Parity vs. majority (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza®@uchicago.edu)

1 Using majority gates to compute the parity function

In a previous class, we showed that PARITY ¢ ACY. In this section, we will do a reduction from the parity
function to the majority function. This will imply that MAJORITY ¢ AC®. More precisely, when we say a
“reduction from parity to majority,” we mean a circuit that computes the parity function using majority gates.
This motivates the following definition.

Definition 1 (The complexity class TC?). A function f: {0,1}* — {0,1}* is in TC? if it can be computed
by a constant-depth polynomial-size circuit in which every gate is a MAJ gate of unbounded fan-in, and there
are literals and constants at the bottom.

The class TC roughly corresponds to neural networks in machine learning. We have AC® € TC? € NC*.
Our goal is to show that PARITY € TCY. More generally, we will prove that every “symmetric function” is in
TCO.

Definition 2 (Symmetric Boolean function). A function f: {0,1}" — {0,1} (or f: {0,1}* — {0,1}) is
symmetric if f(z) depends only on the length of  and the Hamming weight of . The class of symmetric
functions is denoted SYM.

For example, PARITY, MAJ, AND, and OR are all symmetric. The following “threshold functions” are
also symmetric:
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Lemma 1 (Shifting thresholds). T2F and T=* are both in TCY.!
Proof sketch.
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Theorem 1 (SYM C TCO). If f: {0,1}* — {0,1} is symmetric, then f € TCY.

Proof. Let n € N. There is some set S C [n] such that for every = € {0,1}", f(x) =1 if and only if |z| € S,
where |z| denotes Hamming weight. Then
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which is a threshold of thresholds. O

!The function T2* is parameterized by two values (n and k), so it is not necessarily clear what it means to say that

T2* € TC. The meaning is that 775" € TCO for every function k(n). Equivalently, for every n and k, there is a constant-depth
polynomial-size majority circuit that computes T.2*, i.e., the depth and the exponent of the size do not depend on n or k.
Similarly with T/=F.



Corollary 1 (MAJ ¢ ACY). There exists a constant o > 0 such that the following holds. Let C' be a size-S

ACY circuit computing MAJ,,, where d < 13;?§gnn' Then S = 277,

Proof. Since PARITY € TC?, there is a constant-depth polynomial-size circuit computing PARITY,, using
MAJ, gates, where n’ = n®*(1) 2 By replacing each MAJ,, gate with a copy of C, we get an AC%( d) circuit

n)20/d) 2nQ(1/d)

computing PARITY,, of size S’ = S - poly(n). We proved in a previous class that S’ = 2

Therefore, S > gn?t/ / poly(n), which is oD it we pick « small enough. O

2 Majority is hard, even if we are allowed to use parity gates

Definition 3 (The complexity class AC°[m]). An ACY[m] circuit is a depth-d circuit in which we can use
AND gates, OR gates, and MOD,,, gates of unbounded fan-in. A MOD,,, gate computes the function

MOD,, () = 4 1f 2i® (mod m)

1 if Y ,2;#0 (mod m).
At the bottom, there are literals and constants. (Negations do not count toward the size or depth of the
circuit.) A function f: {0,1}* — {0, 1} is in AC%[m] if it can be computed by constant-depth polynomial-size
AC®[m)] circuits.

For example, a MOD, gate computes the parity function. For this reason, AC°[2] is also often denoted
AC’[®]. We have
AC? C ACY[@] € TC® C NC.

The first containment is strict (AC? # AC%[@®]), because PARITY ¢ AC’. In this section, we will prove that
the second containment is also strict (AC°[@] # TCP). This is equivalent to proving that MAJ ¢ AC°[®]. The
first step of the proof is to generalize our probabilistic polynomial construction to ACO[@] circuits.

Theorem 2 (Probabilistic polynomials for AC?[®]). Let f: {0,1}" — {0,1} be a ACY[@®] circuit of size
S >mn, and let € > 0. Then f can be computed with error € by a probabilistic polynomial over Fo of degree
(log(5/e))? ).

Proof sketch. Repeat the proof that AC can be simulated by probabilistic polynomials, and use the fact
that the parity function can be computed exactly by a degree-1 polynomial over Fs. O

The second step, which is not so easy, is to show that low-degree polynomials over o cannot approximate
the majority function (just like we showed that low-degree polynomials over F3 cannot approximate the
parity function). Specifically, we will bound the success probability when the input is chosen uniformly at
random:

Theorem 3 (Low-degree polynomials over Fy have low correlation with the majority function). If p is an
n-variate degree-D polynomial over Fo, then

1
Jbr (@) = MAJ@)] < 5+ O(D/ V).

The first step in the proof of Theorem 3 is to show that if ¢ is a nonzero low-degree polynomial, then
every point in 7 is close to a point that g accepts. Let A(:,-) denote Hamming distance.

Lemma 2 (If ¢ has low degree, then every point is close to ¢~ 1(1)). Suppose q: Fy — Fy is a nonzero
polynomial. Then for every x € FY, we have A(x,q (1)) < deg(p).

2Here we are using the fact that MAJ, reduces to MAJ, whenever a < b. This is because MAJq(z) = MAJgt1(x1) if a is even,
and MAJ,(z) = MAJy41(20) if a is odd.



Proof. Let r(y) = q(x +y). Then r is another nonzero polynomial with deg(r) = deg(q). Let y be the
indicator for some minimal nonzero term of r. Then r(y) =1, so q(x +y) = 1. O

Let B, (z) be the Hamming ball of radius w centered at x € {0,1}", i.e., By(z) = {y : A(z,y) < w}.
Based on Lemma 2, we now show that arbitrary functions on small Hamming balls can be interpolated by
low-degree polynomials.

Lemma 3 (Low-degree interpolation on small Hamming balls). Let x € Fy, let w < n, and let f: By (z) — Fa
be any function. There exists a polynomial q: F5 — Fo of degree at most w such that q(y) = f(y) for every
y € By(z).

Proof. Let P be the space of all n-variate polynomials of degree at most w over Fy. Let F be the space of
all functions mapping By, (z) to Fa. Define W: P — F by the rule ¥(q) = q|p, (x), i-6., ¥(q) is ¢ restricted
to By (z). Our goal is to prove that U is surjective. Observe that |P| = |F| = 2/B=(®). Therefore, it is
equivalent to show that U is injective, which is what we will do next.

Suppose ¥(q1) = ¥(g2), i.e., g1 and g2 are polynomials of degree at most w that agree on B, (x). Let
¢ = q1 + q2. Then ¢ is a polynomial of degree at most w that is zero on By, (x). By Lemma 2, this implies
that ¢’ = 0, and hence ¢; = ¢o. O

Using Lemma 3, we will now show that there is a low-degree reduction from arbitrary functions to the
majority function, analogous to our analysis of polynomials approximating PARITY over Fg.

Lemma 4 (Low-degree reduction from arbitrary functions to the majority function). Ewvery function
f:F3 — Fy can be written in the form f(x) = po(z) + p1(z) - Maj(x), where py and p1 have degree at most
n/2.

Proof. Let py agree with f on By, 51-1(0"). Let p1 agree with f + po on B,/ (1"). O

Proof of Theorem 3. Let S = {z : p(x) = Maj(z)}. By Lemma 4, every function f: S — Fy can be written
as f(x) = po(x) +pi(x) - p(x), a polynomial of degree at most n/2 + D. The number of functions f: S — Fa

is 251, On the other hand, the number of polynomials of degree at most n/2 + D is 22?:%“) (1), Therefore,
n/24D /n n
S| <SP (1) <20 (1/2+ O(D/ /). O

Corollary 2 (MAJ ¢ AC°[@]). Buvery ACY[®)] circuit computing MAJ,, has size /@

Using similar techniques, one can show more generally that MAJ ¢ AC°[m] whenever m is a power of a
prime. However, when m is composite, these techniques break down. It is an open problem to prove that
MAJ ¢ ACP[6]. In fact, it is an open problem to rule out the ridiculous suggestion that NP C AC°[6]! However,
the situation is not completely bleak; there are some known techniques for proving that “somewhat explicit”
functions cannot be computed by ACO[6] and similar classes. For example, Murray and Williams proved that
NQP ¢ ACC [MW18], where NQP denotes nondeterministic quasipolynomial time and ACC = J,, AC°[m)].
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