Probabilistic polynomials for AC? (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza®@uchicago.edu)

1 Polynomials as a computational model

Let F be a field.! The cases we will care about are F € {R,Fa, F3}. Recall that F[x1,...,z,] denotes the set
of n-variate polynomials with coefficients in F. We will think of polynomials as algorithms. Over finite fields,
all functions are computable in this model:

Proposition 1 (Lagrange interpolator). Let F be a finite field, let n € N, and let f: F* — F be an arbitrary
function. There exists a polynomial p € Flx1, ..., x,] such that for every x € F™, we have p(z) = f(z).

Proof.
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The degree of a polynomial is a measure of its complexity. In the rest of these notes, we will prove that
PARITY ¢ AC’. Our strategy will be to first show that functions in AC® can be computed by low-degree
probabilistic polynomials, and then show that the parity function cannot. This strategy is often called the
Razborov-Smolenksy method.

2 Probabilistic polynomials

Definition 1 (Probabilistic polynomials). A probabilistic polynomial over a field F is a distribution P over
Flxi,...,zn]. We say that P computes f: {0,1}" — {0,1} with error ¢ if for every x € {0,1}", we have

Prip(@) =fl@)z1-e

Since we only plug in = € {0,1}", we can assume without loss of generality that every p € Supp(P) is
multilinear. We write deg(P) to denote max,cs,pp(p) deg(p).

Example 1. The function MAJs can be computed with error 1/3 by a probabilistic polynomial of degree 1:

x1 with probability 1/3
P(xz) = ¢ 1o with probability 1/3
x3 with probability 1/3.

A probabilistic polynomial is a type of randomized algorithm. As usual with randomized algorithms, we
require that the algorithm gives the right answer with high probability on every input. This is stronger than
having a deterministic algorithm that works on most inputs:

Proposition 2 (Deterministic polynomials that are correct on most inputs). Let F be a field, let f: {0,1}" —
{0,1}, and suppose f can be computed by a degree-D probabilistic polynomial P with error € over F. Then
for every distribution p over {0,1}", there exists a (deterministic) degree-D polynomial p over F such that

Pr [p(z) = f(z)] > 1—e.

T

"More generally, we could work over any ring.


https://en.wikipedia.org/wiki/Field_(mathematics)

Proof. Pick p ~ P and x ~ p independently. Then

1-e< B | Prlolo) = f@)] = B, | Pripo) = (o)

zp | p~P p~P [zvp

The best case is at least as good as the average case, so there is some fixing of p such that Pry,[p(z) =
f@)]>1-e. O

Proposition 2 is actually an “if and only if” condition; this is a special case of Yao’s principle.

3 Simulating AC’ circuits using probabilistic polynomials

We will show that AC circuits can be computed by probabilistic polynomials of polylogarithmic degree, over
any field. As a warm-up, let us begin by designing probabilistic polynomials for the NOR function over the
field IFs.

Proposition 3 (Warm-up). For every n € N and € > 0, there exists a probabilistic polynomial over Fo of
degree [log(1/¢)| that computes NOR,, with error .

Proof. Pick S C [n] uniformly at random and let P(z) = 1 — . gx;. Then Pr[P(0") = 1] = 1, and if
x # 0", then Pr[P(x) = 0] = 1/2. Now we amplify: Sample ¢t = [log(1/¢)] polynomials from P independently,
say Pi,..., P, and let P'(z) = Py(z) - Py(z)--- P/(z). That way, Pr[P'(0") = 1] = 1, and if 2 # 0", then
Pr[P'(z) #0]=2""<e. O

Now let’s generalize to any field.

Lemma 1 (Probabilistic polynomials for NOR over any field). For every field F, for every n € N, and for
every € > 0, there exists a probabilistic polynomial over F of degree O(logn -log(1/¢)) that computes NOR,,
with error €.

Proof. Randomly sample sets S1,S2,...,S1410sn € [n] as follows: Independently for each i and j, with
probability 27% we include j € S;, and with the remaining probability we exclude it. Now define

1+logn
P = ] [1-D =
i=1 J€S;
Then P has degree 1 + logn, and Pr[P(0") = 1] = 1 with probability 1.
Now let = be a nonzero string, say with Hamming weight w > 0. There is some i such that 27¢ €
[0.25/w,0.5/w]. For this value of i, we have

Pr Za:jzl > Pr Za:jzloverZ —w-27". (1 - 274wl
JES; JES;
>0.25-(1—-0.5/w)”
>0.25-(1—-0.5) (Bernoulli’s inequality)
= 1/8.

Therefore, with probability at least 1/8, we have >, ¢ z; =1, and hence P(z) = 0.

Finally, we amplify, just like in the proof of Proposition 3: Sample ¢t = O(log(1/¢)) polynomials from P
independently, say Pi, Pa, ..., P, and let P'(z) = Py(z) - Po(z) - - - P(z). That way, Pr[P/(0") = 1] =1, and
if z # 0", then Pr[P'(x) # 0] < (7/8)! <. O

Lemma 1 readily implies that every function in AC® can be computed by a low-degree probabilistic
polynomial. In the theorem below, we use the following convenient notation: an “ACS circuit” is an AC
circuit of depth d.
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Theorem 1 (Probabilistic polynomials for ACO). For every field F, for every n,S,d € N with S > n, for
every size-S ACY circuit C: {0,1}™ — {0,1}, and for every € > 0, there exists a probabilistic polynomial over
F of degree O((log S - log(S/¢)))? that computes C with error €.

Proof sketch. Lemma 1 implies that we can construct probabilistic polynomials for the AND and OR functions
with the same parameters, because OR(z) = 1 — NOR(z) and AND,,(z) = NOR, (1 — z1,...,1 —zyp).
Replace each gate of C' with a probabilistic polynomial that computes that gate’s operation (AND or OR)
with error /S and degree O(log S - log(S/e)). Then compose all these polynomials in the manner dictated
by the structure of C. The resulting polynomial has degree O(log S - log(S/¢))?, and by the union bound, it
computes C' with error €. O

It is an open problem to determine the optimal degree of probabilistic polynomials for the OR and AND
functions over R [BHMS21].

4 PARITY does not have low-degree approximators

We have shown that functions in ACY can be computed by low-degree probabilistic polynomials. Next, we
will show that the parity function cannot be computed by low-degree probabilistic polynomials over F3. In
fact, we will show something stronger, namely, every low-degree deterministic polynomial attempting to
compute the parity function has a significant error rate when the input is chosen uniformly at random (see
Proposition 2).

Theorem 2 (Parity cannot be approximated by low-degree polynomials over F3). Let p: F§ — F3 be a

polynomial of degree D. Then

Pr [p(x) = PARITY(2)] < % +0 (\%) .

The first step of the proof is an encoding trick. We would like to work with +1 and —1 instead of 0 and
1. Therefore, define q: F§ — F3 by

Then deg(q) = deg(p), and

p —PARITY(z)] = P s,
Ie{oﬂ}n[P(x) ()] ye{:l:rl}"[Q(y) Y1y2 - Yn)

The next step of the proof is to show there is a low-degree reduction from arbitrary functions to the parity
function.

Lemma 2 (Low-degree reduction from arbitrary functions to the parity function). Every function f: {£1}" —
F3 can be written in the form f(y) = po(y) +p1(y) - (y1y2- - yn), where py and p1 have degree at most n/2.

Proof. The function f can be computed by some polynomial over F3 (Proposition 1). Furthermore, we can
make this polynomial multilinear, because y2-2 =1 when y € {£1}". Hence, this polynomial has the form

F) =Y es-[Jwe
SCln] €S

We define

po(y) = Z CS’Hyi pi(y) = Z CS'Hyi' O

SC[n] i€S SC[n] ¢S
|S|<n/2 |S|>n/2



Proof of Theorem 2. Let S ={y € {£1}": q(y) = n1y2---yn}. By Lemma 2, every function f: S — Fs3 can
be written as f(x) = po(x) + p1(z) - g(x), a polynomial of degree at most n/2 + D. The number of functions

n/2+D

f: 8 — Fsis 3151, On the other hand, the number of polynomials of degree at most n/2+ D is 3220 (),
24D
Therefore, [S| < 727 (1) < 2. (1/2 4+ O(D/y/n)) 2 O

Corollary 1 (PARITY ¢ AC®). Every AC?l circuit computing PARITY,, has size gn? /9

Proof. If C is a size-S AC?l circuit, then C' has a 0.1-error probabilistic polynomial for C' over F3 of degree
D = (log S)°@ (Theorem 1). Therefore, there is a deterministic degree-D polynomial p that computes C' on
90% of inputs (Proposition 2). If C' computes the parity function, this implies D > Q(y/n) (Theorem 2), and
hence S > on/D. O
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2The last step uses the fact that for every n and k, we have (Z) < O(2"/+/n). This can be proven using Stirling’s approximation.
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