Majority is in \mathbb{NC}^1 (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago Instructor: William Hoza (williamhoza@uchicago.edu)

1 Shallow circuit models

Definition 1 (Circuit depth). The *depth* of a circuit is the length of the longest directed path in the underlying graph.

Definition 2 (The NC hierarchy). Let *i* be a nonnegative integer. A function $f: \{0,1\}^* \to \{0,1\}^*$ is in NC^{*i*} if, for every n, there is a circuit of depth $O(\log^i n)$ and size poly(n) (with bounded fan-in) that computes f restricted to inputs of length *n*. We also define $NC = \bigcup_i NC^i$.

Definition 3 (AC circuits). An AC *circuit* is a circuit of the following type:

- The gates are arranged in alternating layers of AND gates and OR gates.
- The gates have unbounded fan-in.
- At the bottom, there are constants, variables, and negated variables. Negations do not count toward the size or depth of the circuit.

Definition 4 (The AC hierarchy). Let *i* be a nonnegative integer. A function $f: \{0,1\}^* \to \{0,1\}^*$ is in AC^{*i*} if, for every n, there is an AC circuit of depth $O(\log^i n)$ and size poly(n) that computes f restricted to inputs of length n.

It is common to abuse notation by referring to AC circuits as " AC^0 circuits," especially when the depth is $o(\log n)$. The notation ACⁱ, NCⁱ, etc. is often reserved for languages, i.e., functions outputting a single bit. We have

$$
NC^0 \subseteq AC^0 \subseteq NC^1 \subseteq AC^1 \subseteq NC^2 \subseteq \cdots \subseteq NC \subseteq P/poly.
$$

The notation AC^i , NCⁱ, etc. is also sometimes used to refer to *uniform* versions of these complexity classes. For example, you might see statements such as $NC \subseteq P$.

2 Shallow circuits for addition and majority

Theorem 1. $\mathsf{ADD}_{2 \times n} \in \mathsf{AC}^0$.

Note: Strictly speaking, it doesn't make sense to say that $ADD_{2\times n}$ is in AC^0 , because $ADD_{2\times n}$ has a finite domain. What we mean is that the *infinite family* of functions $ADD_{2\times1}$, $ADD_{2\times2}$, $ADD_{2\times3}$, ..., viewed as a single function on $\{0,1\}^*$, is in AC^0 . This is a common and convenient abuse of notation.

Proof sketch. Say we are trying to compute $z = x + y$ where $x, y \in \{0, 1, ..., 2ⁿ - 1\}$. Recall the notion of carry bits from the standard grade-school addition algorithm. Let c_i be the carry bit at position i, where "position 0" refers to the least significant bit. Then

$$
c_i = \bigvee_{j \leq i} \left(x_j \wedge y_j \wedge \bigwedge_{j < k < i} (x_k \vee y_k) \right)
$$

(an AC⁰ circuit). Furthermore, $z_i = x_i + y_i + c_i \mod 2$ (an NC⁰ circuit). Thus, $ADD_{2 \times n} \in NC^0 \circ AC^0 = AC^0$.

Is it possible to improve [Theorem 1](#page-0-0) to get an NC^0 circuit? Strictly speaking, the answer is no:

Proposition 1. $\mathsf{ADD}_{2 \times n} \notin \mathsf{NC}^0.$

Proof sketch. In an NC⁰ circuit, each output bit depends on only $O(1)$ input bits. In contrast, the most significant bit of $x + y$ depends on all the bits of x and y. (Think about the case that $x = 2ⁿ - 1$ and y is a power of two, or vice versa.) \Box

However, it is possible in NC^0 to do something called "three-to-two addition," which is almost as good as actual addition.

Lemma 1 (Three-to-Two Addition). For every $n \in \mathbb{N}$, there is a function $C: (\{0,1\}^n)^3 \to (\{0,1\}^{n+1})^2$ such that $C \in \mathbb{NC}^0$, and for every $x, y, z \in \{0, 1, ..., 2^n - 1\}$, the circuit C computes integers $C(x, y, z) = (u, v)$ satisfying $u + v = x + y + z$.

Proof sketch. Let $v_{i+1}u_i = ADD_{3\times 1}(x_i, y_i, z_i)$.

Corollary 1. $ADD_{n \times n} \in \mathsf{NC}^1$.

Proof sketch. A layer of three-to-two addition circuits reduces the number of summands from n down to $2n/3$, while increasing the bit-length of the summands by one. After $O(\log n)$ layers of three-to-two addition circuits, we have just two summands, each with bit-length $n + O(\log n)$. Then we can apply [Theorem 1.](#page-0-0) Thus, $ADD_{n \times n} \in AC^0 \circ NC^1 = NC^1$. \Box

Corollary 2. $MAJ_n \in NC^1$.

Corollary 3 (Adleman's theorem for $\mathbb{N}C^1$). Let $f: \{0,1\}^n \to \{0,1\}$. Suppose f can be computed by a "randomized NC¹ circuit," i.e., there is a circuit $C: \{0,1\}^n \times \{0,1\}^r \rightarrow \{0,1\}$ with bounded fan-in and depth $O(\log n)$ such that for every $x \in \{0,1\}^n$, we have

$$
\Pr_{y \in \{0,1\}^r} [C(x, y) = f(x)] \ge 2/3.
$$

Then $f \in \mathsf{NC}^1$.

Proof sketch. Mimic the standard proof of Adleman's theorem, and use the fact that $MAJ_n \in NC^1$. \Box

Note that the circuit constructed in [Corollary 3](#page-1-0) is nonuniform, just like the standard version of Adleman's theorem. Because of [Corollary 3,](#page-1-0) if you ever encounter a complexity class with a name like "RNC" or "BPNC," it probably refers to functions computable by uniform randomized NC circuits.

 \Box