The switching lemma (lecture notes)
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1 The AC’ criticality theorem

For a Boolean function f, let DTDepth(f) denote the minimum depth of a decision tree that computes f(z)
by making queries to z. Recall that R, denotes a random restriction with x-probability p. The following
powerful theorem describes the effect of random restrictions on ACY circuits.

Theorem 1 (ACY Criticality Theorem [Ros17]). Let C be a size-S ACY circuit, let p € (0,1), and let D € N.
Then
Pr [DTDepth(C|,) > D] < (p- O(log §)*™)".
p~tp
We will not prove Theorem 1 in this course. Instead, we will prove a famous simpler variant called the
“switching lemma.” Before stating and proving the switching lemma, however, let us illustrate how to use
Theorem 1 to prove a very strong bound on the correlation between AC? circuits and the parity function.

1.1 Optimal correlation bounds for the parity function

Lemma 1 (Shallow decision trees are uncorrelated with the parity function). If T: {0,1}" — {0,1} is a
depth-(n — 1) decision tree, then

1
xe{Pﬂﬂ}n[T(w) = PARITY,(x)] = o
Proof sketch. We can imagine simulating the decision tree and choosing the bits of = “on the fly.” That
is, whenever the tree tries to query some bit x;, we toss a coin to decide what x; is. If the tree makes
fewer than n queries, then when the process finishes, the tree outputs an answer b, and at least one of the
bits of z is still undetermined. Then, with respect to the random choice of that last bit (or bits), we have
Pr[PARITY ,(z) = b] = % O

Theorem 2 (Correlation between AC? and the parity function). If C: {0,1}" — {0,1} is a size-S ACY
circuit, then

1 d—1
Pr [C(x) = PARITY,(2)] < = 4 27 /O(log5)"™"
e {oﬂ}n[ () (z)] < 5 T

In particular, if C computes PARITY,, on all inputs, then S > 9 (nt/ (@71

For example, when d = 3, the size bound is S > 2%V™)_ Tt is an open problem to prove that there exists
h € NP such that every Acg circuit computing h has size ow(vn),

Proof. 1If we sample p ~ R, then

Pr [C(x)=PARITY, =E| Pr [C = (PARITY,,
P [C) @] =E| Pt [Cl() = (PARITY,)|,(z)]
Now, (PARITY )|, is the parity function on |p~!(x)| variables (or the negation of that function). Consequently,
by Lemma 1, we have

Pr [C(z) =PARITY,(x)] <

Pr|DTDepth > [pL
retonn + Pr[DTDepth(C,) = o~ (+)]

N = N

+ Pr[DTDepth(Cl,) = pn/2] + Prllp™ ()| < pn/2)



If we choose a suitable value p = 1/O(log S)*~!, then the AC® Criticality Theorem (Theorem 1) tells us that
the second term is at most 2-/C1e )" Meanwhile, the third term is also at most 2-/Ce )" Ky the
Chernoff bound.! ]

2 The switching lemma

Recall that a DNF formula is a disjunction of terms, each of which is a conjunction of literals. The width of
the formula is the maximum number of literals in any term.

Lemma 2 (The Switching Lemma). Let C' be a width-w DNF formula, let p € (0,1) and let D € N. Then

pP}% [DTDepth(C|,) > D] < O(pw)”.
~1ip

Several interrelated proofs of the switching lemma are known. The proof we will present is most closely
related to the work of Kelley [Kel21].

We begin by presenting a decision tree CDTP2 that computes C|,(x) by making queries to x € {0,1}".
The algorithm is probably the first thing you would think of: Query all the living variables in the first living
term, and then repeat, until either we find a satisfied term, or else we run out of terms. In more detail, let
C1,...,Cg be the terms of C', and let V; C [n] be the set of variables that appear in C;. The algorithm CDT,
is as follows.

1. Initialize m < p. For t =1,2,3,...:
(a) If there is a b € {0, 1} such that C|; = b, then halt and output b. Otherwise, find the first
term 4; € [S] such that Cj, | # 0.
(b) Let Q¢ be the set of living variables in Cj,, i.e., Q = Vi, N7 ().

(c) For every j € Q, query z; and set m; — z;.

To analyze CDT,, we will design a strategy for guessing many points in p~1(x) given only a uniform
random completion of p, i.e., a string y € {0,1}" that agrees with p on p~1({0,1}). On the one hand, y
is independent of p~1(x), so all such strategies must be trivial. On the other hand, we will show that our
strategy has a good success probability conditioned on CDT, being deep. This will enable us to conclude
that CDT, is shallow with high probability.

Let d € N. Our guessing strategy, denoted StarGuessery, is as follows.

1. Pick « € {0,1}" uniformly at random.
2. Pick a decomposition of d into positive integers, d = d; + do + - - - + d,-, uniformly at random.
3. Initialize z <—y. Fort =1,2,...,r:

(a) Find the first term i; € [S] such that C;,(z) =1 (or output “fail” if none exists).

(b) Pick a size-d; subset Q; C V. uniformly at random (or output “fail” if [V; | < dy).

(c) For every j € Q, set 2j < xj.

4. Output Qq U -+ UQ,.

!One form of the Chernoff bound says that if X1,..., X, € [0, 1] are independent random variables, and E[X1 +- - -+ X,,] = pn,
then Pr[X; +--- 4+ X, < (1 —¢)pn] < e=Pn/2,
2CDT stands for “Canonical Decision Tree.”



Claim 1 (Correctness of StarGuessery). Let Wing denote the event that StarGuessery successfully outputs d
distinct points, all of which are in p~1(x). Then

Pr[Wing | Depth(CDT,) =d] >

(Bw)®

(The probability above is with respect to the random choices of p and y and the internal randomness of
StarGuesser,.)

Proof. Fix any choice of p such that Depth(CDT,) = d. With probability at least 274+1 the strategy
StarGuesser, picks an input z € {0,1}" on which CDT, makes d queries. Fix any such x. Let i1,...,i, € [S]
be the terms visited by CDT, on z, and let Q1,...,Q, be the sets of variables queried by CDT, on x in those
r iterations. With probablhty 2 d+1 , the strategy StarGuesser; chooses d; = |Q;| for every ¢ € [r]. Assume
this occurs.

We can write each term C; in the form C;(x) = A;cy; (z; @ b;j), where b;; € {0,1}. With probability
27 we choose a completion y of p such that for every t € [r] and every j € Q;, we have y; ©b;; = 1. Fix
any such y.

Now let us consider the random choices of @1, R @T. For each t € [r], let E; be the event that /i\t =
and @t = @Q¢. Suppose E1,..., E;_1 all occur, and consider the beginning of iteration ¢. At this point, z is
a completion of p that agrees with  on Q1 U---U Q;—1. Therefore, based on the way CDT,(x) chooses iy,
we see that C1(z) = Ca(2) = --- = Cj,—1(2) = 0, and that z; ® b;, ; = 1 for every j € V;, \ Q;. Furthermore,
our assumption on y implies that z; @ b;, ; = 1 for every j € Q; as well. Therefore, C;,(2) = 1, hence
iy = iy. Consequently, Pr[E; | By, ..., Ey_1] = 1/(| ‘) > 1/w?, hence Pr[El, oy By > 1 jwdhittde = 1
Finally, note that if Eq, ..., E, occur, then StarGuesserd outputs Q1 U---UQ,, which is indeed a size-d subset
of p~1(x). O

Proof of the Switching Lemma (Lemma 2). For each d € N, we have

4 _ Pr[Wing] p?
< Pr[Wing | Depth(CDT,) = d <
(Bu)d = PrIWing | Depth(CDT,) = d] < Pr[Depth(CDT,) = d] — Pr[Depth(CDT,) =d]’

where the last step uses the fact that the output of StarGuessery is independent of p~*(x). (We could choose
y € {0,1}™ uniformly at random first, then run StarGuessery, and then choose p~!(x) last.) Rearranging, we
get Pr[Depth(CDT,) =d] <0.25- (8wp)?. We may assume without loss of generality that 16pw < 1, because
otherwise the switching lemma is trivial. Therefore,

Pr[DTDepth(C|,) > Z Pr[Depth(CDT,) = d] <
d=D

1 oo
<7 Z 8pw)? < 0.5 - (8pw)P. O
d=D
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