
Natural proofs (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 Sipser’s program

How can we prove P ̸= NP? “Sipser’s program” is the following strategy: Prove NP ̸⊆ C for stronger and
stronger circuit classes C, until eventually we prove NP ̸⊆ P/poly, which implies P ̸= NP. For example,
in Homework Exercise 1, you proved NP ̸⊆ AC0

2; in class, we proved NP ̸⊆ AC0 and NP ̸⊆ AC0[⊕]; and in
Homework Exercise 6, you proved NP ̸⊆ AC0[p] for every prime p.

Unfortunately, despite many decades of intense effort, Sipser’s program has not gone much further than
AC0[p]. For example, it remains an open problem to prove NP ̸⊆ TC0. In these notes, we will take a step
back and try to reason abstractly about the process of proving circuit lower bounds.

• Why haven’t we managed to prove NP ̸⊆ TC0? What makes AC0 and TC0 so different?

• What will it take to prove NP ̸⊆ TC0? What types of techniques should we explore?

2 Natural proofs

For a function f : {0, 1}∗ → {0, 1}, let us use the notation fn : {0, 1}n → {0, 1} to denote the restriction of f
to the domain {0, 1}n. Let C be a class of Boolean functions f : {0, 1}∗ → {0, 1}, such as C = AC0 or C = TC0.
In general, how can one prove NP ̸⊆ C? It is natural to try the following two-step approach.

1. Prove that functions in C have some “special property.” For example, maybe we can show that functions
in C drastically simplify under random restrictions, or maybe we can show that they can be computed
by low-degree probabilistic polynomials.

2. Prove that some function h ∈ NP does not have that special property. For example, maybe a good
choice is the parity function, or the majority function, or Andreev’s function, or 3-SAT.

Actually, it is more standard to reason about the complement property, i.e., we will identify a property that
the hard function h does have and functions in C do not have. We use the letter H to denote this property
(H for “Hard.”)

Mathematically, we can model H as a function H : {0, 1}∗ → {0, 1}. Given a function fn : {0, 1}n → {0, 1},
described as an N -bit truth table where N = 2n, the value H(fn) ∈ {0, 1} indicates whether the function fn
has the property H. We say that H is useful against C if H(fn) = 0 for all f ∈ C and all sufficiently large
n ∈ N. Clearly, if H is useful against C and H(hn) = 1 for all n, then h /∈ C.

Experience shows that when we can prove a circuit lower bound, we can often construct a closely related
property H that is “mathematically nice” in addition to being useful, in the following sense.

Definition 1 (Natural property). Let H : {0, 1}∗ → {0, 1} and let H be a complexity class. We say that H
is H-natural if H ∈ H and for every n ∈ N, when we pick fn : {0, 1}n → {0, 1} uniformly at random, we have
Pr[H(fn) = 1] ≥ 2−O(n).

The first condition (H ∈ H) is called constructivity. We emphasize that the input to H is an N -bit truth
table where N = 2n. So, for example, H is P-natural if H(fn) can be computed in 2O(n) time. Constructivity
captures the idea that H is a relatively “concrete” property that we can feasibly reason about.

The second condition (Pr[H(fn) = 1] ≥ 2−O(n)) is called denseness. The threshold 2−O(n) is just one
possible choice; it would also be perfectly reasonable to insist that Pr[H(fn) = 1] ≥ 0.99. This condition
captures the idea that the property H represents something truly special about the functions in C, i.e.,
something that distinguishes functions in C from random functions.

Informally, a natural proof of a circuit lower bound is a proof based on a natural (and useful) property.

1

2.1 Example: Naturalness of the random-restrictions proof that PARITY /∈ AC0

Theorem 1. There exists an AC0
2-natural property H such that H is useful against AC0 and H(PARITYn) = 1.

Proof. Let n ∈ N and let N = 2n. For a function f : {0, 1}n → {0, 1}, define

H(f) = 0 ⇐⇒ there exists ρ ∈ {0, 1, ⋆}n such that |ρ−1(⋆)| ≥
√
n and f |ρ is constant.

Clearly, H(PARITYn) = 1. To show that H is useful against AC0, let C is an AC0
d circuit of size S. By

the AC0 Criticality Theorem, there is a value p = 1/O(logS)d−1 such that if we sample ρ ∼ Rp, then with
probability at least 0.9, the function C|ρ is constant. Furthermore, by the Chernoff bound, except with

probability 2−Ω(n/O(logS)d−1), we have |ρ−1(⋆)| ≥ pn/2. Consequently, if H(C) = 1, then C must have size

2n
Ω(1/d)

.
Next, let us show that H is dense. For any fixed ρ ∈ {0, 1, ⋆}n with at least

√
n stars, if we pick f ∈ {0, 1}N

uniformly at random, the function f |ρ is a random Boolean function on at least
√
n many variables. The

probability that it is a constant function is at most 2 · 2−2
√
n
. There are at most 3n restrictions ρ, so by the

union bound, the probability that H(f) = 0 is at most 3n · 2−2
√
n
= exp(−Ω(2

√
n)).

Finally, let us show that H ∈ AC0
2. For each restriction ρ ∈ {0, 1, ⋆}n and each b ∈ {0, 1}, there is a circuit

Cρ,b consisting of simply a conjunction of literals such that

Cρ,b(f) = 1 ⇐⇒ f |ρ ≡ b.

We can compute H using the formula

¬H(f) =
∨

ρ∈{0,1,⋆}n
|ρ−1(⋆)|≥

√
n

∨
b∈{0,1}

Cρ,b(f).

This is an AC0
2 circuit of size 2O(n) = poly(N).

3 Limitations of AC0-natural proofs

The following theorem should be contrasted with Theorem 1.

Theorem 2. Let H be an AC0-natural property. Then H is not useful against AC0
4[⊕].

Theorem 2 can be interpreted to mean that any proof showing NP ̸⊆ AC0[⊕], including the Razborov-
Smolensky proofs that we studied in this course, must be at least a little bit “unnatural.” The proof of
Theorem 2 is based on the Nisan-Wigderson PRG, which we studied earlier in this course. Each output bit
of the generator is the XOR of a subset of the seed bits, so the following lemma is hopefully not surprising.

Lemma 1 (Implementing the Nisan-Wigderson PRG to run in AC0[⊕]). Let n, d, S ∈ N, let ε ∈ (0, 1), let
N = 2n, and assume S ≥ N . There exists a PRG G : {0, 1}s → {0, 1}N with the following properties.

1. The PRG G fools AC0
d circuits of size S with error ε.

2. For each fixed seed x ∈ {0, 1}s, there is an AC0
4[⊕] circuit Cx : {0, 1}n → {0, 1} of size polylog(S/ε)

such that for every i ∈ [N], we have Cx(i) = G(x)i.

The proof of Lemma 1 is almost the same as the Nisan-Wigderson construction and analysis that we did
in class. The only real difference is that we should use a finite field of characteristic two instead of using a
prime field Fp to construct nearly-disjoint sets. The details are omitted.

2

Proof of Theorem 2 using Lemma 1. Let N ∈ N. By constructivity, HN can be computed by an AC0
d circuit

of size S = poly(N), where d = O(1). Let ε = Prf [H(f) = 1] = 1/ poly(N), where f : {0, 1}n → {0, 1} is
chosen uniformly at random. Let G : {0, 1}s → {0, 1}N be the PRG from Lemma 1 that fools AC0

d circuits of
size S +N with error ε/2. Then

Pr[H(G(Us)) = 1] ≥ Pr[H(UN) = 1]− ε/2 > 0.

Therefore, there is some seed x ∈ {0, 1}s such that H(G(x)) = 1. By Lemma 1, G(x) is the truth table of an
AC0

4[⊕] circuit Cx of size |Cx| = (log(SN/ε))O(d) = poly(n). Therefore, H is not useful against AC0
4[⊕].

4 Limitations of P-natural proofs

In the previous section, we showed that there is no AC0-natural property that is useful against AC0[⊕]. Of
course, AC0 is a relatively weak circuit class, so perhaps it is not very surprising to find that AC0-natural
proofs are limited. Traditionally, we model efficient algorithms using the complexity class P. How powerful
are P-natural proofs?

Using the Razborov-Smolensky technique, one can construct P-natural properties that are useful against
AC0[⊕]. On the other hand, it turns out that P-natural proofs are probably too weak to prove NP ̸⊆ TC0.
The evidence comes from cryptography. A pseudorandom function (PRF) is a distribution F over functions
f : {0, 1}m → {0, 1} that fools every efficient adversary A that only has query access to f , i.e., if we sample
f ∼ F and we sample f ′ : {0, 1}m → {0, 1} uniformly at random, then Pr[Af = 1] ≈ Pr[Af ′

= 1]. Naor and
Reingold [NR04] constructed a candidate PRF such that:

• The PRF is extremely efficient. In particular, Krause and Lucks showed that Supp(F) ⊆ TC0
4 [KL01].1

• The PRF is (seemingly) extremely secure. In particular, it is conjectured that there is some constant
α > 0 such that the PRF fools adversaries that run in time 2m

α
with error 2−mα

.2

Proposition 1. Assume PRFs exist with the parameters described above. Then there does not exist a
P-natural property that is useful against TC0

4.

Proof. We will show the contrapositive. Let H : {0, 1}∗ → {0, 1} be a P-natural property that is useful
against TC0

4. By P-naturalness, there exists a constant c > 1 such that:

• (Constructivity) Given the truth table of a function f : {0, 1}n → {0, 1}, the value H(f) can be computed
in 2cn time.

• (Density) If f : {0, 1}n → {0, 1} is chosen uniformly at random, then Pr[H(f) = 1] ≥ 2−cn.

Now let α > 0 be any constant. Let n ∈ N, let m = (2cn)1/α, and let F be a distribution over functions
f : {0, 1}m → {0, 1} such that Supp(F) ⊆ TC0

4. We will describe an attack on the security of F as a candidate
PRF. Given oracle access to f : {0, 1}m → {0, 1}:

1. Let g be the first 2n bits of the truth table of f .

2. Compute g by making 2n queries.

3. Output H(g).

1To be clear about what this means, Naor and Reingold constructed a family of distributions F0,F1,F2, . . . , where Fm is
a distribution over functions fm : {0, 1}m → {0, 1}. Krause and Lucks showed that there is a constant c ∈ N such that for all
sufficiently large m ∈ N, every fm ∈ Supp(Fm) can be computed by a depth-4 majority circuit of size mc.

2Naor and Reingold prove that their PRF is secure under the so-called “decisional Diffie-Hellman assumption.”

3

https://en.wikipedia.org/wiki/Decisional_Diffie%E2%80%93Hellman_assumption

The running time of the attack described above is 2n · poly(n) + 2cn < 2m
α
. When f is chosen uniformly at

random, g is also uniform random, and hence the attack accepts with probability at least 2−cn > 2−mα
. On

the other hand, if we choose f ∼ F , then f ∈ TC0
4, which implies g ∈ TC0

4 as well, since poly(m) = poly(n).
Since H is useful against TC0

4, we have H(g) = 0, assuming n is sufficiently large, so the attack rejects.
Therefore, F is not secure as a PRF.

The conventional interpretation of Proposition 1 is that we ought to develop more non-natural proof
techniques, so that one day we can prove NP ̸⊆ TC0. Of course, there are other possibilities: maybe the
Naor-Reingold PRF and other candidate PRFs are not actually secure, or maybe NP ⊆ TC0.

References

[KL01] Matthias Krause and Stefan Lucks. “On the minimal hardware complexity of pseudorandom function
generators”. In: Proceedings of the 18th Symposium on Theoretical Aspects of Computer Science
(STACS). 2001, pp. 419–430. doi: 10.1007/3-540-44693-1_37.

[NR04] Moni Naor and Omer Reingold. “Number-theoretic constructions of efficient pseudo-random func-
tions”. In: J. ACM 51.2 (2004), pp. 231–262. issn: 0004-5411. doi: 10.1145/972639.972643.

4

https://doi.org/10.1007/3-540-44693-1_37
https://doi.org/10.1145/972639.972643

	Sipser's program
	Natural proofs
	Example: Naturalness of the random-restrictions proof that PARITY -.25ex-.25ex-.25ex-.25exAC0

	Limitations of AC0-natural proofs
	Limitations of P-natural proofs

