The switching lemma (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago Instructor: William Hoza (williamhoza@uchicago.edu)

1 The AC⁰ criticality theorem

For a Boolean function f, let DTDepth(f) denote the minimum depth of a decision tree that computes f(x) by making queries to x. Recall that R_p denotes a random restriction with \star -probability p. The following powerful theorem describes the effect of random restrictions on AC^0 circuits.

Theorem 1 (AC⁰ Criticality Theorem [Ros17]). Let C be a size-S AC⁰_d circuit, let $p \in (0,1)$, and let $D \in \mathbb{N}$. Then

$$\Pr_{\rho \sim R_p}[\mathsf{DTDepth}(C|_{\rho}) \ge D] \le (p \cdot O(\log S)^{d-1})^D$$

We will not prove Theorem 1 in this course. Instead, we will prove a famous simpler variant called the "switching lemma." Before stating and proving the switching lemma, however, let us illustrate how to use Theorem 1 to prove a very strong bound on the correlation between AC^0 circuits and the parity function.

1.1 Optimal correlation bounds for the parity function

Lemma 1 (Shallow decision trees are uncorrelated with the parity function). If $T: \{0,1\}^n \to \{0,1\}$ is a depth-(n-1) decision tree, then

$$\Pr_{x \in \{0,1\}^n}[T(x) = \mathsf{PARITY}_n(x)] = \frac{1}{2}.$$

Proof sketch. We can imagine simulating the decision tree and choosing the bits of x "on the fly." That is, whenever the tree tries to query some bit x_i , we toss a coin to decide what x_i is. If the tree makes fewer than n queries, then when the process finishes, the tree outputs an answer b, and at least one of the bits of x is still undetermined. Then, with respect to the random choice of that last bit (or bits), we have $\Pr[\mathsf{PARITY}_n(x) = b] = \frac{1}{2}$.

Theorem 2 (Correlation between AC^0 and the parity function). If $C: \{0,1\}^n \to \{0,1\}$ is a size-S AC_d^0 circuit, then

$$\Pr_{x \in \{0,1\}^n} [C(x) = \mathsf{PARITY}_n(x)] \le \frac{1}{2} + 2^{-n/O(\log S)^{d-1}}.$$

In particular, if C computes PARITY_n on all inputs, then $S \ge 2^{\Omega(n^{1/(d-1)})}$.

ı

For example, when d = 3, the size bound is $S \ge 2^{\Omega(\sqrt{n})}$. It is an open problem to prove that there exists $h \in \mathsf{NP}$ such that every AC_3^0 circuit computing h has size $2^{\omega(\sqrt{n})}$.

Proof. If we sample $\rho \sim R_p$, then

$$\Pr_{x \in \{0,1\}^n}[C(x) = \mathsf{PARITY}_n(x)] = \mathbb{E}\left[\Pr_{x \in \{0,1\}^n}[C|_\rho(x) = (\mathsf{PARITY}_n)|_\rho(x)]\right]$$

Now, $(\mathsf{PARITY}_n)|_{\rho}$ is the parity function on $|\rho^{-1}(\star)|$ variables (or the negation of that function). Consequently, by Lemma 1, we have

$$\begin{split} \Pr_{x \in \{0,1\}^n}[C(x) &= \mathsf{PARITY}_n(x)] \leq \frac{1}{2} + \Pr_{\rho}[\mathsf{DTDepth}(C|_{\rho}) \geq |\rho^{-1}(\star)|] \\ &\leq \frac{1}{2} + \Pr_{\rho}[\mathsf{DTDepth}(C|_{\rho}) \geq pn/2] + \Pr_{\rho}[|\rho^{-1}(\star)| \leq pn/2]. \end{split}$$

If we choose a suitable value $p = 1/O(\log S)^{d-1}$, then the AC⁰ Criticality Theorem (Theorem 1) tells us that the second term is at most $2^{-n/O(\log S)^{d-1}}$. Meanwhile, the third term is also at most $2^{-n/O(\log S)^{d-1}}$ by the Chernoff bound.¹

2 The switching lemma

Recall that a DNF formula is a disjunction of *terms*, each of which is a conjunction of literals. The *width* of the formula is the maximum number of literals in any term.

Lemma 2 (The Switching Lemma). Let C be a width-w DNF formula, let $p \in (0,1)$ and let $D \in \mathbb{N}$. Then

$$\Pr_{\rho \sim R_p} [\mathsf{DTDepth}(C|_{\rho}) \ge D] \le O(pw)^D.$$

Several interrelated proofs of the switching lemma are known. The proof we will present is most closely related to the work of Kelley [Kel21].

We begin by presenting a decision tree CDT_{ρ}^2 that computes $C|_{\rho}(x)$ by making queries to $x \in \{0, 1\}^n$. The algorithm is probably the first thing you would think of: Query all the living variables in the first living term, and then repeat, until either we find a satisfied term, or else we run out of terms. In more detail, let C_1, \ldots, C_S be the terms of C, and let $V_i \subseteq [n]$ be the set of variables that appear in C_i . The algorithm CDT_{ρ} is as follows.

- 1. Initialize $\pi \leftarrow \rho$. For $t = 1, 2, 3, \ldots$:
 - (a) If there is a $b \in \{0, 1\}$ such that $C|_{\pi} \equiv b$, then halt and output b. Otherwise, find the first term $i_t \in [S]$ such that $C_{i_t}|_{\pi} \neq 0$.
 - (b) Let Q_t be the set of living variables in C_{i_t} , i.e., $Q_t = V_{i_t} \cap \pi^{-1}(\star)$.
 - (c) For every $j \in Q_t$, query x_j and set $\pi_j \leftarrow x_j$.

To analyze CDT_{ρ} , we will design a strategy for guessing many points in $\rho^{-1}(\star)$ given only a uniform random *completion* of ρ , i.e., a string $y \in \{0,1\}^n$ that agrees with ρ on $\rho^{-1}(\{0,1\})$. On the one hand, yis independent of $\rho^{-1}(\star)$, so all such strategies must be trivial. On the other hand, we will show that our strategy has a good success probability conditioned on CDT_{ρ} being deep. This will enable us to conclude that CDT_{ρ} is shallow with high probability.

Let $d \in \mathbb{N}$. Our guessing strategy, denoted StarGuesser_d, is as follows.

- 1. Pick $x \in \{0,1\}^n$ uniformly at random.
- 2. Pick a decomposition of d into positive integers, $d = d_1 + d_2 + \cdots + d_r$, uniformly at random.
- 3. Initialize $z \leftarrow y$. For $t = 1, 2, \ldots, r$:
 - (a) Find the first term $\hat{i}_t \in [S]$ such that $C_{\hat{i}_t}(z) = 1$ (or output "fail" if none exists).
 - (b) Pick a size- d_t subset $\widehat{Q}_t \subseteq V_{\widehat{i}_t}$ uniformly at random (or output "fail" if $|V_{\widehat{i}_t}| < d_t$).
 - (c) For every $j \in \widehat{Q}_t$, set $z_j \leftarrow x_j$.
- 4. Output $\hat{Q}_1 \cup \cdots \cup \hat{Q}_r$.

²CDT stands for "Canonical Decision Tree."

¹One form of the Chernoff bound says that if $X_1, \ldots, X_n \in [0, 1]$ are independent random variables, and $\mathbb{E}[X_1 + \cdots + X_n] = pn$, then $\Pr[X_1 + \cdots + X_n \leq (1 - \varepsilon)pn] \leq e^{-\varepsilon^2 pn/2}$.

Claim 1 (Correctness of StarGuesser_d). Let Win_d denote the event that StarGuesser_d successfully outputs d distinct points, all of which are in $\rho^{-1}(\star)$. Then

$$\Pr[\mathsf{Win}_d \mid \mathsf{Depth}(\mathsf{CDT}_\rho) = d] \ge \frac{4}{(8w)^d}.$$

(The probability above is with respect to the random choices of ρ and y and the internal randomness of StarGuesser_d.)

Proof. Fix any choice of ρ such that $\mathsf{Depth}(\mathsf{CDT}_{\rho}) = d$. With probability at least 2^{-d+1} , the strategy $\mathsf{StarGuesser}_d$ picks an input $x \in \{0, 1\}^n$ on which CDT_{ρ} makes d queries. Fix any such x. Let $i_1, \ldots, i_r \in [S]$ be the terms visited by CDT_{ρ} on x, and let Q_1, \ldots, Q_r be the sets of variables queried by CDT_{ρ} on x in those r iterations. With probability 2^{-d+1} , the strategy $\mathsf{StarGuesser}_d$ chooses $d_t = |Q_t|$ for every $t \in [r]$. Assume this occurs.

We can write each term C_i in the form $C_i(x) = \bigwedge_{j \in V_i} (x_j \oplus b_{i,j})$, where $b_{i,j} \in \{0,1\}$. With probability 2^{-d} , we choose a completion y of ρ such that for every $t \in [r]$ and every $j \in Q_t$, we have $y_j \oplus b_{i,j} = 1$. Fix any such y.

Now let us consider the random choices of $\widehat{Q}_1, \ldots, \widehat{Q}_r$. For each $t \in [r]$, let E_t be the event that $\widehat{i}_t = i_t$ and $\widehat{Q}_t = Q_t$. Suppose E_1, \ldots, E_{t-1} all occur, and consider the beginning of iteration t. At this point, z is a completion of ρ that agrees with x on $Q_1 \cup \cdots \cup Q_{t-1}$. Therefore, based on the way $\mathsf{CDT}_\rho(x)$ chooses i_t , we see that $C_1(z) = C_2(z) = \cdots = C_{i_t-1}(z) = 0$, and that $z_j \oplus b_{i_t,j} = 1$ for every $j \in V_{i_t} \setminus Q_t$. Furthermore, our assumption on y implies that $z_j \oplus b_{i_t,j} = 1$ for every $j \in Q_t$ as well. Therefore, $C_{i_t}(z) = 1$, hence $\widehat{i}_t = i_t$. Consequently, $\Pr[E_t \mid E_1, \ldots, E_{t-1}] = 1/{\binom{|V_{i_t}|}{d_t}} \ge 1/w^{d_t}$, hence $\Pr[E_1, \ldots, E_r] \ge 1/w^{d_1+\cdots+d_r} = 1/w^d$. Finally, note that if E_1, \ldots, E_r occur, then $\mathsf{StarGuesser}_d$ outputs $Q_1 \cup \cdots \cup Q_r$, which is indeed a size-d subset of $\rho^{-1}(\star)$.

Proof of the Switching Lemma (Lemma 2). For each $d \in \mathbb{N}$, we have

$$\frac{4}{(8w)^d} \leq \Pr[\mathsf{Win}_d \mid \mathsf{Depth}(\mathsf{CDT}_\rho) = d] \leq \frac{\Pr[\mathsf{Win}_d]}{\Pr[\mathsf{Depth}(\mathsf{CDT}_\rho) = d]} \leq \frac{p^d}{\Pr[\mathsf{Depth}(\mathsf{CDT}_\rho) = d]},$$

where the last step uses the fact that the output of $\mathsf{StarGuesser}_d$ is independent of $\rho^{-1}(\star)$. (We could choose $y \in \{0,1\}^n$ uniformly at random first, then run $\mathsf{StarGuesser}_d$, and then choose $\rho^{-1}(\star)$ last.) Rearranging, we get $\Pr[\mathsf{Depth}(\mathsf{CDT}_\rho) = d] \leq 0.25 \cdot (8wp)^d$. We may assume without loss of generality that $16pw \leq 1$, because otherwise the switching lemma is trivial. Therefore,

$$\Pr[\mathsf{DTDepth}(C|_{\rho}) \ge D] \le \sum_{d=D}^{\infty} \Pr[\mathsf{Depth}(\mathsf{CDT}_{\rho}) = d] \le \frac{1}{4} \cdot \sum_{d=D}^{\infty} (8pw)^d \le 0.5 \cdot (8pw)^D. \qquad \Box$$

References

- [Kel21] Zander Kelley. "An improved derandomization of the switching lemma". In: Proceedings of the 53rd Annual Symposium on Theory of Computing (STOC). 2021, 272–282. DOI: 10.1145/3406325. 3451054.
- [Ros17] Benjamin Rossman. "An entropy proof of the switching lemma and tight bounds on the decision-tree size of AC⁰". 2017. URL: https://users.cs.duke.edu/~br148/logsize.pdf.