induction, this shows that if E[fj−1] < 0, then

δj ≥ δ ·
(
1 + Ω

(
logn

n

))j

.

Let q = q0q1, where q0 = O(n/ log n) and q1 = O(log(1/δ)). Then by Bernoulli’s inequality, we have

δ ·
(
1 + Ω

(
logn

n

))q0q1

≥ δ ·
(
1 + Ω

(
q0 ·

log n

n

))q1

≥ 1.

Thus, the first phase is complete within O( n
logn · log(1/δ)) steps.

Now we analyze the second phase. For simplicity of notation, assume without loss of generality that there
is no first phase, i.e., E[f ] ≥ 0. Write E[fj ] = 1− γj . By Lemma 1.2, we have Var[fj−1] ≥ γj−1, hence

γj ≤ γj−1 ·
(
1− Ω

(
log n

n

))
.

By induction, we get

γj ≤ γ0 ·
(
1− Ω

(
log n

n

))j

≤ 1 · exp
(
−Ω

(
j logn

n

))
≤ ε,

for a suitable j = O( n
logn · log(1/ε)). Thus, the second phase is complete within O( n

logn · log(1/ε)) steps.

2.2 The non-monotone case

Now let’s generalize to Boolean functions that are not necessarily monotone. We use the following concept.

Definition 2.2 (Monotonization). Let f : {±1}n → R and let i ∈ [n]. We define fσi : {±1}n → R by

fσi(x) =

{
max(f(x(i7→+1)), f(x(i7→−1))) if xi = +1

min(f(x(i7→+1)), f(x(i7→−1))) if xi = −1.

If J ⊆ [n], say J = {i1 < i2 < · · · < iq}, then we define

fσJ = fσi1
σi2

···σiq .

Lemma 2.3. Let f : {±1}n → R and J ⊆ [n]. Then E[fσJ ] = E[f ].
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Proof. We prove it by induction on |J |. If |J | = 1, say J = {n} without loss of generality, then

E[fσn ] = E
x1,...,xn−1

[
max(f(x(i7→+1)), f(x(i7→−1))) + min(f(x(i7→+1)), f(x(i7→−1)))

2

]

= E
x1,...,xn−1

[
f(x(i7→+1)) + f(x(i7→−1))

2

]
= E[f ].

If |J | > 1, say J = J0 ∪ {i} where i = max(J), then E[fσJ ] = E[fσJ0
σi ] = E[fσJ0 ] = E[f ].

Lemma 2.4. Let f : {±1}n → R, let J ⊆ [n], and let y ∈ {±1}J . Then fσ[n](1Jy) ≤ fσJσJ (1Jy).

Proof sketch. This holds because maxaminb g(a, b) ≤ minbmaxa g(a, b).

Lemma 2.5. Let f : {±1}n → {±1} with E[f ] = −1+ δ, where δ ∈ [0, 2). For every ε ∈ (0, 1/2), there exists
J ⊆ [n] of size |J | = O( n

logn · log( 1
εδ )) such that

Pr
y∈{±1}[n]\J

[∃x ∈ {±1}J such that f(xy) = 1] ≥ 1− ε.

Proof. The function fσ[n] is monotone and E[fσ[n] ] = −1 + δ by Lemma 2.3. Therefore, by Lemma 2.1, there
exists J of size O( n

logn · log( 1
εδ )) such that

1− 2ε ≤ E
y∈{±1}J

[fσ[n](1Jy)]

≤ E
y∈{±1}J

[fσJσJ (1Jy)] by Lemma 2.4

= E
y∈{±1}J

[fσJ (1Jy)] by Lemma 2.3

= E
y∈{±1}J

[
max

x∈{±1}J
f(xy)

]
by Definition 2.2.

Finally, let us remove the assumption that the dishonest parties wish to cause f to output +1.

Definition 2.6 (Coalitional influence). Let f : {±1}n → {±1} and J ⊆ [n]. We define

ĨnfJ [f ] = Pr
x∈{±1}J

[∃y, y′ ∈ {±1}J such that f(xy) = +1 and f(xy′) = −1].

Theorem 2.7. Let f : {±1}n → {±1}. For every ε ∈ (0, 1), there exists a set J ⊆ [n] of size |J | =
O( n

logn · log( 1
ε·Var[f ])) such that ĨnfJ [f ] ≥ 1− ε.

Proof. Apply Lemma 2.5 to f and 1 − f , and take the union of the two J sets. This works, because by
Lemma 1.2, we have −1 + Var[f ]

2 ≤ E[f ] ≤ 1− Var[f ]
2 .

For example, if f is near-balanced and 1% of the parties are dishonest, then the dishonest parties can
control the outcome with probability 1 − o(1). Indeed, Theorem 2.7 says that for every µ ∈ (0, 1), there
exists J ⊆ [n] such that |J | ≤ µn and

ĨnfJ [f ] ≥ 1− 1

Var[f ] · nΩ(µ)
.

Theorem 2.7 can also be reformulated in terms of the notion of a resilient function.

Definition 2.8 (Resilience). Let f : {±1}n → {±1}. We say that f is (q, ε)-resilient if, for every J ⊆ [n]

with |J | ≤ q, we have ĨnfJ [f ] ≤ ε.

Theorem 2.7 says that if f is a near-balanced (q, 0.99)-resilient function, then q ≤ O(n/ logn). In the
other direction, there are known constructions of resilient functions with q = Ω(n/ log2 n). It is an open
question to close the log-factor gap between these two bounds.
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