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1 Weak polynomial representations

In these notes, we will prove that the parity function cannot be computed, or even approximated, by a small
circuit of the form MAJ ◦ AC0, i.e., a constant-depth circuit with a single majority gate at the top and AND
and OR gates elsewhere. The proof builds on the Razborov-Smolensky method: first we will show that
MAJ ◦ AC0 circuits can be simulated by a certain type of low-degree polynomials, and then we will show that
the parity function cannot. For this proof, instead of probabilistic polynomials, we will work with so-called
weak polynomial representations.

Definition 1 (Weak polynomial representation). A weak polynomial representation of a function f : {0, 1}n →
{0, 1} is a nonzero multilinear polynomial p ∈ R[x1, . . . , xn] such that for every x ∈ {0, 1}n, either p(x) = 0,
or else sign(p(x)) = (−1)f(x).

In general, when we say that a polynomial is “nonzero,” we mean that it has at least one nonzero
coefficient. Note that a nonzero polynomial p might satisfy p(x) = 0 for every x ∈ {0, 1}n! For example,
consider x1 − x21. However, such a polynomial could never be multilinear:

Proposition 1 (Nonzero outputs for nonzero polynomials). If p ∈ R[x1, . . . , xn] is a nonzero multilinear
polynomial, then there exists x ∈ {0, 1}n such that p(x) ̸= 0.

Proof. Let x be the indicator for the variables appearing in some minimal nonzero monomial of p.

Consequently, if p is a weak polynomial representation of f , then there really is at least one point
x ∈ {0, 1}n such that p(x) ̸= 0 and sign(p(x)) = (−1)f(x).

2 MAJ ◦ AC0 circuits have low-degree weak polynomial representations

Theorem 1 (Weak polynomial representations for MAJ ◦AC0). Let f : {0, 1}n → {0, 1}. Assume there exists
a size-S MAJ ◦ AC0

d circuit C such that Prx[C(x) = f(x)] ≥ 1/2 + ε, where S ≥ n. Then f has a weak
polynomial representation of degree at most

n− Ω(ε ·
√
n) + (logS)O(d).

The first step of the proof is the following lemma.

Lemma 1 (Low-degree polynomial that vanishes on a small set). Let ε ∈ (0, 1), and let E ⊆ Rn with
|E| ≤ 2n · (1/2 − ε). There is a nonzero multilinear polynomial r ∈ R[x1, . . . , xn] of degree at most
n/2 + 1− Ω(ε ·

√
n) that vanishes on E.

Proof. Let E = {x(1), . . . , x(t)} and let D ∈ N be a parameter that we will choose later. Define a map

ϕ : R(
n
0)+(

n
1)+···+(nD) → Rt by the formula

ϕ(r) = (r(x(1)), . . . , r(x(t))),

thinking of r as the list of coefficients of a multilinear polynomial of degree at most D. Then ϕ is a linear
transformation. Consequently, provided

(
n
0

)
+ · · ·+

(
n
D

)
> t, it has a nontrivial kernel, i.e., there is a nonzero
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real multilinear polynomial r of degree at most D that vanishes on every x(i). If D = ⌈n/2− θ⌉ for some
θ > 0, then (

n

0

)
+ · · ·+

(
n

D

)
≥ 2n ·

(
1

2
−O

(
θ√
n

))
.

If we choose a sufficiently small θ = Θ(ε
√
n), we get

(
n
0

)
+ · · ·+

(
n
D

)
> (1/2− ε) · 2n ≥ t.

Proof of Theorem 1. We may assume without loss of generality that ε > 1/
√
n, because otherwise the

theorem is trivial. Let C(x) = MAJt(C1(x), . . . , Ct(x)), where C1, . . . , Ct are AC0
d circuits of size at most S

and t ≤ S and (without loss of generality) t is odd. For each i ∈ [t], there is a probabilistic polynomial Pi

over R that computes Ci with error ε/(2t) and degree (logS)O(d). Consequently, there exist deterministic
polynomials p1, . . . , pt ∈ R[x1, . . . , xn] such that

Pr
x∈{0,1}n

[∀i, pi(x) = Ci(x)] ≥ 1− ε.

Define
E = {x ∈ {0, 1}n : ∃i, pi(x) ̸= Ci(x)} ∪ {x ∈ {0, 1}n : C(x) ̸= f(x)},

so |E| ≤ 2n · (1/2− ε/2). By Lemma 1, there is some nonzero multilinear polynomial r ∈ R[x1, . . . , xn] of
degree at most n/2 + 1− Ω(ε ·

√
n) that vanishes on E. Now define

p(x) = (t/2− p1(x)− · · · − pt(x))︸ ︷︷ ︸
(∗)

·r(x)2.

Let us show that p is a weak polynomial representation for f .

• We can make p multilinear by replacing each occurrence of x2i with xi.

• By Proposition 1, there is some point x /∈ E such that r(x) ̸= 0, and consequently p(x) ̸= 0, hence p is
a nonzero polynomial.

• On points x ∈ E, we have p(x) = r(x) = 0. Meanwhile, on points x /∈ E, the expression (*) has
the same sign as (−1)f(x) and r(x)2 ≥ 0. Thus, on every point x ∈ {0, 1}n, either p(x) = 0 or else
sign(p(x)) = (−1)f(x).

Finally, note that deg(p) = n− Ω(ε
√
n) + (logS)O(d).

3 Parity does not have a low-degree weak polynomial representation

Theorem 2. Every weak polynomial representation of PARITYn has degree at least n.

Proof. Define χ : {0, 1}n → {±1} by χ(x) = (−1)x1+x2+···+xn . On the one hand, if p ∈ R[x1, . . . , xn] is a
polynomial of degree less than n, say p(x) =

∑
|S|<n cS

∏
i∈S xi, then we have

E
x∈{0,1}n

[p(x) · χ(x)] =
∑
|S|<n

cS E
x∈{0,1}n

[(∏
i∈S

xi · (−1)xi

)
·

(∏
i/∈S

(−1)xi

)]

=
∑
|S|<n

cS E
x∈{0,1}n

[∏
i∈S

xi · (−1)xi

]
· E
x∈{0,1}n

[∏
i/∈S

(−1)xi

]
= 0.

On the other hand, suppose p is a weak polynomial representation of PARITYn. By Proposition 1, there is
some x∗ ∈ {0, 1}n such that p(x∗) ̸= 0. By the weak representation property, we have p(x∗) · χ(x∗) > 0 and
p(x) · χ(x) ≥ 0 for all other x. Therefore,

E
x∈{0,1}n

[p(x) · χ(x)] > 0.
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Corollary 1 (PARITY /∈ MAJ ◦ AC0). If C is a size-S MAJ ◦ AC0
d circuit where S ≥ n, then

Pr
x
[C(x) = PARITY(x)] ≤ 1/2 +

(logS)O(d)

√
n

.

In particular, the success probability is at most 0.8 for a suitable choice S = 2n
Θ(1/d)

.

This proof that PARITY /∈ MAJ ◦ AC0 is due to Aspnes, Beigel, Furst, and Rudich [ABFR94].

4 Application: The correlation between parity and AC0

By combining Corollary 1 with Yao’s XOR lemma, we can prove that AC0 circuits do an extremely poor job
of approximating the parity function.

Theorem 3 (Non-optimal bound on the correlation between parity and AC0). If C : {0, 1}n → {0, 1} is an

AC0
d circuit, then either C has size 2n

Ω(1/d)
, or else

Pr
x∈{0,1}n

[C(x) = PARITYn(x)] ≤
1

2
+ 2−nΩ(1/d)

.

Proof. Let C be the class of AC0
d circuits of size S on n bits, for a suitable value S = 2n

Θ(1/d)
. By Corollary 1,

every C ′ ∈ MAJS ◦ C ◦ PROJ√n satisfies

Pr
x∈{0,1}

√
n
[C ′(x) = PARITY√

n(x)] ≤
1

2
+

(logS)O(d)

n1/4
≤ 0.8,

provided we choose a suitable S = 2n
Θ(1/d)

. Therefore, by Yao’s XOR Lemma, every C ∈ C satisfies

Pr
x
[C(x) = PARITY

⊕
√
n√

n
(x)] ≤ 1

2
+O

(
1√
S

)
+ 0.9

√
n.

But PARITY
⊕
√
n√

n
is simply PARITYn, and 1/

√
S = 2−nΩ(1/d)

, so we are done.

The proof above is due to Klivans [Kli01]. As we will discuss later in this course, the correlation between

parity and AC0 is actually even smaller, namely 2−n/O(logS)d−1
. Meanwhile, it is an open problem to prove

that some function h ∈ NP has correlation less than 1/
√
n with AC0[⊕]. The function h = MAJ

⊕
√
n√

n
seems

like a good candidate.

References

[ABFR94] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. “The expressive power of voting polynomials”. In:
Combinatorica 14.2 (1994), pp. 135–148. issn: 0209-9683. doi: 10.1007/BF01215346.

[Kli01] Adam R. Klivans. “On the derandomization of constant depth circuits”. In: Proceedings of the
5th International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM). 2001, pp. 249–260. doi: 10.1007/3-540-44666-4_28.

3

https://doi.org/10.1007/BF01215346
https://doi.org/10.1007/3-540-44666-4_28

	Weak polynomial representations
	MAJ AC0 circuits have low-degree weak polynomial representations
	Parity does not have a low-degree weak polynomial representation
	Application: The correlation between parity and AC0

