Natural proofs (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago Instructor: William Hoza (williamhoza@uchicago.edu)

1 Sipser's program

How can we prove P \neq NP? "Sipser's program" is the following strategy: Prove NP $\not\subseteq \mathcal{C}$ for stronger and stronger circuit classes C, until eventually we prove NP $\&$ P/poly, which implies P \neq NP. For example, in Homework Exercise 1, you proved $\mathsf{NP} \not\subseteq \mathsf{AC}_2^0$; in class, we proved $\mathsf{NP} \not\subseteq \mathsf{AC}^0$ and $\mathsf{NP} \not\subseteq \mathsf{AC}^0[\oplus]$; and in Homework Exercise 6, you proved $\mathsf{NP} \not\subseteq \mathsf{AC}^0[p]$ for every prime p.

Unfortunately, despite many decades of intense effort, Sipser's program has not gone much further than $AC^0[p]$. For example, it remains an open problem to prove NP $\not\subseteq TC^0$. In these notes, we will take a step back and try to reason abstractly about the process of proving circuit lower bounds.

- Why haven't we managed to prove $\mathsf{NP} \not\subseteq \mathsf{TC}^0$? What makes AC^0 and TC^0 so different?
- What will it take to prove $\mathsf{NP} \not\subseteq \mathsf{TC}^0$? What types of techniques should we explore?

2 Natural proofs

For a function $f: \{0,1\}^* \to \{0,1\}$, let us use the notation $f_n: \{0,1\}^n \to \{0,1\}$ to denote the restriction of f to the domain $\{0,1\}^n$. Let C be a class of Boolean functions $f: \{0,1\}^* \to \{0,1\}$, such as $C = AC^0$ or $C = TC^0$. In general, how can one prove NP $\mathcal{L}C$? It is natural to try the following two-step approach.

- 1. Prove that functions in $\mathcal C$ have some "special property." For example, maybe we can show that functions in $\mathcal C$ drastically simplify under random restrictions, or maybe we can show that they can be computed by low-degree probabilistic polynomials.
- 2. Prove that some function $h \in \mathsf{NP}$ does not have that special property. For example, maybe a good choice is the parity function, or the majority function, or Andreev's function, or 3-SAT.

Actually, it is more standard to reason about the complement property, i.e., we will identify a property that the hard function h does have and functions in $\mathcal C$ do not have. We use the letter H to denote this property $(H for "Hard.")$

Mathematically, we can model H as a function $H: \{0,1\}^* \to \{0,1\}$. Given a function $f_n: \{0,1\}^n \to \{0,1\}$, described as an N-bit truth table where $N = 2ⁿ$, the value $H(f_n) \in \{0, 1\}$ indicates whether the function f_n has the property H. We say that H is useful against C if $H(f_n) = 0$ for all $f \in \mathcal{C}$ and all sufficiently large $n \in \mathbb{N}$. Clearly, if H is useful against C and $H(h_n) = 1$ for all n, then $h \notin \mathcal{C}$.

Experience shows that when we can prove a circuit lower bound, we can often construct a closely related property H that is "mathematically nice" in addition to being useful, in the following sense.

Definition 1 (Natural property). Let $H: \{0,1\}^* \to \{0,1\}$ and let H be a complexity class. We say that H is H-natural if $H \in \mathcal{H}$ and for every $n \in \mathbb{N}$, when we pick $f_n: \{0,1\}^n \to \{0,1\}$ uniformly at random, we have $Pr[H(f_n) = 1] \geq 2^{-O(n)}.$

The first condition $(H \in \mathcal{H})$ is called *constructivity*. We emphasize that the input to H is an N-bit truth table where $N = 2^n$. So, for example, H is P-natural if $H(f_n)$ can be computed in $2^{O(n)}$ time. Constructivity captures the idea that H is a relatively "concrete" property that we can feasibly reason about.

The second condition $(\Pr[H(f_n) = 1] \geq 2^{-O(n)})$ is called *denseness*. The threshold $2^{-O(n)}$ is just one possible choice; it would also be perfectly reasonable to insist that $Pr[H(f_n) = 1] \ge 0.99$. This condition captures the idea that the property H represents something truly special about the functions in \mathcal{C} , i.e., something that distinguishes functions in C from random functions.

Informally, a *natural proof* of a circuit lower bound is a proof based on a natural (and useful) property.

2.1 Example: Naturalness of the random-restrictions proof that PARITY $\notin AC^0$

Theorem 1. There exists an AC_2^0 -natural property H such that H is useful against AC^0 and $H(PARITY_n) = 1$.

Proof. Let $n \in \mathbb{N}$ and let $N = 2^n$. For a function $f: \{0, 1\}^n \to \{0, 1\}$, define

 $H(f) = 0 \iff \text{there exists } \rho \in \{0, 1, \star\}^n \text{ such that } |\rho^{-1}(\star)| \geq \sqrt{n} \text{ and } f|_{\rho} \text{ is constant.}$

Clearly, $H(\text{PARITY}_n) = 1$. To show that H is useful against AC^0 , let C is an AC_d^0 circuit of size S. By the AC⁰ Criticality Theorem, there is a value $p = 1/O(\log S)^{d-1}$ such that if we sample $\rho \sim \mathcal{R}_p$, then with probability at least 0.9, the function $C|_{\rho}$ is constant. Furthermore, by the Chernoff bound, except with probability $2^{-\Omega(n/O(\log S)^{d-1})}$, we have $|\rho^{-1}(\star)| \geq pn/2$. Consequently, if $H(C) = 1$, then C must have size $2^{n^{\Omega(1/d)}}$.

Next, let us show that H is dense. For any fixed $\rho \in \{0,1,\star\}^n$ with at least \sqrt{n} stars, if we pick $f \in \{0,1\}^N$ where the function $f|_{\rho}$ is a random Boolean function on at least \sqrt{n} many variables. The uniformly at random, the function $f|_{\rho}$ is a random Boolean function on at least \sqrt{n} many variables. The probability that it is a constant function is at most $2 \cdot 2^{-2\sqrt{n}}$. There are at most 3^n restrictions ρ , so by the union bound, the probability that $H(f) = 0$ is at most $3^n \cdot 2^{-2\sqrt{n}} = \exp(-\Omega(2^{\sqrt{n}})).$

Finally, let us show that $H \in AC_2^0$. For each restriction $\rho \in \{0, 1, \star\}^n$ and each $b \in \{0, 1\}$, there is a circuit $C_{\rho,b}$ consisting of simply a conjunction of literals such that

$$
C_{\rho,b}(f) = 1 \iff f|_{\rho} \equiv b.
$$

We can compute H using the formula

$$
\neg H(f) = \bigvee_{\substack{\rho \in \{0,1,\star\}^n \\ |\rho^{-1}(\star)| \ge \sqrt{n}}} \bigvee_{b \in \{0,1\}} C_{\rho,b}(f).
$$

This is an AC_2^0 circuit of size $2^{O(n)} = \text{poly}(N)$.

3 Limitations of AC^0 -natural proofs

The following theorem should be contrasted with [Theorem 1.](#page-1-0)

Theorem 2. Let H be an AC^0 -natural property. Then H is not useful against $AC_4^0[\oplus]$.

[Theorem 2](#page-1-1) can be interpreted to mean that any proof showing $\mathsf{NP} \not\subseteq \mathsf{AC}^0[\oplus]$, including the Razborov-Smolensky proofs that we studied in this course, must be at least a little bit "unnatural." The proof of [Theorem 2](#page-1-1) is based on the Nisan-Wigderson PRG, which we studied earlier in this course. Each output bit of the generator is the XOR of a subset of the seed bits, so the following lemma is hopefully not surprising.

Lemma 1 (Implementing the Nisan-Wigderson PRG to run in $AC^0[\oplus]$). Let $n, d, S \in \mathbb{N}$, let $\varepsilon \in (0,1)$, let $N=2^n$, and assume $S\geq N$. There exists a PRG G: $\{0,1\}^s\to\{0,1\}^N$ with the following properties.

- 1. The PRG G fools AC_d^0 circuits of size S with error ε .
- 2. For each fixed seed $x \in \{0,1\}^s$, there is an $AC_4^0[\oplus]$ circuit $C_x: \{0,1\}^n \to \{0,1\}$ of size polylog (S/ε) such that for every $i \in [N]$, we have $C_x(i) = G(x)_i$.

The proof of [Lemma 1](#page-1-2) is almost the same as the Nisan-Wigderson construction and analysis that we did in class. The only real difference is that we should use a finite field of characteristic two instead of using a prime field \mathbb{F}_p to construct nearly-disjoint sets. The details are omitted.

Proof of [Theorem 2](#page-1-1) using [Lemma 1.](#page-1-2) Let $N \in \mathbb{N}$. By constructivity, H_N can be computed by an AC_d⁰ circuit of size $S = \text{poly}(N)$, where $d = O(1)$. Let $\varepsilon = \Pr_f[H(f) = 1] = 1/\text{poly}(N)$, where $f: \{0, 1\}^n \to \{0, 1\}$ is chosen uniformly at random. Let $G: \{0,1\}^s \to \{0,1\}^N$ be the PRG from [Lemma 1](#page-1-2) that fools AC_d^0 circuits of size $S + N$ with error $\varepsilon/2$. Then

$$
\Pr[H(G(U_s)) = 1] \ge \Pr[H(U_N) = 1] - \varepsilon/2 > 0.
$$

Therefore, there is some seed $x \in \{0,1\}^s$ such that $H(G(x)) = 1$. By [Lemma 1,](#page-1-2) $G(x)$ is the truth table of an $AC_4^0[\oplus]$ circuit C_x of size $|C_x| = (\log(SN/\varepsilon))^{O(d)} = \text{poly}(n)$. Therefore, H is not useful against $AC_4^0[\oplus]$. \Box

4 Limitations of P-natural proofs

In the previous section, we showed that there is no AC^0 -natural property that is useful against $AC^0[\oplus]$. Of course, AC^0 is a relatively weak circuit class, so perhaps it is not very surprising to find that AC^0 -natural proofs are limited. Traditionally, we model efficient algorithms using the complexity class P. How powerful are P-natural proofs?

Using the Razborov-Smolensky technique, one can construct P-natural properties that are useful against $AC^0[\oplus]$. On the other hand, it turns out that P-natural proofs are probably too weak to prove NP $\nsubseteq \mathsf{TC}^0$. The evidence comes from cryptography. A *pseudorandom function* (PRF) is a distribution $\mathcal F$ over functions $f: \{0,1\}^m \to \{0,1\}$ that fools every efficient adversary A that only has query access to f, i.e., if we sample $f \sim \mathcal{F}$ and we sample $f' : \{0,1\}^m \to \{0,1\}$ uniformly at random, then $\Pr[A^f = 1] \approx \Pr[A^{f'} = 1]$. Naor and Reingold [\[NR04\]](#page-3-0) constructed a candidate PRF such that:

- The PRF is extremely efficient. In particular, Krause and Lucks showed that $\text{Supp}(\mathcal{F}) \subseteq \text{TC}_4^0$ [\[KL01\]](#page-3-1).^{[1](#page-2-0)}
- The PRF is (seemingly) extremely secure. In particular, it is conjectured that there is some constant $\alpha > 0$ such that the PRF fools adversaries that run in time $2^{m^{\alpha}}$ $2^{m^{\alpha}}$ with error $2^{-m^{\alpha}}$.²

Proposition 1. Assume PRFs exist with the parameters described above. Then there does not exist a P-natural property that is useful against TC_4^0 .

Proof. We will show the contrapositive. Let $H: \{0,1\}^* \to \{0,1\}$ be a P-natural property that is useful against TC_4^0 . By P-naturalness, there exists a constant $c > 1$ such that:

- (Constructivity) Given the truth table of a function $f: \{0,1\}^n \to \{0,1\}$, the value $H(f)$ can be computed in 2^{cn} time.
- (Density) If $f: \{0,1\}^n \to \{0,1\}$ is chosen uniformly at random, then $Pr[H(f) = 1] \geq 2^{-cn}$.

Now let $\alpha > 0$ be any constant. Let $n \in \mathbb{N}$, let $m = (2cn)^{1/\alpha}$, and let F be a distribution over functions $f: \{0,1\}^m \to \{0,1\}$ such that $\mathsf{Supp}(\mathcal{F}) \subseteq \mathsf{TC}_4^0$. We will describe an attack on the security of $\mathcal F$ as a candidate PRF. Given oracle access to $f: \{0,1\}^m \to \{0,1\}$:

- 1. Let g be the first 2^n bits of the truth table of f.
- 2. Compute g by making 2^n queries.
- 3. Output $H(g)$.

¹To be clear about what this means, Naor and Reingold constructed a family of distributions $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$, where \mathcal{F}_m is a distribution over functions $f_m: \{0,1\}^m \to \{0,1\}$. Krause and Lucks showed that there is a constant $c \in \mathbb{N}$ such that for all sufficiently large $m \in \mathbb{N}$, every $f_m \in \text{Supp}(\mathcal{F}_m)$ can be computed by a depth-4 majority circuit of size m^c .

²Naor and Reingold prove that their PRF is secure under the so-called ["decisional Diffie-Hellman assumption."](https://en.wikipedia.org/wiki/Decisional_Diffie%E2%80%93Hellman_assumption)

The running time of the attack described above is $2^n \cdot \text{poly}(n) + 2^{cn} < 2^{m^{\alpha}}$. When f is chosen uniformly at random, g is also uniform random, and hence the attack accepts with probability at least $2^{-cn} > 2^{-m\alpha}$. On the other hand, if we choose $f \sim \mathcal{F}$, then $f \in \mathsf{TC}_4^0$, which implies $g \in \mathsf{TC}_4^0$ as well, since $\text{poly}(m) = \text{poly}(n)$. Since H is useful against TC_4^0 , we have $H(g) = 0$, assuming n is sufficiently large, so the attack rejects. Therefore, $\mathcal F$ is not secure as a PRF. \Box

The conventional interpretation of [Proposition 1](#page-2-2) is that we ought to develop more non-natural proof techniques, so that one day we can prove $\mathsf{NP} \not\subseteq \mathsf{TC}^0$. Of course, there are other possibilities: maybe the Naor-Reingold PRF and other candidate PRFs are not actually secure, or maybe $\mathsf{NP} \subseteq \mathsf{TC}^0$.

References

- [KL01] Matthias Krause and Stefan Lucks. "On the minimal hardware complexity of pseudorandom function generators". In: Proceedings of the 18th Symposium on Theoretical Aspects of Computer Science $(STACS)$. 2001, pp. 419–430. doi: [10.1007/3-540-44693-1_37](https://doi.org/10.1007/3-540-44693-1_37).
- [NR04] Moni Naor and Omer Reingold. "Number-theoretic constructions of efficient pseudo-random func-tions". In: J. ACM 51.2 (2004), pp. 231–262. ISSN: 0004-5411. DOI: [10.1145/972639.972643](https://doi.org/10.1145/972639.972643).