
The switching lemma (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 The AC0 criticality theorem

For a Boolean function f , let DTDepth(f) denote the minimum depth of a decision tree that computes f(x)
by making queries to x. Recall that Rp denotes a random restriction with ⋆-probability p. The following
powerful theorem describes the effect of random restrictions on AC0 circuits.

Theorem 1 (AC0 Criticality Theorem [Ros17]). Let C be a size-S AC0
d circuit, let p ∈ (0, 1), and let D ∈ N.

Then
Pr

ρ∼Rp

[DTDepth(C|ρ) ≥ D] ≤ (p ·O(logS)d−1)D.

We will not prove Theorem 1 in this course. Instead, we will prove a famous simpler variant called the
“switching lemma.” Before stating and proving the switching lemma, however, let us illustrate how to use
Theorem 1 to prove a very strong bound on the correlation between AC0 circuits and the parity function.

1.1 Optimal correlation bounds for the parity function

Lemma 1 (Shallow decision trees are uncorrelated with the parity function). If T : {0, 1}n → {0, 1} is a
depth-(n− 1) decision tree, then

Pr
x∈{0,1}n

[T (x) = PARITYn(x)] =
1

2
.

Proof sketch. We can imagine simulating the decision tree and choosing the bits of x “on the fly.” That
is, whenever the tree tries to query some bit xi, we toss a coin to decide what xi is. If the tree makes
fewer than n queries, then when the process finishes, the tree outputs an answer b, and at least one of the
bits of x is still undetermined. Then, with respect to the random choice of that last bit (or bits), we have
Pr[PARITYn(x) = b] = 1

2 .

Theorem 2 (Correlation between AC0 and the parity function). If C : {0, 1}n → {0, 1} is a size-S AC0
d

circuit, then

Pr
x∈{0,1}n

[C(x) = PARITYn(x)] ≤
1

2
+ 2−n/O(logS)d−1

.

In particular, if C computes PARITYn on all inputs, then S ≥ 2Ω(n1/(d−1)).

For example, when d = 3, the size bound is S ≥ 2Ω(
√
n). It is an open problem to prove that there exists

h ∈ NP such that every AC0
3 circuit computing h has size 2ω(

√
n).

Proof. If we sample ρ ∼ Rp, then

Pr
x∈{0,1}n

[C(x) = PARITYn(x)] = E
ρ

[
Pr

x∈{0,1}n
[C|ρ(x) = (PARITYn)|ρ(x)]

]
Now, (PARITYn)|ρ is the parity function on |ρ−1(⋆)| variables (or the negation of that function). Consequently,
by Lemma 1, we have

Pr
x∈{0,1}n

[C(x) = PARITYn(x)] ≤
1

2
+ Pr

ρ
[DTDepth(C|ρ) ≥ |ρ−1(⋆)|]

≤ 1

2
+ Pr

ρ
[DTDepth(C|ρ) ≥ pn/2] + Pr

ρ
[|ρ−1(⋆)| ≤ pn/2].

1

If we choose a suitable value p = 1/O(logS)d−1, then the AC0 Criticality Theorem (Theorem 1) tells us that

the second term is at most 2−n/O(logS)d−1
. Meanwhile, the third term is also at most 2−n/O(logS)d−1

by the
Chernoff bound.1

2 The switching lemma

Recall that a DNF formula is a disjunction of terms, each of which is a conjunction of literals. The width of
the formula is the maximum number of literals in any term.

Lemma 2 (The Switching Lemma). Let C be a width-w DNF formula, let p ∈ (0, 1) and let D ∈ N. Then

Pr
ρ∼Rp

[DTDepth(C|ρ) ≥ D] ≤ O(pw)D.

Several interrelated proofs of the switching lemma are known. The proof we will present is most closely
related to the work of Kelley [Kel21].

We begin by presenting a decision tree CDTρ
2 that computes C|ρ(x) by making queries to x ∈ {0, 1}n.

The algorithm is probably the first thing you would think of: Query all the living variables in the first living
term, and then repeat, until either we find a satisfied term, or else we run out of terms. In more detail, let
C1, . . . , CS be the terms of C, and let Vi ⊆ [n] be the set of variables that appear in Ci. The algorithm CDTρ

is as follows.

1. Initialize π ← ρ. For t = 1, 2, 3, . . . :

(a) If there is a b ∈ {0, 1} such that C|π ≡ b, then halt and output b. Otherwise, find the first
term it ∈ [S] such that Cit |π ̸≡ 0.

(b) Let Qt be the set of living variables in Cit , i.e., Qt = Vit ∩ π−1(⋆).

(c) For every j ∈ Qt, query xj and set πj ← xj .

To analyze CDTρ, we will design a strategy for guessing many points in ρ−1(⋆) given only a uniform
random completion of ρ, i.e., a string y ∈ {0, 1}n that agrees with ρ on ρ−1({0, 1}). On the one hand, y
is independent of ρ−1(⋆), so all such strategies must be trivial. On the other hand, we will show that our
strategy has a good success probability conditioned on CDTρ being deep. This will enable us to conclude
that CDTρ is shallow with high probability.

Let d ∈ N. Our guessing strategy, denoted StarGuesserd, is as follows.

1. Pick x ∈ {0, 1}n uniformly at random.

2. Pick a decomposition of d into positive integers, d = d1 + d2 + · · ·+ dr, uniformly at random.

3. Initialize z ← y. For t = 1, 2, . . . , r:

(a) Find the first term ît ∈ [S] such that Cît
(z) = 1 (or output “fail” if none exists).

(b) Pick a size-dt subset Q̂t ⊆ Vît
uniformly at random (or output “fail” if |Vît

| < dt).

(c) For every j ∈ Q̂t, set zj ← xj .

4. Output Q̂1 ∪ · · · ∪ Q̂r.

1One form of the Chernoff bound says that if X1, . . . , Xn ∈ [0, 1] are independent random variables, and E[X1+ · · ·+Xn] = pn,

then Pr[X1 + · · ·+Xn ≤ (1− ε)pn] ≤ e−ε2pn/2.
2CDT stands for “Canonical Decision Tree.”

2

Claim 1 (Correctness of StarGuesserd). Let Wind denote the event that StarGuesserd successfully outputs d
distinct points, all of which are in ρ−1(⋆). Then

Pr[Wind | Depth(CDTρ) = d] ≥ 4

(8w)d
.

(The probability above is with respect to the random choices of ρ and y and the internal randomness of
StarGuesserd.)

Proof. Fix any choice of ρ such that Depth(CDTρ) = d. With probability at least 2−d+1, the strategy
StarGuesserd picks an input x ∈ {0, 1}n on which CDTρ makes d queries. Fix any such x. Let i1, . . . , ir ∈ [S]
be the terms visited by CDTρ on x, and let Q1, . . . , Qr be the sets of variables queried by CDTρ on x in those
r iterations. With probability 2−d+1, the strategy StarGuesserd chooses dt = |Qt| for every t ∈ [r]. Assume
this occurs.

We can write each term Ci in the form Ci(x) =
∧

j∈Vi
(xj ⊕ bi,j), where bi,j ∈ {0, 1}. With probability

2−d, we choose a completion y of ρ such that for every t ∈ [r] and every j ∈ Qt, we have yj ⊕ bi,j = 1. Fix
any such y.

Now let us consider the random choices of Q̂1, . . . , Q̂r. For each t ∈ [r], let Et be the event that ît = it
and Q̂t = Qt. Suppose E1, . . . , Et−1 all occur, and consider the beginning of iteration t. At this point, z is
a completion of ρ that agrees with x on Q1 ∪ · · · ∪Qt−1. Therefore, based on the way CDTρ(x) chooses it,
we see that C1(z) = C2(z) = · · · = Cit−1(z) = 0, and that zj ⊕ bit,j = 1 for every j ∈ Vit \Qt. Furthermore,
our assumption on y implies that zj ⊕ bit,j = 1 for every j ∈ Qt as well. Therefore, Cit(z) = 1, hence

ît = it. Consequently, Pr[Et | E1, . . . , Et−1] = 1/
(|Vit |

dt

)
≥ 1/wdt , hence Pr[E1, . . . , Er] ≥ 1/wd1+···+dr = 1/wd.

Finally, note that if E1, . . . , Er occur, then StarGuesserd outputs Q1 ∪ · · · ∪Qr, which is indeed a size-d subset
of ρ−1(⋆).

Proof of the Switching Lemma (Lemma 2). For each d ∈ N, we have

4

(8w)d
≤ Pr[Wind | Depth(CDTρ) = d] ≤ Pr[Wind]

Pr[Depth(CDTρ) = d]
≤ pd

Pr[Depth(CDTρ) = d]
,

where the last step uses the fact that the output of StarGuesserd is independent of ρ−1(⋆). (We could choose
y ∈ {0, 1}n uniformly at random first, then run StarGuesserd, and then choose ρ−1(⋆) last.) Rearranging, we
get Pr[Depth(CDTρ) = d] ≤ 0.25 · (8wp)d. We may assume without loss of generality that 16pw ≤ 1, because
otherwise the switching lemma is trivial. Therefore,

Pr[DTDepth(C|ρ) ≥ D] ≤
∞∑

d=D

Pr[Depth(CDTρ) = d] ≤ 1

4
·

∞∑
d=D

(8pw)d ≤ 0.5 · (8pw)D.

References

[Kel21] Zander Kelley. “An improved derandomization of the switching lemma”. In: Proceedings of the
53rd Annual Symposium on Theory of Computing (STOC). 2021, 272–282. doi: 10.1145/3406325.
3451054.

[Ros17] Benjamin Rossman. “An entropy proof of the switching lemma and tight bounds on the decision-tree
size of AC0”. 2017. url: https://users.cs.duke.edu/~br148/logsize.pdf.

3

https://doi.org/10.1145/3406325.3451054
https://doi.org/10.1145/3406325.3451054
https://users.cs.duke.edu/~br148/logsize.pdf

	The AC0 criticality theorem
	Optimal correlation bounds for the parity function

	The switching lemma

