
Parity vs. majority (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 Using majority gates to compute the parity function

In a previous class, we showed that PARITY /∈ AC0. In this section, we will do a reduction from the parity
function to the majority function. This will imply that MAJORITY /∈ AC0. More precisely, when we say a
“reduction from parity to majority,” we mean a circuit that computes the parity function using majority gates.
This motivates the following definition.

Definition 1 (The complexity class TC0). A function f : {0, 1}∗ → {0, 1}∗ is in TC0 if it can be computed
by a constant-depth polynomial-size circuit in which every gate is a MAJ gate of unbounded fan-in, and there
are literals and constants at the bottom.

The class TC0 roughly corresponds to neural networks in machine learning. We have AC0 ⊆ TC0 ⊆ NC1.
Our goal is to show that PARITY ∈ TC0. More generally, we will prove that every “symmetric function” is in
TC0.

Definition 2 (Symmetric Boolean function). A function f : {0, 1}n → {0, 1} (or f : {0, 1}∗ → {0, 1}) is
symmetric if f(x) depends only on the length of x and the Hamming weight of x. The class of symmetric
functions is denoted SYM.

For example, PARITY, MAJ, AND, and OR are all symmetric. The following “threshold functions” are
also symmetric:

T≤k
n (x) = 1 ⇐⇒

n∑
i=1

xi ≤ k

T≥k
n (x) = 1 ⇐⇒

n∑
i=1

xi ≥ k.

Lemma 1 (Shifting thresholds). T≥k
n and T≤k

n are both in TC0.1

Proof sketch.
T≥k
n (x1, . . . , xn) = MAJ2n+2k(x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸

2k zeroes

, 1, . . . , 1︸ ︷︷ ︸
n ones

),

and similarly
T≤k
n (x1, . . . , xn) = MAJ2n+2k(¬x1, . . . ,¬xn, 0, . . . , 0︸ ︷︷ ︸

n zeroes

, 1, . . . , 1︸ ︷︷ ︸
2k ones

).

Theorem 1 (SYM ⊆ TC0). If f : {0, 1}∗ → {0, 1} is symmetric, then f ∈ TC0.

Proof. Let n ∈ N. There is some set S ⊆ [n] such that for every x ∈ {0, 1}n, f(x) = 1 if and only if |x| ∈ S,
where |x| denotes Hamming weight. Then

f(x) =

(∑
k∈S

(T≤k
n (x) + T≥k

n (x))

)
− |S|,

which is a threshold of thresholds.
1The function T≥k

n is parameterized by two values (n and k), so it is not necessarily clear what it means to say that

T≥k
n ∈ TC0. The meaning is that T

≥k(n)
n ∈ TC0 for every function k(n). Equivalently, for every n and k, there is a constant-depth

polynomial-size majority circuit that computes T≥k
n , i.e., the depth and the exponent of the size do not depend on n or k.

Similarly with T≤k
n .

1

Corollary 1 (MAJ /∈ AC0). There exists a constant α > 0 such that the following holds. Let C be a size-S

AC0
d circuit computing MAJn, where d ≤ α logn

log logn . Then S = 2n
Ω(1/d)

.

Proof. Since PARITY ∈ TC0, there is a constant-depth polynomial-size circuit computing PARITYn′ using
MAJn gates, where n′ = nΩ(1).2 By replacing each MAJn gate with a copy of C, we get an AC0

O(d) circuit

computing PARITYn′ of size S′ = S · poly(n). We proved in a previous class that S′ = 2(n
′)Ω(1/d)

= 2n
Ω(1/d)

.

Therefore, S ≥ 2n
Ω(1/d)

/poly(n), which is 2n
Ω(1/d)

if we pick α small enough.

2 Majority is hard, even if we are allowed to use parity gates

Definition 3 (The complexity class AC0[m]). An AC0
d[m] circuit is a depth-d circuit in which we can use

AND gates, OR gates, and MODm gates of unbounded fan-in. A MODm gate computes the function

MODm(x) =

{
0 if

∑
i xi ≡ 0 (mod m)

1 if
∑

i xi ̸≡ 0 (mod m).

At the bottom, there are literals and constants. (Negations do not count toward the size or depth of the
circuit.) A function f : {0, 1}∗ → {0, 1} is in AC0[m] if it can be computed by constant-depth polynomial-size
AC0[m] circuits.

For example, a MOD2 gate computes the parity function. For this reason, AC0[2] is also often denoted
AC0[⊕]. We have

AC0 ⊆ AC0[⊕] ⊆ TC0 ⊆ NC1.

The first containment is strict (AC0 ≠ AC0[⊕]), because PARITY /∈ AC0. In this section, we will prove that
the second containment is also strict (AC0[⊕] ̸= TC0). This is equivalent to proving that MAJ /∈ AC0[⊕]. The
first step of the proof is to generalize our probabilistic polynomial construction to AC0[⊕] circuits.

Theorem 2 (Probabilistic polynomials for AC0[⊕]). Let f : {0, 1}n → {0, 1} be a AC0
d[⊕] circuit of size

S ≥ n, and let ε > 0. Then f can be computed with error ε by a probabilistic polynomial over F2 of degree
(log(S/ε))O(d).

Proof sketch. Repeat the proof that AC0 can be simulated by probabilistic polynomials, and use the fact
that the parity function can be computed exactly by a degree-1 polynomial over F2.

The second step, which is not so easy, is to show that low-degree polynomials over F2 cannot approximate
the majority function (just like we showed that low-degree polynomials over F3 cannot approximate the
parity function). Specifically, we will bound the success probability when the input is chosen uniformly at
random:

Theorem 3 (Low-degree polynomials over F2 have low correlation with the majority function). If p is an
n-variate degree-D polynomial over F2, then

Pr
x∈{0,1}n

[p(x) = MAJ(x)] ≤ 1

2
+O(D/

√
n).

The first step in the proof of Theorem 3 is to show that if q is a nonzero low-degree polynomial, then
every point in Fn

2 is close to a point that q accepts. Let ∆(·, ·) denote Hamming distance.

Lemma 2 (If q has low degree, then every point is close to q−1(1)). Suppose q : Fn
2 → F2 is a nonzero

polynomial. Then for every x ∈ Fn
2 , we have ∆(x, q−1(1)) ≤ deg(p).

2Here we are using the fact that MAJa reduces to MAJb whenever a ≤ b. This is because MAJa(x) = MAJa+1(x1) if a is even,
and MAJa(x) = MAJa+1(x0) if a is odd.

2

Proof. Let r(y) = q(x + y). Then r is another nonzero polynomial with deg(r) = deg(q). Let y be the
indicator for some minimal nonzero term of r. Then r(y) = 1, so q(x+ y) = 1.

Let Bw(x) be the Hamming ball of radius w centered at x ∈ {0, 1}n, i.e., Bw(x) = {y : ∆(x, y) ≤ w}.
Based on Lemma 2, we now show that arbitrary functions on small Hamming balls can be interpolated by
low-degree polynomials.

Lemma 3 (Low-degree interpolation on small Hamming balls). Let x ∈ Fn
2 , let w ≤ n, and let f : Bw(x) → F2

be any function. There exists a polynomial q : Fn
2 → F2 of degree at most w such that q(y) = f(y) for every

y ∈ Bw(x).

Proof. Let P be the space of all n-variate polynomials of degree at most w over F2. Let F be the space of
all functions mapping Bw(x) to F2. Define Ψ: P → F by the rule Ψ(q) = q|Bw(x), i.e., Ψ(q) is q restricted

to Bw(x). Our goal is to prove that Ψ is surjective. Observe that |P| = |F| = 2|Bw(x)|. Therefore, it is
equivalent to show that Ψ is injective, which is what we will do next.

Suppose Ψ(q1) = Ψ(q2), i.e., q1 and q2 are polynomials of degree at most w that agree on Bw(x). Let
q′ := q1 + q2. Then q′ is a polynomial of degree at most w that is zero on Bw(x). By Lemma 2, this implies
that q′ ≡ 0, and hence q1 ≡ q2.

Using Lemma 3, we will now show that there is a low-degree reduction from arbitrary functions to the
majority function, analogous to our analysis of polynomials approximating PARITY over F3.

Lemma 4 (Low-degree reduction from arbitrary functions to the majority function). Every function
f : Fn

2 → F2 can be written in the form f(x) = p0(x) + p1(x) ·Maj(x), where p0 and p1 have degree at most
n/2.

Proof. Let p0 agree with f on B⌈n/2⌉−1(0
n). Let p1 agree with f + p0 on B⌊n/2⌋(1

n).

Proof of Theorem 3. Let S = {x : p(x) = Maj(x)}. By Lemma 4, every function f : S → F2 can be written
as f(x) = p0(x) + p1(x) · p(x), a polynomial of degree at most n/2 +D. The number of functions f : S → F2

is 2|S|. On the other hand, the number of polynomials of degree at most n/2 +D is 2
∑n/2+D

i=0 (ni). Therefore,

|S| ≤
∑n/2+D

i=0

(
n
i

)
≤ 2n · (1/2 +O(D/

√
n)).

Corollary 2 (MAJ /∈ AC0[⊕]). Every AC0
d[⊕] circuit computing MAJn has size 2n

Ω(1/d)
.

Using similar techniques, one can show more generally that MAJ /∈ AC0[m] whenever m is a power of a
prime. However, when m is composite, these techniques break down. It is an open problem to prove that
MAJ /∈ AC0[6]. In fact, it is an open problem to rule out the ridiculous suggestion that NP ⊆ AC0[6]! However,
the situation is not completely bleak; there are some known techniques for proving that “somewhat explicit”
functions cannot be computed by AC0[6] and similar classes. For example, Murray and Williams proved that
NQP ̸⊆ ACC [MW18], where NQP denotes nondeterministic quasipolynomial time and ACC =

⋃
m AC0[m].

References

[MW18] Cody Murray and Ryan Williams. “Circuit lower bounds for nondeterministic quasi-polytime: an
easy witness lemma for NP and NQP”. In: Proceedings of the 50th Annual Symposium on Theory
of Computing (STOC). 2018, 890–901. doi: 10.1145/3188745.3188910.

3

https://doi.org/10.1145/3188745.3188910

	Using majority gates to compute the parity function
	Majority is hard, even if we are allowed to use parity gates

