The multi-switching lemma (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago Instructor: William Hoza (williamhoza@uchicago.edu)

1 The multi-switching lemma

In these lecture notes, we prove the "multi-switching lemma." This powerful lemma is a generalization of the switching lemma, and it turns out to be the key to proving the AC^0 Criticality Theorem that we discussed previously.

Lemma 1 (The Multi-Switching Lemma). Let C_1, \ldots, C_S be width-w DNF formulas, let $p \in (0, 1)$ and let $D \in \mathbb{N}$. Sample $\rho \sim R_p$. Then except with probability $O(pw)^D$, there exist decision trees $T_{C_1,\rho}, \ldots, T_{C_S,\rho}$ of depth at most $D - 1 + \log S$ computing $C_1|_{\rho}, \ldots, C_S|_{\rho}$, such that the first D - 1 queries made by $T_{C_i,\rho}$ do not depend on i.

The standard switching lemma is the case S = 1. The failure probability bound is usually stated as $S \cdot O(pw)^D$, but we will prove the stronger bound $O(pw)^D$.

The proof of the multi-switching lemma builds on the proof of the standard switching lemma. Let $\mathsf{CDT}_{C_i,\rho}$ denote the canonical decision tree for $C_i|_{\rho}$ (see the switching lemma lecture notes). Let $q = \lfloor \log S \rfloor$, and let $i_* \in [S]$. Let A_{ρ} denote the following decision tree, which makes queries to $x \in \{0,1\}^n$ and outputs $\pi \in \{0,1,\star\}^n$:

- 1. Let $\pi^{(1)} = \rho$. For $t = 1, 2, 3, \ldots$:
 - (a) Let $i_t \in [S]$ maximize $d_t := \mathsf{Depth}(\mathsf{CDT}_{C_{i_t},\pi^{(t)}})$.
 - (b) If $d_t \leq q$, then halt and output $\pi^{(t)}$. Otherwise:
 - (c) Let Q_t be the set of variables queried on the first length- (d_t) path of $\mathsf{CDT}_{C_{i,\pi}(t)}$.
 - (d) For every $j \in Q_t$, query x_j , and let

$$\pi_j^{(t+1)} = \begin{cases} \pi_j^{(t)} & \text{if } j \notin Q_t \\ x_j & \text{if } j \in Q_t. \end{cases}$$

The tree $T_{C_i,\rho}$ computes $\pi = A_{\rho}(x)$ and then simulates $\mathsf{CDT}_{C_i,\pi}$. To bound the depth of A_{ρ} , we will design a strategy for guessing many points in $\rho^{-1}(\star)$ given only a uniform random completion y of ρ . Let $d \in \mathbb{N}$, and let $\mathsf{StarGuesser}_{C_i,d}$ denote the strategy for guessing stars that we used when we proved the switching lemma (see the switching lemma lecture notes). Our new star guessing strategy, denoted $\mathsf{MultiStarGuesser}_d$, is as follows.

- 1. Pick $x \in \{0,1\}^n$ uniformly at random.
- 2. Pick a decomposition of d into positive integers, $d = \hat{d}_1 + \hat{d}_2 + \cdots + \hat{d}_r$, uniformly at random.
- 3. Initialize $z \leftarrow y$. For $t = 1, 2, \ldots, r$:
 - (a) Pick a term $\hat{i}_t \in [S]$ uniformly at random.
 - (b) Compute $\hat{Q}_t = \mathsf{StarGuesser}_{C_{\hat{i}_t}, \hat{d}_t}(z)$.
 - (c) For every $j \in \widehat{Q}_t$, set $z_j \leftarrow x_j$.
- 4. Output $\widehat{Q}_1 \cup \cdots \cup \widehat{Q}_r$.

We rely on the following fact about StarGuesser.

Claim 1 (Correctness of StarGuesser). Let C be a width-w DNF, let $d \in \mathbb{N}$, let ρ be a restriction such that $\mathsf{Depth}(\mathsf{CDT}_{C,\rho}) = d$, and let Q be the set of variables queried on the first length-d path of $\mathsf{CDT}_{C,\rho}$. There exists a string $z_{C,\rho}^* \in \{0,1\}^Q$ such that for every completion z of ρ satisfying $z_Q = z_{C,\rho}^*$,

$$\Pr[\mathsf{StarGuesser}_d(z) \ outputs \ Q] \geq \frac{1}{O(w)^d}$$

where the probability is with respect to only the internal randomness of $StarGuesser_d$.

We implicitly proved Claim 1 in the lecture notes on the switching lemma. Now let us use Claim 1 to prove the correctness of $MultiStarGuesser_d$.

Claim 2 (Correctness of MultiStarGuesser_d). Let MultiWin_d denote the event that MultiStarGuesser_d(y) outputs d distinct points, each of which is in $\rho^{-1}(\star)$. Then

$$\Pr[\mathsf{MultiWin}_d \mid \mathsf{Depth}(\mathsf{A}_{\rho}) = d] \ge \frac{1}{O(w)^d}.$$

(The probability above is with respect to the random choices of ρ and y and the internal randomness of MultiStarGuesser_d.)

Proof. Fix any choice of ρ such that $\text{Depth}(A_{\rho}) = d$. With probability at least 2^{-d+1} , the strategy MultiStarGuesser_d picks an input $x \in \{0, 1\}^n$ on which A_{ρ} makes d queries. Fix any such x. Let $i_1, i_2, \ldots, i_r \in [S]$ be the DNFs visited by A_{ρ} on x, let Q_1, Q_2, \ldots, Q_r be the sets of variables queried when visiting those DNFs, and let $\rho = \pi^{(1)}, \pi^{(2)}, \ldots, \pi^{(r)}$ be the restrictions used to define the canonical decision tree in those iterations.

With probability 2^{-d+1} , the strategy MultiStarGuesser_d chooses $\hat{d}_t = |Q_t|$ for every $t \in [r]$. Assume this occurs. With probability 2^{-d} , we choose a completion y of ρ such that for every $t \in [r]$, we have $y_{Q_t} = z^*_{C_{i_t},\pi^{(i_t)}}$, where $z^*_{C_{i_t},\pi^{(i_t)}}$ is the string from Claim 1. Assume that this occurs.

With probability $1/S^r$, the strategy $\mathsf{MultiStarGuesser}_d$ chooses $\hat{i}_t = i_t$ for every $t \in [r]$. Assume that this occurs. Then, with respect to the internal randomness of $\mathsf{StarGuesser}_{\hat{d}_t}$, with probability at least $1/O(w)^d$, we get $\hat{Q}_t = Q_t$ for every t, and hence $\mathsf{MultiWin}_d$ occurs.

The tree A_{ρ} makes at least q queries in each iteration, so $r \leq d/q$. Therefore, our overall success probability is at least

$$\frac{1}{2^d} \cdot \frac{1}{2^d} \cdot \frac{1}{2^d} \cdot \frac{1}{2^d} \cdot \frac{1}{S^{d/q}} \cdot \frac{1}{O(w)^d} = \frac{1}{O(w \cdot S^{1/q})^d}.$$

Finally, recall that $q = \lfloor \log S \rfloor$, so $S^{1/q} \leq 2$.

Proof of the Multi-Switching Lemma (Lemma 1). For each $d \in \mathbb{N}$, we have

$$\frac{1}{O(w)^d} \leq \Pr[\mathsf{MultiWin}_d \mid \mathsf{Depth}(\mathsf{A}_\rho) = d] \leq \frac{\Pr[\mathsf{MultiWin}_d]}{\Pr[\mathsf{Depth}(\mathsf{A}_\rho) = d]} \leq \frac{p^d}{\Pr[\mathsf{Depth}(\mathsf{A}_\rho) = d]}$$

where the last step uses the fact that the output of $\mathsf{MultiStarGuesser}_d$ is independent of $\rho^{-1}(\star)$. Rearranging, we get $\Pr[\mathsf{Depth}(\mathsf{A}_{\rho}) = d] \leq O(pw)^d$. Therefore,

$$\Pr[\mathsf{Depth}(\mathsf{A}_{\rho}) \ge D] \le \sum_{d=D}^{\infty} \Pr[\mathsf{Depth}(\mathsf{A}_{\rho}) = d] \le \sum_{d=D}^{\infty} O(pw)^d \le O(pw)^D.$$