The switching lemma (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago Instructor: William Hoza (williamhoza@uchicago.edu)

1 The AC^0 criticality theorem

For a Boolean function f, let $\text{DTDepth}(f)$ denote the minimum depth of a decision tree that computes $f(x)$ by making queries to x. Recall that R_p denotes a random restriction with \star -probability p. The following powerful theorem describes the effect of random restrictions on AC^0 circuits.

Theorem 1 (AC⁰ Criticality Theorem [\[Ros17\]](#page-2-0)). Let C be a size-S AC_d^0 circuit, let $p \in (0,1)$, and let $D \in \mathbb{N}$. Then

$$
\Pr_{\rho \sim R_p}[\textsf{DTDepth}(C|_{\rho}) \ge D] \le (p \cdot O(\log S)^{d-1})^D.
$$

We will not prove [Theorem 1](#page-0-0) in this course. Instead, we will prove a famous simpler variant called the "switching lemma." Before stating and proving the switching lemma, however, let us illustrate how to use [Theorem 1](#page-0-0) to prove a very strong bound on the correlation between AC^0 circuits and the parity function.

1.1 Optimal correlation bounds for the parity function

Lemma 1 (Shallow decision trees are uncorrelated with the parity function). If $T: \{0,1\}^n \to \{0,1\}$ is a $depth-(n-1)$ decision tree, then

$$
\Pr_{x \in \{0,1\}^n} [T(x) = \text{PARITY}_n(x)] = \frac{1}{2}.
$$

Proof sketch. We can imagine simulating the decision tree and choosing the bits of x "on the fly." That is, whenever the tree tries to query some bit x_i , we toss a coin to decide what x_i is. If the tree makes fewer than n queries, then when the process finishes, the tree outputs an answer b , and at least one of the bits of x is still undetermined. Then, with respect to the random choice of that last bit (or bits), we have $Pr[PARITY_n(x) = b] = \frac{1}{2}.$ \Box

Theorem 2 (Correlation between AC^0 and the parity function). If $C: \{0,1\}^n \to \{0,1\}$ is a size-S AC_d^0 circuit, then

$$
\Pr_{x \in \{0,1\}^n} [C(x) = \text{PARITY}_n(x)] \le \frac{1}{2} + 2^{-n/O(\log S)^{d-1}}.
$$

In particular, if C computes PARITY_n on all inputs, then $S \geq 2^{\Omega(n^{1/(d-1)})}$.

For example, when $d=3$, the size bound is $S \geq 2^{\Omega(\sqrt{n})}$. It is an open problem to prove that there exists For example, when $a = 3$, the size bound is $b \ge 2$. It is $h \in \text{NP}$ such that every AC_3^0 circuit computing h has size $2^{\omega(\sqrt{n})}$.

Proof. If we sample $\rho \sim R_p$, then

$$
\Pr_{x \in \{0,1\}^n} [C(x) = \text{PARITY}_n(x)] = \mathbb{E} \left[\Pr_{x \in \{0,1\}^n} [C|_{\rho}(x) = (\text{PARITY}_n)|_{\rho}(x)] \right]
$$

Now, $(\text{PARITY}_n)|_\rho$ is the parity function on $|\rho^{-1}(x)|$ variables (or the negation of that function). Consequently, by [Lemma 1,](#page-0-1) we have

$$
\Pr_{x \in \{0,1\}^n} [C(x) = \text{PARITY}_n(x)] \le \frac{1}{2} + \Pr_{\rho} [\text{DTDepth}(C|_{\rho}) \ge |\rho^{-1}(\star)|]
$$

$$
\le \frac{1}{2} + \Pr_{\rho} [\text{DTDepth}(C|_{\rho}) \ge pn/2] + \Pr_{\rho} [|\rho^{-1}(\star)| \le pn/2].
$$

If we choose a suitable value $p = 1/O(\log S)^{d-1}$, then the AC⁰ Criticality Theorem [\(Theorem 1\)](#page-0-0) tells us that the second term is at most $2^{-n/O(\log S)^{d-1}}$. Meanwhile, the third term is also at most $2^{-n/O(\log S)^{d-1}}$ by the Chernoff bound.^{[1](#page-1-0)} \Box

2 The switching lemma

Recall that a DNF formula is a disjunction of terms, each of which is a conjunction of literals. The width of the formula is the maximum number of literals in any term.

Lemma 2 (The Switching Lemma). Let C be a width-w DNF formula, let $p \in (0,1)$ and let $D \in \mathbb{N}$. Then

$$
\Pr_{\rho \sim R_p}[\mathsf{DTDeph}(C|_{\rho}) \ge D] \le O(pw)^D.
$$

Several interrelated proofs of the switching lemma are known. The proof we will present is most closely related to the work of Kelley [\[Kel21\]](#page-2-1).

We begin by presenting a decision tree CDT_{ρ}^2 CDT_{ρ}^2 that computes $C|_{\rho}(x)$ by making queries to $x \in \{0,1\}^n$. The algorithm is probably the first thing you would think of: Query all the living variables in the first living term, and then repeat, until either we find a satisfied term, or else we run out of terms. In more detail, let C_1,\ldots,C_S be the terms of C, and let $V_i\subseteq [n]$ be the set of variables that appear in C_i . The algorithm CDT_{ρ} is as follows.

- 1. Initialize $\pi \leftarrow \rho$. For $t = 1, 2, 3, \ldots$:
	- (a) If there is a $b \in \{0,1\}$ such that $C|_{\pi} \equiv b$, then halt and output b. Otherwise, find the first term $i_t \in [S]$ such that $C_{i_t}|_{\pi} \neq 0$.
	- (b) Let Q_t be the set of living variables in C_{i_t} , i.e., $Q_t = V_{i_t} \cap \pi^{-1}(\star)$.
	- (c) For every $j \in Q_t$, query x_j and set $\pi_j \leftarrow x_j$.

To analyze CDT_ρ , we will design a strategy for guessing many points in $\rho^{-1}(x)$ given only a uniform random completion of ρ , i.e., a string $y \in \{0,1\}^n$ that agrees with ρ on $\rho^{-1}(\{0,1\})$. On the one hand, y is independent of $\rho^{-1}(\star)$, so all such strategies must be trivial. On the other hand, we will show that our strategy has a good success probability conditioned on CDT_{ρ} being deep. This will enable us to conclude that CDT_ρ is shallow with high probability.

Let $d \in \mathbb{N}$. Our guessing strategy, denoted StarGuesser_d, is as follows.

- 1. Pick $x \in \{0,1\}^n$ uniformly at random.
- 2. Pick a decomposition of d into positive integers, $d = d_1 + d_2 + \cdots + d_r$, uniformly at random.
- 3. Initialize $z \leftarrow y$. For $t = 1, 2, \ldots, r$:
	- (a) Find the first term $i_t \in [S]$ such that $C_{\hat{i}_t}(z) = 1$ (or output "fail" if none exists).
	- (b) Pick a size- d_t subset $Q_t \subseteq V_{\hat{i}_t}$ uniformly at random (or output "fail" if $|V_{\hat{i}_t}| < d_t$).
	- (c) For every $j \in Q_t$, set $z_j \leftarrow x_j$.
- 4. Output $\widehat{Q}_1 \cup \cdots \cup \widehat{Q}_r$.

¹One form of the Chernoff bound says that if $X_1, \ldots, X_n \in [0,1]$ are independent random variables, and $\mathbb{E}[X_1 + \cdots + X_n] = pn$, then $Pr[X_1 + \cdots + X_n \leq (1 - \varepsilon)pn] \leq e^{-\varepsilon^2 pn/2}$.

²CDT stands for "Canonical Decision Tree."

Claim 1 (Correctness of StarGuesser_d). Let Win_d denote the event that StarGuesser_d successfully outputs d distinct points, all of which are in $\rho^{-1}(\star)$. Then

$$
\Pr[\mathsf{Win}_d \mid \mathsf{Depth}(\mathsf{CDT}_\rho) = d] \ge \frac{4}{(8w)^d}.
$$

(The probability above is with respect to the random choices of ρ and y and the internal randomness of $StrategyS$ uesser $_d$.)

Proof. Fix any choice of ρ such that Depth(CDT_{o}) = d. With probability at least 2^{-d+1} , the strategy StarGuesser_d picks an input $x \in \{0,1\}^n$ on which CDT_ρ makes d queries. Fix any such x. Let $i_1,\ldots,i_r \in [S]$ be the terms visited by CDT_ρ on x, and let Q_1, \ldots, Q_r be the sets of variables queried by CDT_ρ on x in those r iterations. With probability 2^{-d+1} , the strategy $\textsf{StarGuesser}_d$ chooses $d_t = |Q_t|$ for every $t \in [r]$. Assume this occurs.

We can write each term C_i in the form $C_i(x) = \bigwedge_{j \in V_i} (x_j \oplus b_{i,j})$, where $b_{i,j} \in \{0,1\}$. With probability 2^{-d} , we choose a completion y of ρ such that for every $t \in [r]$ and every $j \in Q_t$, we have $y_j \oplus b_{i,j} = 1$. Fix any such y.

Now let us consider the random choices of $\widehat{Q}_1, \ldots, \widehat{Q}_r$. For each $t \in [r]$, let E_t be the event that $\widehat{i}_t = i_t$ and $Q_t = Q_t$. Suppose E_1, \ldots, E_{t-1} all occur, and consider the beginning of iteration t. At this point, z is a completion of ρ that agrees with x on $Q_1 \cup \cdots \cup Q_{t-1}$. Therefore, based on the way CDT_{ρ}(x) chooses i_t , we see that $C_1(z) = C_2(z) = \cdots = C_{i_t-1}(z) = 0$, and that $z_j \oplus b_{i_t,j} = 1$ for every $j \in V_{i_t} \setminus Q_t$. Furthermore, our assumption on y implies that $z_j \oplus b_{i_t,j} = 1$ for every $j \in Q_t$ as well. Therefore, $C_{i_t}(z) = 1$, hence $\widehat{i}_t = i_t$. Consequently, $Pr[E_t | E_1, \ldots, E_{t-1}] = 1/(\binom{|V_{i_t}|}{d_t})$ $|W_{d_t}| \geq 1/w^{d_t}$, hence $\Pr[E_1, \ldots, E_r] \geq 1/w^{d_1 + \cdots + d_r} = 1/w^d$. Finally, note that if E_1, \ldots, E_r occur, then StarGuesser_d outputs $Q_1 \cup \cdots \cup Q_r$, which is indeed a size-d subset of $\rho^{-1}(\star)$. \Box

Proof of the Switching Lemma [\(Lemma 2\)](#page-1-2). For each $d \in \mathbb{N}$, we have

$$
\frac{4}{(8w)^d} \leq \Pr[\mathsf{Win}_d \mid \mathsf{Depth}(\mathsf{CDT}_\rho) = d] \leq \frac{\Pr[\mathsf{Win}_d]}{\Pr[\mathsf{Depth}(\mathsf{CDT}_\rho) = d]} \leq \frac{p^d}{\Pr[\mathsf{Depth}(\mathsf{CDT}_\rho) = d]},
$$

where the last step uses the fact that the output of $StarGuesser_d$ is independent of $\rho^{-1}(\star)$. (We could choose $y \in \{0,1\}^n$ uniformly at random first, then run StarGuesser_d, and then choose $\rho^{-1}(\star)$ last.) Rearranging, we get Pr[Depth(CDT_p) = d] $\leq 0.25 \cdot (8wp)^d$. We may assume without loss of generality that $16pw \leq 1$, because otherwise the switching lemma is trivial. Therefore,

$$
\Pr[\mathsf{D}\mathsf{TDepth}(C|_\rho)\ge D]\le\sum_{d=D}^\infty\Pr[\mathsf{Depth}(\mathsf{CDT}_\rho)=d]\le\frac{1}{4}\cdot\sum_{d=D}^\infty(8pw)^d\le0.5\cdot(8pw)^D. \qquad \qquad \Box
$$

References

- [Kel21] Zander Kelley. "An improved derandomization of the switching lemma". In: Proceedings of the 53rd Annual Symposium on Theory of Computing (STOC). 2021, 272–282. doi: [10.1145/3406325.](https://doi.org/10.1145/3406325.3451054) [3451054](https://doi.org/10.1145/3406325.3451054).
- [Ros17] Benjamin Rossman. "An entropy proof of the switching lemma and tight bounds on the decision-tree size of AC^{0} ". 2017. URL: <https://users.cs.duke.edu/~br148/logsize.pdf>.