
Probabilistic polynomials for AC0 (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 Polynomials as a computational model

Let F be a field.1 The cases we will care about are F ∈ {R,F2,F3}. Recall that F[x1, . . . , xn] denotes the set
of n-variate polynomials with coefficients in F. We will think of polynomials as algorithms. Over finite fields,
all functions are computable in this model:

Proposition 1 (Lagrange interpolator). Let F be a finite field, let n ∈ N, and let f : Fn → F be an arbitrary
function. There exists a polynomial p ∈ F[x1, . . . , xn] such that for every x ∈ Fn, we have p(x) = f(x).

Proof.

f(x) =
∑
z∈Fn

f(z) ·
n∏

i=1

∏
a∈F\{zi}

xi − a

zi − a
.

The degree of a polynomial is a measure of its complexity. In the rest of these notes, we will prove that
PARITY /∈ AC0. Our strategy will be to first show that functions in AC0 can be computed by low-degree
probabilistic polynomials, and then show that the parity function cannot. This strategy is often called the
Razborov-Smolenksy method.

2 Probabilistic polynomials

Definition 1 (Probabilistic polynomials). A probabilistic polynomial over a field F is a distribution P over
F[x1, . . . , xn]. We say that P computes f : {0, 1}n → {0, 1} with error ε if for every x ∈ {0, 1}n, we have

Pr
p∼P

[p(x) = f(x)] ≥ 1− ε.

Since we only plug in x ∈ {0, 1}n, we can assume without loss of generality that every p ∈ Supp(P) is
multilinear. We write deg(P) to denote maxp∈Supp(P) deg(p).

Example 1. The function MAJ3 can be computed with error 1/3 by a probabilistic polynomial of degree 1:

P (x) =


x1 with probability 1/3

x2 with probability 1/3

x3 with probability 1/3.

A probabilistic polynomial is a type of randomized algorithm. As usual with randomized algorithms, we
require that the algorithm gives the right answer with high probability on every input. This is stronger than
having a deterministic algorithm that works on most inputs:

Proposition 2 (Deterministic polynomials that are correct on most inputs). Let F be a field, let f : {0, 1}n →
{0, 1}, and suppose f can be computed by a degree-D probabilistic polynomial P with error ε over F. Then
for every distribution µ over {0, 1}n, there exists a (deterministic) degree-D polynomial p over F such that

Pr
x∼µ

[p(x) = f(x)] ≥ 1− ε.

1More generally, we could work over any ring.

1

https://en.wikipedia.org/wiki/Field_(mathematics)

Proof. Pick p ∼ P and x ∼ µ independently. Then

1− ε ≤ E
x∼µ

[
Pr
p∼P

[p(x) = f(x)]

]
= E

p∼P

[
Pr
x∼µ

[p(x) = f(x)]

]
.

The best case is at least as good as the average case, so there is some fixing of p such that Prx∼µ[p(x) =
f(x)] ≥ 1− ε.

Proposition 2 is actually an “if and only if” condition; this is a special case of Yao’s principle.

3 Simulating AC0 circuits using probabilistic polynomials

We will show that AC0 circuits can be computed by probabilistic polynomials of polylogarithmic degree, over
any field. As a warm-up, let us begin by designing probabilistic polynomials for the NOR function over the
field F2.

Proposition 3 (Warm-up). For every n ∈ N and ε > 0, there exists a probabilistic polynomial over F2 of
degree ⌈log(1/ε)⌉ that computes NORn with error ε.

Proof. Pick S ⊆ [n] uniformly at random and let P (x) = 1 −
∑

i∈S xi. Then Pr[P (0n) = 1] = 1, and if
x ̸= 0n, then Pr[P (x) = 0] = 1/2. Now we amplify: Sample t = ⌈log(1/ε)⌉ polynomials from P independently,
say P1, . . . , Pt, and let P ′(x) = P1(x) · P2(x) · · ·Pt(x). That way, Pr[P ′(0n) = 1] = 1, and if x ̸= 0n, then
Pr[P ′(x) ̸= 0] = 2−t ≤ ε.

Now let’s generalize to any field.

Lemma 1 (Probabilistic polynomials for NOR over any field). For every field F, for every n ∈ N, and for
every ε > 0, there exists a probabilistic polynomial over F of degree O(log n · log(1/ε)) that computes NORn

with error ε.

Proof. Randomly sample sets S1, S2, . . . , S1+logn ⊆ [n] as follows: Independently for each i and j, with
probability 2−i we include j ∈ Si, and with the remaining probability we exclude it. Now define

P (x) =

1+logn∏
i=1

1−
∑
j∈Si

xj

 .

Then P has degree 1 + log n, and Pr[P (0n) = 1] = 1 with probability 1.
Now let x be a nonzero string, say with Hamming weight w > 0. There is some i such that 2−i ∈

[0.25/w, 0.5/w]. For this value of i, we have

Pr

∑
j∈Si

xj = 1

 ≥ Pr

∑
j∈Si

xj = 1 over Z

 = w · 2−i · (1− 2−i)w−1

≥ 0.25 · (1− 0.5/w)w

≥ 0.25 · (1− 0.5) (Bernoulli’s inequality)

= 1/8.

Therefore, with probability at least 1/8, we have
∑

j∈Si
xj = 1, and hence P (x) = 0.

Finally, we amplify, just like in the proof of Proposition 3: Sample t = O(log(1/ε)) polynomials from P
independently, say P1, P2, . . . , Pt, and let P ′(x) = P1(x) · P2(x) · · ·Pt(x). That way, Pr[P

′(0n) = 1] = 1, and
if x ̸= 0n, then Pr[P ′(x) ̸= 0] ≤ (7/8)t ≤ ε.

Lemma 1 readily implies that every function in AC0 can be computed by a low-degree probabilistic
polynomial. In the theorem below, we use the following convenient notation: an “AC0

d circuit” is an AC
circuit of depth d.

2

https://en.wikipedia.org/wiki/Yao%27s_principle
https://en.wikipedia.org/wiki/Bernoulli%27s_inequality

Theorem 1 (Probabilistic polynomials for AC0). For every field F, for every n, S, d ∈ N with S ≥ n, for
every size-S AC0

d circuit C : {0, 1}n → {0, 1}, and for every ε > 0, there exists a probabilistic polynomial over
F of degree O((logS · log(S/ε)))d that computes C with error ε.

Proof sketch. Lemma 1 implies that we can construct probabilistic polynomials for the AND and OR functions
with the same parameters, because OR(x) = 1− NOR(x) and ANDn(x) = NORn(1− x1, . . . , 1− xn).

Replace each gate of C with a probabilistic polynomial that computes that gate’s operation (AND or OR)
with error ε/S and degree O(logS · log(S/ε)). Then compose all these polynomials in the manner dictated
by the structure of C. The resulting polynomial has degree O(logS · log(S/ε))d, and by the union bound, it
computes C with error ε.

It is an open problem to determine the optimal degree of probabilistic polynomials for the OR and AND
functions over R [BHMS21].

4 PARITY does not have low-degree approximators

We have shown that functions in AC0 can be computed by low-degree probabilistic polynomials. Next, we
will show that the parity function cannot be computed by low-degree probabilistic polynomials over F3. In
fact, we will show something stronger, namely, every low-degree deterministic polynomial attempting to
compute the parity function has a significant error rate when the input is chosen uniformly at random (see
Proposition 2).

Theorem 2 (Parity cannot be approximated by low-degree polynomials over F3). Let p : Fn
3 → F3 be a

polynomial of degree D. Then

Pr
x∈{0,1}n

[p(x) = PARITY(x)] ≤ 1

2
+O

(
D√
n

)
.

The first step of the proof is an encoding trick. We would like to work with +1 and −1 instead of 0 and
1. Therefore, define q : Fn

3 → F3 by

q(y) = p(y1 − 1, . . . , yn − 1) + 1.

Then deg(q) = deg(p), and

Pr
x∈{0,1}n

[p(x) = PARITY(x)] = Pr
y∈{±1}n

[q(y) = y1y2 · · · yn].

The next step of the proof is to show there is a low-degree reduction from arbitrary functions to the parity
function.

Lemma 2 (Low-degree reduction from arbitrary functions to the parity function). Every function f : {±1}n →
F3 can be written in the form f(y) = p0(y) + p1(y) · (y1y2 · · · yn), where p0 and p1 have degree at most n/2.

Proof. The function f can be computed by some polynomial over F3 (Proposition 1). Furthermore, we can
make this polynomial multilinear, because y2i = 1 when y ∈ {±1}n. Hence, this polynomial has the form

f(y) =
∑
S⊆[n]

cS ·
∏
i∈S

yi.

We define

p0(y) =
∑
S⊆[n]

|S|≤n/2

cS ·
∏
i∈S

yi p1(y) =
∑
S⊆[n]

|S|>n/2

cS ·
∏
i/∈S

yi.

3

Proof of Theorem 2. Let S = {y ∈ {±1}n : q(y) = y1y2 · · · yn}. By Lemma 2, every function f : S → F3 can
be written as f(x) = p0(x) + p1(x) · q(x), a polynomial of degree at most n/2 +D. The number of functions

f : S → F3 is 3|S|. On the other hand, the number of polynomials of degree at most n/2 +D is 3
∑n/2+D

i=0 (ni).

Therefore, |S| ≤
∑n/2+D

i=0

(
n
i

)
≤ 2n · (1/2 +O(D/

√
n)).2

Corollary 1 (PARITY /∈ AC0). Every AC0
d circuit computing PARITYn has size 2n

Ω(1/d)
.

Proof. If C is a size-S AC0
d circuit, then C has a 0.1-error probabilistic polynomial for C over F3 of degree

D = (logS)O(d) (Theorem 1). Therefore, there is a deterministic degree-D polynomial p that computes C on
90% of inputs (Proposition 2). If C computes the parity function, this implies D ≥ Ω(

√
n) (Theorem 2), and

hence S ≥ 2n
Ω(1/d)

.

References

[BHMS21] Siddharth Bhandari, Prahladh Harsha, Tulasimohan Molli, and Srikanth Srinivasan. “On the
probabilistic degree of OR over the reals”. In: Random Structures & Algorithms 59.1 (2021),
pp. 53–67. doi: https://doi.org/10.1002/rsa.20991.

2The last step uses the fact that for every n and k, we have
(
n
k

)
≤ O(2n/

√
n). This can be proven using Stirling’s approximation.

4

https://doi.org/https://doi.org/10.1002/rsa.20991

	Polynomials as a computational model
	Probabilistic polynomials
	Simulating AC0 circuits using probabilistic polynomials
	PARITY does not have low-degree approximators

