Limited independence fools ACY (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza®@uchicago.edu)

Definition 1 (k-wise uniformity). Let X be a distribution over {0,1}", and let k € [n]. We say that X is
k-wise uniform if, for every 1 <1y <is < --- <14 < n, the substring X;, X;, ... X;, is distributed uniformly
over {0,1}%.

Our goal in these notes is to prove the following.

Theorem 1 (Limited independence fools AC®). Let d € N be a constant. For every S € N and ¢ > 0, there is
a value k = polylog(S) - log(1/e) such that if X € {0,1}" is k-wise uniform and S > n, then X fools size-S
ACY circuits with error e.

Bazzi proved the d = 2 case of Theorem 1 [Baz09], then Razborov simplified the proof [Raz09], and then
Braverman proved the general case [Bral0] (albeit with a worse dependence on ¢). Consequently, Theorem 1
is sometimes called “Braverman’s theorem.” There were quantitative improvements after Braverman’s
work [Tall7; HS19]. For non-constant d, the best bound currently known is k = (log S)°@ - log(1/e) [HS19].
In these lecture notes, for simplicity, we focus on the constant-depth case. We will present a proof of
Theorem 1 due to Hatami and Hoza [HH24].

1 Polynomial approximations for AC’ circuits

Proposition 1. If X is k-wise uniform, then X fools degree-k real multilinear polynomials (with error zero).

Proof. This follows from linearity of expectation. O

In this course, we have seen that AC? circuits can be “approximated” by low-degree polynomials in two
different ways. First, we saw how to simulate ACY circuits using probabilistic polynomials. Second, we saw a
Fourier tail bound for AC? circuits, which implies the following approximation.

Lemma 1 (Low-degree Ly approximations for ACO)N. Let C: {0,1}™ — {0,1} be an ACY circuit of size S.
Then for every e € (0,1), there exists a polynomial C € Rlxy,...,x,] of degree O(log S)*~! -log(1/€) such
that Eqpe 0,13 [(C(x) — C(x))?] < €. Furthermore, for every x € {0,1}", we have |C(z)| < pnOlog S)*~*log(1/e) 1

Proof. Let f(x) = (—1)°®). Define f<* by dropping all the terms of degree at least k from the Fourier
expansion of f:
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by Parseval’s theorem and the Fourier tail bound for AC. If we choose a suitable value k = O(log S)4~! -

log(1/e), then the error is at most €. Finally, note that each Fourier coefficient of f is at most 1, so by the
triangle inequality, for every z, we have |C(z)| < 1 + 1(7) < nO®. O

It is possible to slightly improve the bound on |C(z)| [Tall7].



The fact that AC? circuits can be “approximated” by low-degree polynomials (in multiple ways!) suggests
that limited independence ought to fool ACY circuits. To actually prove it, we will construct yet another
low-degree “approximation” for AC? circuits. Specifically, we will show that AC? circuits have low-degree
sandwiching polynomials.

Definition 2 (Sandwiching). Let C,C_,C5: {0,1}"™ — R. We say that C' is e-sandwiched between C_ and
C4 if the following two conditions hold.

1. For every x € {0,1}", we have C_(x) < C(z) < C4(z).
2. We have E ¢ 132 [Cy () — C_(2)] <e.

Theorem 2 (AC® circuits have low-degree sandwichers). Let d € N be a constant. Let C: {0,1}* — {0,1}
be an ACS circuit of size S > mn, and let € € (0,1). Then C is e-sandwiched between polynomials of degree at
most polylog(S) - log(1/¢).

We will prove Theorem 2 in the next section. First, let us show how to use Theorem 2 to prove Theorem 1.
Proof of Theorem 1 using Theorem 2. Let C_, Cy be e-sandwichers for C. Then
E[C(X)] < E[C4(X)] = E[C4(Un)] < E[C_(Un)] + ¢ < E[C(Un)] + ¢,

and similarl
' E[C(X)] = E[C_(X)] = E[C-(Un)] 2 E[C+(Un)] — € 2 E[C(Un)] —&. O

In fact, it turns out that Theorems 1 and 2 are equivalent, i.e., a class is fooled by all k-wise uniform
distributions if and only if it is sandwiched between degree-k polynomials.

2 Constructing sandwiching polynomials

We will prove Theorem 2 by induction on d, the depth of the circuit.

2.1 The base case

Suppose d = 1. By negating the circuit if necessary, we may assume that C' is a conjunction of literals. If it
is a conjunction of at most log(1/e) literals, then deg(C) < log(1/e), so we are done. If it is a conjunction of
more than log(1/¢) literals, then it is e-sandwiched between 0 and the product of the first log(1/¢) literals.

2.2 The inductive step

Suppose d > 2. By negating the circuit if necessary, we may assume that C' = \/:1} C;, where each Cj is a
depth-(d — 1) circuit with “AND” gates on top. For each i € [m], define F; = A\'—,(=C;), so F; is an ACY
circuit of size at most S and C' = 221 C;- F;.

By Lemma 1, for each i € [m], there exists a polynomial F; of degree polylog(S) - log(1/e) such that
E.[(Fi(z) — Fy(x))?] < ¢/(2m3). Furthermore, for every z € {0,1}", we have |F;(z)| < 2rolvlos(S)los(1/e),
Define
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First, we will show that C' is sandwiched between C_ and C. Then, we will use our induction hypothesis to
show that C_ and Cy are sandwiched between low-degree polynomials.



2.2.1 (' is sandwiched between C_ and C,

From the definitions, it is clear that C_ < C' < C4. Furthermore,
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2.2.2 (_ and Cy have low-degree sandwichers

By case analysis (either C' =1 or C' = 0), one can show that

C.=1-(1-0C)

c+:1+(1—6)2-<<§:0i>—1>.

From here, let us focus on C for simplicity (the analysis of C_ is similar). Plugging the definition of C into
the formula above gives us
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If we define Cy = ﬁo = 1 and we suitably define ¢; j, € {—1,0,1} for 0 < i, j, k < m, then we can expand the
formula above as follows. .

Zci7j’k . CZ . Cj . Ck . E . ﬁj.
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Let us focus on a single term ¢; ;- C; - Cj - Cy, - 1:;Z . ﬁj in the sum above.

e The function C; - C; - Cy, is an ACY_; circuit of size at most S. (Recall that each C; has an “AND” gate
on top.) Therefore, by induction, it is sandwiched between low-degree polynomials.

e The function ¢; j 1 - F; - Fj is a polynomial of degree at most polylog(S) -log(1/¢), and it takes values in
the interval [—L, L] where L = 2royloa(S)log(1/e)

We will now prove that the two facts above imply that the term ¢; ;5 - C; - C; - Cy, - E . ﬁj is sandwiched
between low-degree polynomials.

Lemma 2. Let f: {0,1}" - R and g: {0,1}" — [—-L, L]. If f has d-sandwiching polynomials of degree k,
then f - g has (30L)-sandwiching polynomials of degree k + deg(g).

Proof. Let f_, f1 be the é-sandwiching polynomials for f. Let h = f - g. Our sandwichers are given by

ho=f--g—L-(f+—[-)
hy=fr g+ L (f+—[f-)



To prove that this works, observe that

fo—h=L-(fs —f)+(f-f)g=zL-(fy—f)-L-(f-f)=L-(/+=f)=0
hy=fg=L-(f+ —f)+ U+ =Ng=L-(fy —f)-L-(f+ =) =L-(f-f)=0
E[hy(2) — h-(2)] = E[(f1(2) = f-(2)) - (9(2) + 2L)] < 3L -E[f1(2) - f-(2)] = 3L3. =

Consequently, each term ¢; ;.- Ci-C; - Cy - F;- ﬁj has (m)—sandwichers of degree polylog(S) -log(1/¢).
To construct low-degree sandwichers for C, we use the following trivial lemma.

Lemma 3. Let f,g: {0,1}" — R. If f has §-sandwiching polynomials of degree at most k and g has
~v-sandwiching polynomials of degree at most k, then f + g has (6 + 7)-sandwiching polynomials of degree at
most k.

Proof. The sandwiching polynomials are f_ + ¢g_ and fi + g4. O

Thus, C4 is (¢/4)-sandwiched between two polynomials Cy_ and C44 of degree polylog(S) - log(1/¢).
Similarly, C_ is (¢/4)-sandwiched between two polynomials C__ and C_ of degree polylog(S) - log(1/e).

2.2.3 Finishing the proof
Observe that C__ < C < (44 and

E[Ciy —C ] <E[Ciy — C4]+E[CL - C_]+E[C_ - C__]
<E[Cis — Ci | +E[C, — C_] +E[C_4 — C__]
<eg/d+¢e/2+¢€/4
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