
The Nisan-Wigderson pseudorandom generator (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 Pseudorandom generators

Previously, we proved the following theorem, showing that AC0 circuits do a very poor job of computing or
even approximating the parity function.

Theorem 1 (Non-optimal bound on the correlation between parity and AC0). If C : {0, 1}r → {0, 1} is an

AC0
d circuit, then either C has size 2r

Ω(1/d)
, or else

Pr
x∈{0,1}r

[C(x) = PARITYr(x)] ≤
1

2
+ 2−rΩ(1/d)

.

Next, as an application of Theorem 1, we will construct a pseudorandom generator (PRG) that fools AC0

circuits. That is, we will show how to use a small number of truly random bits to sample a long sequence of
bits that “appear random” to any AC0 circuit. To make this precise, let Un denote the uniform distribution
over {0, 1}n. A PRG is defined as follows.

Definition 1 (Distinguishers, fooling, and PRGs). Let X be a distribution over {0, 1}n, and let C : {0, 1}n →
{0, 1}. We say that C distinguishes X from Un with advantage ε if

|Pr[C(X) = 1]− Pr[C(Un) = 1]| > ε.

Otherwise, we say that X fools C with error ε. A pseudorandom generator (PRG) is a function G : {0, 1}s →
{0, 1}n. We say that G fools C with error ε if G(Us) fools C with error ε. The parameter s is called the seed
length of the PRG.

We will use Theorem 1 to prove the following.

Theorem 2 (PRG that fools AC0). For every n, S, d ∈ N such that S ≥ n, for every ε ∈ (0, 1), there exists a
PRG G : {0, 1}s → {0, 1}n such that:

• The generator G fools all AC0
d circuits of size at most S with error ε.

• The seed length is s = (log(S/ε))O(d).

• Given the parameters n, S, d, ε and a seed x ∈ {0, 1}s, the output G(x) can be computed in poly(n) time.

Other than Theorem 1, the proof of Theorem 2 uses barely any facts about AC0. That is, the proof
technique is a general framework for converting correlation bounds into PRGs, called the “Nisan-Wigderson
framework.” In these lecture notes, we will focus on the case of AC0 for simplicity’s sake, but you can study
a more general formulation of the framework in, for example, Hatami and Hoza’s survey [HH24].

2 Generating unpredictable bits

Our goal is to sample pseudorandom bits that are indistinguishable from uniform random bits by AC0 circuits.
First, we will show how to sample pseudorandom bits such that each bit is unpredictable by AC0 circuits that
get to see all the previous bits.

1

Definition 2 (Next-bit predictors). Let X be a distribution over {0, 1}n and let i ∈ [n]. A next-bit predictor
for X with advantage ε is a function C : {0, 1}i−1 → {0, 1}, for some i ∈ [n], such that

Pr[C(X1, X2, . . . , Xi−1) = Xi] >
1

2
+ ε.

For example, if we define G : {0, 1}n−1 → {0, 1}n by G(x) = (x, x1 ⊕ x2 ⊕ · · · ⊕ xn−1), then Theorem 1
immediately implies that next-bit predictors for G(Un−1) with non-negligible advantage cannot be computed
in AC0. To improve the seed length, our approach will be to apply the XOR operation to n different subsets
of the seed bits. We will use the following family of subsets.

Lemma 1 (Nearly disjoint sets). For every r, n ∈ N with r ≤ n, there exist S1, S2, . . . , Sn ⊆ [s], where
s = O(r2), such that:

• |S1| = |S2| = · · · = |Sn| = r.

• For every i, j ∈ [n] such that i ̸= j, we have |Si ∩ Sj | < log n.

• Given r and n, the sets S1, . . . , Sn can be constructed in poly(n) time.

Proof. In poly(r) time, we can find a prime number p ∈ [r, 2r] via näıve brute-force search. (Such a prime
always exists.) For each string a = (a0, a1, . . . , alogn−1) ∈ {0, 1}logn ∼= [n], we define

Sa = {(x, a0 + a1x+ a2x
2 + · · ·+ alogn−1x

logn−1 mod p) : x ∈ [r]}.

In other words, if we let Fp denote the field of integers modulo p and we define Pa ∈ Fp[x] by Pa(x) =
a0 + a1x+ · · ·+ alogn−1x

logn−1, then Sa = {(x, Pa(x)) : x ∈ [r]}.
Clearly, |Sa| = r, and Sa ⊆ F2

p
∼= [p2]. Constructing these sets just involves some simple arithmetic.

Finally, if a ≠ b, we have |Sa ∩ Sb| = |{x ∈ [r] : Pa(x) − Pb(x) = 0}|. Over any field, a nonzero degree-D
polynomial can have at most D distinct roots.1 Consequently, Pa−Pb has at most log n−1 distinct roots.

We define G : {0, 1}s → {0, 1}n by the formula

G(x) =

⊕
i∈S1

xi,
⊕
i∈S2

xi, . . . ,
⊕
i∈Sn

xi

 , (1)

where S1, . . . , Sn ⊆ [s] are the sets from Lemma 1, using a value r that we will choose later.

Theorem 3 (The NW PRG is unpredictable). Let C : {0, 1}j−1 → {0, 1} be a next-bit predictor for G(Us)
with advantage ε, where G is defined above, and assume that C can be computed by an AC0

d circuit of size S.

Then either S ≥ 2r
Ω(1/d) − poly(n) or else ε ≤ 2−rΩ(1/d)

.

Proof. The definition of next-bit predictors says that

Pr
x∈{0,1}s

C
⊕

i∈S1

xi, . . . ,
⊕

i∈Sj−1

xi

 =
⊕
i∈Sj

xi

 >
1

2
+ ε.

The best case is at least as good as the average case, so there is some way of fixing xi for all i /∈ Sj such that
we preserve the advantage:

Pr
x∈{0,1}Sj

C
⊕

i∈S1

xi, . . . ,
⊕

i∈Sj−1

xi

 =
⊕
i∈Sj

xi

 >
1

2
+ ε. (2)

1Proof by induction onD: Let x∗ be a root of a degree-D polynomial P . Perform long division to write P (x) = (x−x∗)·P ′(x)+c
for some constant c. Then P (x∗) = c, so c = 0, so P (x) = (x− x∗) · P ′(x). If y∗ is a root of P with y∗ ̸= x∗, then y∗ must be a
root of P ′, because a product of nonzero field elements is always nonzero. By induction, P ′ has at most D − 1 distinct roots.

2

https://en.wikipedia.org/wiki/Bertrand%27s_postulate
https://en.wikipedia.org/wiki/Field_(mathematics)#Consequences_of_the_definition

For each k ∈ [j − 1], define bk =
⊕

i∈Sk\Sj
xi (a parity involving only the fixed bits). Define C ′ : {0, 1}Sj →

{0, 1} by the rule

C ′(x) = C

b1 ⊕
⊕

i∈S1∩Sj

xi, . . . , bj−1 ⊕
⊕

i∈Sj−1∩Sj

xi

 .

Then Eq. (2) implies that C ′ correlates with PARITYr:

Pr
x∈{0,1}Sj

[C ′(x) = PARITYr(x)] >
1

2
+ ε.

Each XOR operation
⊕

i∈Sk∩Sj
xi can be performed by a polynomial-size brute-force DNF formula, because

|Sk ∩ Sj | < log n. Therefore, C ′ can be computed by an AC0
d+2 circuit of size S + poly(n). Consequently, by

Theorem 1, either ε ≤ 2−rΩ(1/d)
, or else S ≥ 2r

Ω(1/d) − poly(n).

3 Yao’s distinguisher-to-predictor lemma

The last ingredient in the proof of Theorem 2 is the following lemma. We specialize to the case of AC0

circuits only for simplicity’s sake.

Lemma 2 (Yao’s distinguisher-to-predictor lemma). Let n, d, S ∈ N and let ε ∈ (0, 1). Let X be a random
variable distributed over {0, 1}n, and assume there exists an AC0

d circuit C of size S that distinguishes X from
Un with advantage ε. Then there exists a next-bit predictor for X with advantage ε/(2n) that is computable
by an AC0

d circuit of size S.

Proof. The first step is a hybrid argument. Sample R ∼ Un independently of X. For each i ∈ {0, 1, . . . , n},
define

Y (i) = X1X2 . . . XiRi+1Ri+2 . . . Rn,

so Y (0) = R and Y (n) = X. Then by the triangle inequality,

ε < |Pr[C(R) = 1]− Pr[C(X) = 1]| ≤
n∑

i=1

|Pr[C(Y (i−1)) = 1]− Pr[C(Y (i)) = 1]|.

Consequently, there is some i ∈ [n] such that

|Pr[C(Y (i−1)) = 1]− Pr[C(Y (i)) = 1]| > ε

n
.

By flipping the output bit if necessary, we can assume without loss of generality that

Pr[C(Y (i)) = 1] > Pr[C(Y (i−1)) = 1] +
ε

n
. (3)

Intuitively, Eq. (3) says that “C(x) = 1” is a signal suggesting that the first i bits of x were sampled from
the distribution X. This intuition suggests the following randomized next-bit predictor: Given X1, . . . , Xi−1:

1. Sample R ∼ Un.

2. If C(X1X2 . . . Xi−1RiRi+1 . . . Rn) = 1, then output Ri.

3. Otherwise, sample Z ∈ {0, 1} uniformly at random, and output Z.

3

Let Success denote the event that the procedure above correctly outputs Xi. Then

Pr[Success] = Pr[C(Y (i−1)) = 1 and Ri = Xi] + Pr[C(Y (i−1)) = 0 and Z = Xi]

= Pr[C(Y (i)) = 1 and Ri = Xi] + Pr[C(Y (i−1)) = 0 and Z = Xi]

=
1

2
· Pr[C(Y (i)) = 1] +

1

2
Pr[C(Y (i−1)) = 0] (Independence)

>
1

2
· Pr[C(Y (i−1)) = 1] +

ε

2n
+

1

2
Pr[C(Y (i−1)) = 0] (Eq. (3))

=
1

2
+

ε

2n
.

So far, we have described a randomized next-bit predictor. By averaging, there is some way to fix the internal
randomness in the predictor (R and Z) while preserving the advantage. Now we have three cases based on
the fixed values of R and Z.

• If Ri = Z, then the predictor is a constant function.

• If Ri = 1 and Z = 0, then the predictor has the form C ′(X1 . . . Xi−1) = C(X1 . . . Xi−1Ri . . . Rn).

• If Ri = 0 and Z = 1, then the predictor has the form C ′(X1 . . . Xi−1) = 1− C(X1 . . . Xi−1Ri . . . Rn).

In all three cases, the predictor is computable by an AC0
d circuit of size at most S.

Proof of Theorem 2. Let G be the generator from Eq. (1), and suppose there exists an AC0
d circuit of size

S that distinguishes G(Us) from Un with advantage ε. By Lemma 2, there exists a next-bit predictor for
G(Us) with advantage ε/(2n), computable by an AC0

d circuit of size S. By Theorem 3, this implies that

either S ≥ 2r
Ω(1/d) − poly(n) or else ε/(2n) ≤ 2−rΩ(1/d)

. Either way, we get r ≤ r∗ = (log(S/ε))O(d). Taking
a contrapositive, we have shown that if construct G using r = r∗ + 1, then G fools AC0

d circuits of size S
with error ε. This generator is clearly computable in poly(n) time, and furthermore, it has seed length
s = O(r2) = (log(S/ε))O(d).

References

[HH24] Pooya Hatami and William Hoza. “Paradigms for Unconditional Pseudorandom Generators”. In:
Foundations and Trends in Theoretical Computer Science 16.1-2 (2024), pp. 1–210. issn: 1551-305X.
doi: 10.1561/0400000109.

4

https://doi.org/10.1561/0400000109

	Pseudorandom generators
	Generating unpredictable bits
	Yao's distinguisher-to-predictor lemma

