MAJ o AC? circuits (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
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1 Weak polynomial representations

In these notes, we will prove that the parity function cannot be computed, or even approximated, by a small
circuit of the form MAJ o AC?, i.e., a constant-depth circuit with a single majority gate at the top and AND
and OR gates elsewhere. The proof builds on the Razborov-Smolensky method: first we will show that
MAJ o AC? circuits can be simulated by a certain type of low-degree polynomials, and then we will show that
the parity function cannot. For this proof, instead of probabilistic polynomials, we will work with so-called
weak polynomial representations.

Definition 1 (Weak polynomial representation). A weak polynomial representation of a function f: {0,1}" —
{0,1} is a nonzero multilinear polynomial p € Rz, ..., z,] such that for every = € {0,1}", either p(x) =0,
or else sign(p(z)) = (—1)7®),

In general, when we say that a polynomial is “nonzero,” we mean that it has at least one nonzero
coefficient. Note that a nonzero polynomial p might satisfy p(xz) = 0 for every x € {0,1}"! For example,
consider z1 — 3. However, such a polynomial could never be multilinear:

Proposition 1 (Nonzero outputs for nonzero polynomials). If p € Rlz1,...,x,] is a nonzero multilinear
polynomial, then there exists x € {0,1}" such that p(x) # 0.

Proof. Let x be the indicator for the variables appearing in some minimal nonzero monomial of p. O
Consequently, if p is a weak polynomial representation of f, then there really is at least one point

x € {0,1}" such that p(z) # 0 and sign(p(z)) = (—1)/@),

2  MAJ o ACY circuits have low-degree weak polynomial representations

Theorem 1 (Weak polynomial representations for MAJ o AC®). Let f: {0,1}" — {0,1}. Assume there exists
a size-S MAJ o ACY circuit C' such that Pr,[C(z) = f(x)] > 1/2 + ¢, where S > n. Then f has a weak
polynomial representation of degree at most

n — Qe -v/n) + (log $)°@.
The first step of the proof is the following lemma.

Lemma 1 (Low-degree polynomial that vanishes on a small set). Let ¢ € (0,1), and let E C R"™ with
|E| < 2™-(1/2 —¢). There is a nonzero multilinear polynomial r € Rlzy,...,z,] of degree at most
n/2+1—Q(e-+/n) that vanishes on E.

Proof. Let E = {1, ... 2®} and let D € N be a parameter that we will choose later. Define a map
¢: R()+()+-+(5) — gt by the formula

thinking of r as the list of coefficients of a multilinear polynomial of degree at most D. Then ¢ is a linear
transformation. Consequently, provided (g) +- 4 (g) > t, it has a nontrivial kernel, i.e., there is a nonzero



real multilinear polynomial r of degree at most D that vanishes on every (. If D = [n/2 — 0] for some

6 > 0, then
n n 1 0
>on. (Z_o(—=)).
(@) ()= (a0 ()
If we choose a sufficiently small § = ©(ey/n), we get () +---+ () > (1/2 —¢) - 2" > t. O

Proof of Theorem 1. We may assume without loss of generality that £ > 1/4/n, because otherwise the
theorem is trivial. Let C(x) = MAJ(Cy(x),...,C(x)), where C1, ..., C; are ACY circuits of size at most S
and t < S and (without loss of generality) t is odd. For each ¢ € [t], there is a probabilistic polynomial P,
over R that computes C; with error /(2t) and degree (log $)°(9). Consequently, there exist deterministic
polynomials pq,...,p; € Rlzq,...,z,] such that

Pr [Vi,pi(x) =Ci(z)] > 1 —e.

ze{0,1}n
Define
B={ze{0,1}": 3, pi(x) £ Ci()} Uz € 0,11 : () £ f(a)},
so |E| <2"™.(1/2 —¢/2). By Lemma 1, there is some nonzero multilinear polynomial r € R[z1,...,z,] of
degree at most n/2 + 1 — Q(e - v/n) that vanishes on E. Now define

pl) =2 - m@) -~ nl) ().
()

Let us show that p is a weak polynomial representation for f.

e We can make p multilinear by replacing each occurrence of x? with x;.

e By Proposition 1, there is some point = ¢ E such that r(x) # 0, and consequently p(x) # 0, hence p is
a nonzero polynomial.

e On points x € E, we have p(z) = r(x) = 0. Meanwhile, on points * ¢ E, the expression (*) has
the same sign as (—1)7®) and r(z)? > 0. Thus, on every point x € {0,1}", either p(z) = 0 or else

sign(p(z)) = (-1)7@).
Finally, note that deg(p) = n — Q(ey/n) + (log 5)0(d), ]

3 Parity does not have a low-degree weak polynomial representation

Theorem 2. Fvery weak polynomial representation of PARITY,, has degree at least n.

Proof. Define x: {0,1}" — {£1} by x(z) = (=1)®T¥2F "+ On the one hand, if p € Rlzy,...,z,] is a
polynomial of degree less than n, say p(z) = Z|S\<n cs [ [;cs i, then we have

re oy P X(@)] = > es ref) (H i (_1)%) | (H(_l)%)]

|S|<n i€S ¢S
=> s E |[Jw-(-D%|- E [H(—U“]
S]<n ze{0,1} lics xe€{0,1} s

=0.

On the other hand, suppose p is a weak polynomial representation of PARITY,,. By Proposition 1, there is
some z, € {0,1}" such that p(z,) # 0. By the weak representation property, we have p(z,) - x(z.) > 0 and
p(x) - x(z) > 0 for all other z. Therefore,



Corollary 1 (PARITY ¢ MAJ o AC?). If C is a size-S MAJ o ACY circuit where S > n, then

Pr(C(x) = PARITY(2)] < 1/2 + (logs\/%o(d).

In particular, the success probability is at most 0.8 for a suitable choice S = gn®t/

This proof that PARITY ¢ MAJ o AC? is due to Aspnes, Beigel, Furst, and Rudich [ABFR94].

4 Application: The correlation between parity and AC’

By combining Corollary 1 with Yao’s XOR lemma, we can prove that AC? circuits do an extremely poor job
of approximating the parity function.

Theorem 3 (Non-optimal bound on the correlation between parity and ACY). If C: {0,1}" — {0,1} is an

2nQ(l/d)

ACS circuit, then either C' has size , or else

1 L Q(1/d)
P C = PARITY,, < - 4277
P [ @<+

Proof. Let C be the class of ACY circuits of size S on n bits, for a suitable value S = g/

every C' € MAJg o C o PROJ ; satisfies

. By Corollary 1,

Pr C'(z) = PARITY ~(z)] <
bW @) <

n©(1/d)

provided we choose a suitable S = 2 . Therefore, by Yao’s XOR Lemma, every C' € C satisfies

1 1
P = PARITY®Y ()] < = — ) + 0.9V,
xr[C(x) v (a:)]_2+0<\/§>+09
But PARITYEB\f‘n/E is simply PARITY,,, and 1/V/S = 2_"9(1/d), so we are done. O

The proof above is due to Klivans [Kli01]. As we will discuss later in this course, the correlation between

parity and AC® is actually even smaller, namely 2-"/O(log$ )t Meanwhile, it is an open problem to prove

that some function i € NP has correlation less than 1/,/n with AC°[@®]. The function h = MAJ@‘n/ﬁ seems

o
like a good candidate.
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