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1 The multi-switching lemma

In these lecture notes, we prove the “multi-switching lemma.” This powerful lemma is a generalization of the
switching lemma, and it turns out to be the key to proving the AC0 Criticality Theorem that we discussed
previously.

Lemma 1 (The Multi-Switching Lemma). Let C1, . . . , CS be width-w DNF formulas, let p ∈ (0, 1) and let
D ∈ N. Sample ρ ∼ Rp. Then except with probability O(pw)D, there exist decision trees TC1,ρ, . . . , TCS ,ρ of
depth at most D− 1 + logS computing C1|ρ, . . . , CS |ρ, such that the first D− 1 queries made by TCi,ρ do not
depend on i.

The standard switching lemma is the case S = 1. The failure probability bound is usually stated as
S ·O(pw)D, but we will prove the stronger bound O(pw)D.

The proof of the multi-switching lemma builds on the proof of the standard switching lemma. Let CDTCi,ρ

denote the canonical decision tree for Ci|ρ (see the switching lemma lecture notes). Let q = ⌊logS⌋, and
let i∗ ∈ [S]. Let Aρ denote the following decision tree, which makes queries to x ∈ {0, 1}n and outputs
π ∈ {0, 1, ⋆}n:

1. Let π(1) = ρ. For t = 1, 2, 3, . . . :

(a) Let it ∈ [S] maximize dt := Depth(CDTCit ,π
(t)).

(b) If dt ≤ q, then halt and output π(t). Otherwise:

(c) Let Qt be the set of variables queried on the first length-(dt) path of CDTCit ,π
(t) .

(d) For every j ∈ Qt, query xj , and let

π
(t+1)
j =

{
π
(t)
j if j /∈ Qt

xj if j ∈ Qt.

The tree TCi,ρ computes π = Aρ(x) and then simulates CDTCi,π. To bound the depth of Aρ, we will design
a strategy for guessing many points in ρ−1(⋆) given only a uniform random completion y of ρ. Let d ∈ N,
and let StarGuesserCi,d denote the strategy for guessing stars that we used when we proved the switching
lemma (see the switching lemma lecture notes). Our new star guessing strategy, denoted MultiStarGuesserd,
is as follows.

1. Pick x ∈ {0, 1}n uniformly at random.

2. Pick a decomposition of d into positive integers, d = d̂1 + d̂2 + · · ·+ d̂r, uniformly at random.

3. Initialize z ← y. For t = 1, 2, . . . , r:

(a) Pick a term ît ∈ [S] uniformly at random.

(b) Compute Q̂t = StarGuesser
Cît

,d̂t
(z).

(c) For every j ∈ Q̂t, set zj ← xj .

4. Output Q̂1 ∪ · · · ∪ Q̂r.
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We rely on the following fact about StarGuesser.

Claim 1 (Correctness of StarGuesser). Let C be a width-w DNF, let d ∈ N, let ρ be a restriction such that
Depth(CDTC,ρ) = d, and let Q be the set of variables queried on the first length-d path of CDTC,ρ. There
exists a string z∗C,ρ ∈ {0, 1}Q such that for every completion z of ρ satisfying zQ = z∗C,ρ,

Pr[StarGuesserd(z) outputs Q] ≥ 1

O(w)d
,

where the probability is with respect to only the internal randomness of StarGuesserd.

We implicitly proved Claim 1 in the lecture notes on the switching lemma. Now let us use Claim 1 to
prove the correctness of MultiStarGuesserd.

Claim 2 (Correctness ofMultiStarGuesserd). Let MultiWind denote the event that MultiStarGuesserd(y) outputs
d distinct points, each of which is in ρ−1(⋆). Then

Pr[MultiWind | Depth(Aρ) = d] ≥ 1

O(w)d
.

(The probability above is with respect to the random choices of ρ and y and the internal randomness of
MultiStarGuesserd.)

Proof. Fix any choice of ρ such that Depth(Aρ) = d. With probability at least 2−d+1, the strategy
MultiStarGuesserd picks an input x ∈ {0, 1}n on which Aρ makes d queries. Fix any such x. Let i1, i2, . . . , ir ∈
[S] be the DNFs visited by Aρ on x, let Q1, Q2, . . . , Qr be the sets of variables queried when visiting those
DNFs, and let ρ = π(1), π(2), . . . , π(r) be the restrictions used to define the canonical decision tree in those
iterations.

With probability 2−d+1, the strategy MultiStarGuesserd chooses d̂t = |Qt| for every t ∈ [r]. Assume
this occurs. With probability 2−d, we choose a completion y of ρ such that for every t ∈ [r], we have
yQt = z∗

Cit ,π
(it)

, where z∗
Cit ,π

(it)
is the string from Claim 1. Assume that this occurs.

With probability 1/Sr, the strategy MultiStarGuesserd chooses ît = it for every t ∈ [r]. Assume that this
occurs. Then, with respect to the internal randomness of StarGuesser

d̂t
, with probability at least 1/O(w)d,

we get Q̂t = Qt for every t, and hence MultiWind occurs.
The tree Aρ makes at least q queries in each iteration, so r ≤ d/q. Therefore, our overall success probability

is at least
1

2d
· 1
2d
· 1
2d
· 1

Sd/q
· 1

O(w)d
=

1

O(w · S1/q)d
.

Finally, recall that q = ⌊logS⌋, so S1/q ≤ 2.

Proof of the Multi-Switching Lemma (Lemma 1). For each d ∈ N, we have

1

O(w)d
≤ Pr[MultiWind | Depth(Aρ) = d] ≤ Pr[MultiWind]

Pr[Depth(Aρ) = d]
≤ pd

Pr[Depth(Aρ) = d]
,

where the last step uses the fact that the output of MultiStarGuesserd is independent of ρ−1(⋆). Rearranging,
we get Pr[Depth(Aρ) = d] ≤ O(pw)d. Therefore,

Pr[Depth(Aρ) ≥ D] ≤
∞∑

d=D

Pr[Depth(Aρ) = d] ≤
∞∑

d=D

O(pw)d ≤ O(pw)D.

2


	The multi-switching lemma

