The Nisan-Wigderson pseudorandom generator (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago Instructor: William Hoza (williamhoza@uchicago.edu)

1 Pseudorandom generators

Previously, we proved the following theorem, showing that AC^0 circuits do a very poor job of computing or even approximating the parity function.

Theorem 1 (Non-optimal bound on the correlation between parity and AC^0). If $C: \{0,1\}^r \to \{0,1\}$ is an AC^0_d circuit, then either C has size $2^{r^{\Omega(1/d)}},$ or else

$$
\Pr_{x \in \{0,1\}^r} [C(x) = \text{PARITY}_r(x)] \le \frac{1}{2} + 2^{-r^{\Omega(1/d)}}.
$$

Next, as an application of [Theorem 1,](#page-0-0) we will construct a *pseudorandom generator* (PRG) that fools AC^0 circuits. That is, we will show how to use a small number of truly random bits to sample a long sequence of bits that "appear random" to any AC^0 circuit. To make this precise, let U_n denote the uniform distribution over $\{0,1\}^n$. A PRG is defined as follows.

Definition 1 (Distinguishers, fooling, and PRGs). Let X be a distribution over $\{0,1\}^n$, and let $C: \{0,1\}^n \to$ $\{0, 1\}$. We say that C distinguishes X from U_n with advantage ε if

$$
|\Pr[C(X) = 1] - \Pr[C(U_n) = 1]| > \varepsilon.
$$

Otherwise, we say that X fools C with error ε . A pseudorandom generator (PRG) is a function $G: \{0,1\}^s \to$ $\{0,1\}^n$. We say that G fools C with error ε if $G(U_s)$ fools C with error ε . The parameter s is called the seed length of the PRG.

We will use [Theorem 1](#page-0-0) to prove the following.

Theorem 2 (PRG that fools AC^0). For every $n, S, d \in \mathbb{N}$ such that $S \geq n$, for every $\varepsilon \in (0, 1)$, there exists a $PRG G: \{0,1\}^s \rightarrow \{0,1\}^n$ such that:

- The generator G fools all AC_d^0 circuits of size at most S with error ε .
- The seed length is $s = (\log(S/\varepsilon))^{O(d)}$.
- Given the parameters n, S, d, ε and a seed $x \in \{0,1\}^s$, the output $G(x)$ can be computed in $\text{poly}(n)$ time.

Other than [Theorem 1,](#page-0-0) the proof of [Theorem 2](#page-0-1) uses barely any facts about AC^0 . That is, the proof technique is a general framework for converting correlation bounds into PRGs, called the "Nisan-Wigderson framework." In these lecture notes, we will focus on the case of AC^0 for simplicity's sake, but you can study a more general formulation of the framework in, for example, Hatami and Hoza's survey [\[HH24\]](#page-3-0).

2 Generating unpredictable bits

Our goal is to sample pseudorandom bits that are *indistinguishable* from uniform random bits by AC^0 circuits. First, we will show how to sample pseudorandom bits such that each bit is *unpredictable* by AC^0 circuits that get to see all the previous bits.

Definition 2 (Next-bit predictors). Let X be a distribution over $\{0,1\}^n$ and let $i \in [n]$. A next-bit predictor for X with advantage ε is a function $C: \{0,1\}^{i-1} \to \{0,1\}$, for some $i \in [n]$, such that

$$
\Pr[C(X_1, X_2, \dots, X_{i-1}) = X_i] > \frac{1}{2} + \varepsilon.
$$

For example, if we define $G: \{0,1\}^{n-1} \to \{0,1\}^n$ by $G(x) = (x, x_1 \oplus x_2 \oplus \cdots \oplus x_{n-1})$, then [Theorem 1](#page-0-0) immediately implies that next-bit predictors for $G(U_{n-1})$ with non-negligible advantage cannot be computed in AC^0 . To improve the seed length, our approach will be to apply the XOR operation to n different subsets of the seed bits. We will use the following family of subsets.

Lemma 1 (Nearly disjoint sets). For every $r, n \in \mathbb{N}$ with $r \leq n$, there exist $S_1, S_2, \ldots, S_n \subseteq [s]$, where $s = O(r^2)$, such that:

- $|S_1| = |S_2| = \cdots = |S_n| = r$.
- For every $i, j \in [n]$ such that $i \neq j$, we have $|S_i \cap S_j| < \log n$.
- Given r and n, the sets S_1, \ldots, S_n can be constructed in poly(n) time.

Proof. In poly(r) time, we can find a prime number $p \in [r, 2r]$ via naïve brute-force search. (Such a prime [always exists.](https://en.wikipedia.org/wiki/Bertrand%27s_postulate)) For each string $a = (a_0, a_1, \ldots, a_{\log n-1}) \in \{0, 1\}^{\log n} \cong [n]$, we define

$$
S_a = \{(x, a_0 + a_1x + a_2x^2 + \dots + a_{\log n - 1}x^{\log n - 1} \bmod p) : x \in [r]\}.
$$

In other words, if we let \mathbb{F}_p denote the field of integers modulo p and we define $P_a \in \mathbb{F}_p[x]$ by $P_a(x) =$ $a_0 + a_1x + \cdots + a_{\log n-1}x^{\log n-1}$, then $S_a = \{(x, P_a(x)) : x \in [r]\}.$

Clearly, $|S_a| = r$, and $S_a \subseteq \mathbb{F}_p^2 \cong [p^2]$. Constructing these sets just involves some simple arithmetic. Finally, if $a \neq b$, we have $|S_a \cap S_b| = |\{x \in [r] : P_a(x) - P_b(x) = 0\}|$. Over any field, a nonzero degree-D polynomial can have at most D distinct roots.^{[1](#page-1-0)} Consequently, $P_a - P_b$ has at most log n–1 distinct roots. \Box

We define $G: \{0,1\}^s \to \{0,1\}^n$ by the formula

$$
G(x) = \left(\bigoplus_{i \in S_1} x_i, \bigoplus_{i \in S_2} x_i, \dots, \bigoplus_{i \in S_n} x_i\right),\tag{1}
$$

where $S_1, \ldots, S_n \subseteq [s]$ are the sets from [Lemma 1,](#page-1-1) using a value r that we will choose later.

Theorem 3 (The NW PRG is unpredictable). Let $C: \{0,1\}^{j-1} \to \{0,1\}$ be a next-bit predictor for $G(U_s)$ with advantage ε , where G is defined above, and assume that C can be computed by an AC_d^0 circuit of size S. Then either $S \geq 2^{r^{\Omega(1/d)}} - \text{poly}(n)$ or else $\varepsilon \leq 2^{-r^{\Omega(1/d)}}$.

Proof. The definition of next-bit predictors says that

$$
\Pr_{x \in \{0,1\}^s} \left[C \left(\bigoplus_{i \in S_1} x_i, \dots, \bigoplus_{i \in S_{j-1}} x_i \right) = \bigoplus_{i \in S_j} x_i \right] > \frac{1}{2} + \varepsilon.
$$

The best case is at least as good as the average case, so there is some way of fixing x_i for all $i \notin S_j$ such that we preserve the advantage:

$$
\Pr_{x \in \{0,1\}^{S_j}} \left[C \left(\bigoplus_{i \in S_1} x_i, \dots, \bigoplus_{i \in S_{j-1}} x_i \right) = \bigoplus_{i \in S_j} x_i \right] > \frac{1}{2} + \varepsilon. \tag{2}
$$

¹Proof by induction on D: Let x_* be a root of a degree-D polynomial P. Perform long division to write $P(x) = (x-x_*)\cdot P'(x) + c$ for some constant c. Then $P(x_*) = c$, so $c = 0$, so $P(x) = (x - x_*) \cdot P'(x)$. If y_* is a root of P with $y_* \neq x_*$, then y_* must be a root of P', because [a product of nonzero field elements is always nonzero.](https://en.wikipedia.org/wiki/Field_(mathematics)#Consequences_of_the_definition) By induction, P' has at most $D-1$ distinct roots.

For each $k \in [j-1]$, define $b_k = \bigoplus_{i \in S_k \setminus S_j} x_i$ (a parity involving only the fixed bits). Define $C' : \{0,1\}^{S_j} \to$ $\{0,1\}$ by the rule

$$
C'(x) = C\left(b_1 \oplus \bigoplus_{i \in S_1 \cap S_j} x_i, \ldots, b_{j-1} \oplus \bigoplus_{i \in S_{j-1} \cap S_j} x_i\right).
$$

Then [Eq. \(2\)](#page-1-2) implies that C' correlates with PARITY_r:

$$
\Pr_{x \in \{0,1\}^{S_j}}[C'(x) = \text{PARITY}_r(x)] > \frac{1}{2} + \varepsilon.
$$

Each XOR operation $\bigoplus_{i\in S_k\cap S_j}x_i$ can be performed by a polynomial-size brute-force DNF formula, because $|S_k \cap S_j| < \log n$. Therefore, C' can be computed by an AC_{d+2}^0 circuit of size $S + \text{poly}(n)$. Consequently, by [Theorem 1,](#page-0-0) either $\varepsilon \leq 2^{-r^{\Omega(1/d)}}$, or else $S \geq 2^{r^{\Omega(1/d)}}$ – poly (n) . \Box

3 Yao's distinguisher-to-predictor lemma

The last ingredient in the proof of [Theorem 2](#page-0-1) is the following lemma. We specialize to the case of AC^0 circuits only for simplicity's sake.

Lemma 2 (Yao's distinguisher-to-predictor lemma). Let $n, d, S \in \mathbb{N}$ and let $\varepsilon \in (0, 1)$. Let X be a random variable distributed over $\{0,1\}^n$, and assume there exists an AC_d^0 circuit C of size S that distinguishes X from U_n with advantage ε . Then there exists a next-bit predictor for X with advantage $\varepsilon/(2n)$ that is computable by an AC_d^0 circuit of size S.

Proof. The first step is a hybrid argument. Sample $R \sim U_n$ independently of X. For each $i \in \{0, 1, \ldots, n\}$, define

$$
Y^{(i)} = X_1 X_2 \dots X_i R_{i+1} R_{i+2} \dots R_n,
$$

so $Y^{(0)} = R$ and $Y^{(n)} = X$. Then by the triangle inequality,

$$
\varepsilon < |\Pr[C(R) = 1] - \Pr[C(X) = 1]| \le \sum_{i=1}^{n} |\Pr[C(Y^{(i-1)}) = 1] - \Pr[C(Y^{(i)}) = 1]|.
$$

Consequently, there is some $i \in [n]$ such that

$$
|\Pr[C(Y^{(i-1)}) = 1] - \Pr[C(Y^{(i)}) = 1]| > \frac{\varepsilon}{n}.
$$

By flipping the output bit if necessary, we can assume without loss of generality that

$$
\Pr[C(Y^{(i)}) = 1] > \Pr[C(Y^{(i-1)}) = 1] + \frac{\varepsilon}{n}.\tag{3}
$$

Intuitively, [Eq. \(3\)](#page-2-0) says that " $C(x) = 1$ " is a signal suggesting that the first i bits of x were sampled from the distribution X. This intuition suggests the following randomized next-bit predictor: Given X_1, \ldots, X_{i-1} :

- 1. Sample $R \sim U_n$.
- 2. If $C(X_1X_2...X_{i-1}R_iR_{i+1}...R_n) = 1$, then output R_i .
- 3. Otherwise, sample $Z \in \{0,1\}$ uniformly at random, and output Z.

Let Success denote the event that the procedure above correctly outputs X_i . Then

$$
\Pr[\text{Success}] = \Pr[C(Y^{(i-1)}) = 1 \text{ and } R_i = X_i] + \Pr[C(Y^{(i-1)}) = 0 \text{ and } Z = X_i]
$$

\n
$$
= \Pr[C(Y^{(i)}) = 1 \text{ and } R_i = X_i] + \Pr[C(Y^{(i-1)}) = 0 \text{ and } Z = X_i]
$$

\n
$$
= \frac{1}{2} \cdot \Pr[C(Y^{(i)}) = 1] + \frac{1}{2} \Pr[C(Y^{(i-1)}) = 0]
$$

\n
$$
> \frac{1}{2} \cdot \Pr[C(Y^{(i-1)}) = 1] + \frac{\varepsilon}{2n} + \frac{1}{2} \Pr[C(Y^{(i-1)}) = 0]
$$

\n
$$
= \frac{1}{2} + \frac{\varepsilon}{2n}.
$$

\n(Hdependence)
\n(*Eq. (3)*)

So far, we have described a randomized next-bit predictor. By averaging, there is some way to fix the internal randomness in the predictor $(R \text{ and } Z)$ while preserving the advantage. Now we have three cases based on the fixed values of R and Z .

- If $R_i = Z$, then the predictor is a constant function.
- If $R_i = 1$ and $Z = 0$, then the predictor has the form $C'(X_1 \dots X_{i-1}) = C(X_1 \dots X_{i-1} R_i \dots R_n)$.
- If $R_i = 0$ and $Z = 1$, then the predictor has the form $C'(X_1 \dots X_{i-1}) = 1 C(X_1 \dots X_{i-1} R_i \dots R_n)$.

 \Box

In all three cases, the predictor is computable by an AC_d^0 circuit of size at most S.

Proof of [Theorem 2.](#page-0-1) Let G be the generator from [Eq. \(1\),](#page-1-3) and suppose there exists an AC_d^0 circuit of size S that distinguishes $G(U_s)$ from U_n with advantage ε . By [Lemma 2,](#page-2-1) there exists a next-bit predictor for $G(U_s)$ with advantage $\varepsilon/(2n)$, computable by an AC_d^0 circuit of size S. By [Theorem 3,](#page-1-4) this implies that either $S \geq 2^{r^{\Omega(1/d)}} - \text{poly}(n)$ or else $\varepsilon/(2n) \leq 2^{-r^{\Omega(1/d)}}$. Either way, we get $r \leq r_* = (\log(S/\varepsilon))^{O(d)}$. Taking a contrapositive, we have shown that if construct G using $r = r_* + 1$, then G fools AC_d^0 circuits of size S with error ε . This generator is clearly computable in poly (n) time, and furthermore, it has seed length $s = O(r^2) = (\log(S/\varepsilon))^{O(d)}.$ \Box

References

[HH24] Pooya Hatami and William Hoza. "Paradigms for Unconditional Pseudorandom Generators". In: Foundations and Trends in Theoretical Computer Science 16.1-2 (2024), pp. 1–210. issn: 1551-305X. doi: [10.1561/0400000109](https://doi.org/10.1561/0400000109).