Learnability of AC^0 (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago Instructor: William Hoza (williamhoza@uchicago.edu)

In these notes, it will be convenient to encode bits using the values $\{\pm 1\}$ instead of $\{0, 1\}$.

Definition 1 (Closeness under the uniform distribution). Let $C, C' : {\pm 1}^n \to {\pm 1}$. We define

$$
dist(C, C') = \Pr_{x \in \{\pm 1\}^n} [C(x) \neq C'(x)].
$$

Our goal in these notes is to prove the following theorem:

Theorem 1 (Learnability of AC^0). Let $C: \{\pm 1\}^n \to \{\pm 1\}$ be an "unknown" AC_d^0 circuit of size at most S. Suppose we are given access to an unlimited supply of independent samples of the form $(x, C(x))$ where $x \in {\pm 1}^n$ is drawn uniformly at random. Suppose also that we are given the parameters S and d, as well as $\varepsilon, \delta \in (0,1)$. Then with probability $1-\delta$, we can construct a circuit h such that $dist(h, C) \leq \varepsilon$ in time $n^{O(\log S)^{d-1}\cdot \log(1/\varepsilon)}\cdot \operatorname{polylog}(1/\delta).$

For example, if $d = O(1)$, $S = \text{poly}(n)$, $\varepsilon = 1/\text{poly}(n)$, and $\delta = 2^{-n}$, then the time complexity is quasipoly (n) .

1 Fourier analysis of $AC⁰$

The proof of [Theorem 1](#page-0-0) is based on *Fourier analysis* of AC^0 circuits. (If you're not familiar with the Fourier analysis of Boolean functions, then you should read sections 1.1-1.4 of O'Donnell's book [\[O'D14\]](#page-3-0) before reading the rest of these lecture notes.) Indeed, the Fourier analysis involved in the proof of [Theorem 1](#page-0-0) is arguably more important than [Theorem 1](#page-0-0) itself. The main ingredient in the proof of [Theorem 1](#page-0-0) is the following "Fourier tail bound" for $AC⁰$.

Theorem 2 (Fourier tail bound for AC^0). Let $C: \{\pm 1\}^n \to \{\pm 1\}$ be an AC_d^0 circuit of size S. Then for every $k \in \mathbb{N}$, we have

$$
\sum_{\substack{S \subseteq [n] \\ |S| \ge k}} \widehat{C}(S)^2 \le 2 \cdot 2^{-k/O(\log S)^{d-1}}.
$$

The first Fourier tail bound for AC^0 was proven by Linial, Mansour, and Nisan [\[LMN93\]](#page-3-1), and it is sometimes called the "LMN theorem." [Theorem 2](#page-0-1) is a quantitative improvement due to Tal [\[Tal17\]](#page-3-2). We will prove [Theorem 2](#page-0-1) in the upcoming sections. Before we do so, let us show how to use [Theorem 2](#page-0-1) to prove [Theorem 1.](#page-0-0)

Proof of [Theorem 1](#page-0-0) given [Theorem 2.](#page-0-1) Let Let $k, t \in \mathbb{N}$ be parameters that we will choose later. Recall that for each $S \subseteq [n]$, the Fourier coefficient $\widehat{C}(S)$ is given by $\widehat{C}(S) = \mathbb{E}_x[C(x) \cdot \chi_S(x)]$. For each $S \subseteq [n]$ with $|S| \le k$, we use t random labeled examples $(x^{(1)}, C(x^{(1)})), \ldots, (x^{(t)}, C(x^{(t)}))$ to construct an estimate $\widehat{\phi}(S)$ for $C(S)$ as follows:

$$
\widehat{\phi}(S) = \frac{1}{t} \sum_{i=1}^{t} C(x^{(i)}) \cdot \chi_S(x^{(i)}).
$$

Now define

$$
\phi(x) = \sum_{\substack{S \subseteq [n] \\ |S| < k}} \widehat{\phi}(S) \cdot \chi_S(x), \qquad h(x) = \text{sign}(\phi(x)).
$$

To prove that this works, observe that

$$
dist(C, h) = \Pr_{x \in \{\pm 1\}^n} [C(x) \neq h(x)] \leq \Pr_{x \in \{\pm 1\}^n} [|C(x) - \phi(x)| \geq 1]
$$

\n
$$
\leq \mathop{\mathbb{E}}_{x \in \{\pm 1\}^n} [(C(x) - \phi(x))^2]
$$

\n
$$
= \sum_{\substack{S \subseteq [n] \\ |S| < k}} (\widehat{\phi}(S) - \widehat{C}(S))^2 + \sum_{\substack{S \subseteq [n] \\ |S| \geq k}} \widehat{C}(S)^2
$$
 (Parseval.)

By [Theorem 2,](#page-0-1) the second term is at most $\varepsilon/2$, provided that we choose a suitable value $k = O(\log S)^{d-1}$. $log(1/\varepsilon)$. Regarding the first term, for each fixed S, we can apply Hoeffding's inequality to get

$$
\Pr\left[\left|\widehat{\phi}(S) - \widehat{C}(S)\right| > \sqrt{\frac{\varepsilon}{2n^k}}\,\right] \leq 2\exp(-\Omega(\varepsilon t/n^k)).
$$

If we choose a suitable value $t = O(n^k \cdot \log(n^k/\delta)/\varepsilon)$, then this failure probability is less than δ/n^k . By the union bound, we may assume that $|\widehat{\phi}(S) - \widehat{C}(S)| \leq \sqrt{\frac{\varepsilon}{2n^k}}$ for all $S \subseteq [n]$ with $|S| < k$, and hence

$$
\sum_{\substack{S \subseteq [n] \\ |S| < k}} (\widehat{\phi}(S) - \widehat{C}(S))^2 \le \frac{\varepsilon}{2}.
$$

2 \sim AC⁰ circuits become low-degree functions under restrictions

In a previous class, we discussed the AC^0 Criticality Theorem, which describes the effect of random restrictions on AC^0 circuits.

Theorem 3 (AC⁰ Criticality Theorem). Let C be a size-S AC_d^0 circuit, let $p \in (0,1)$, and let $D \in \mathbb{N}$. Then

$$
\Pr_{\rho \sim R_p}[\mathsf{DTDepth}(C|_{\rho}) \ge D] \le (p \cdot O(\log S)^{d-1})^D.
$$

[Theorem 3](#page-1-0) is the *only* fact about AC^0 circuits that we will use to prove [Theorem 2.](#page-0-1) All of the other steps of the proof are generic and apply to arbitrary Boolean functions.

The reason [Theorem 3](#page-1-0) is helpful for us is that low-depth decision trees have no high-degree Fourier mass, as we will prove momentarily. On the other hand, we will prove in the next section that random restrictions do not have a huge effect on a function's Fourier tails. This will enable us to conclude that the circuit must have had bounded Fourier tails to begin with, even before applying the random restriction.

Proposition 1 (Shallow decision trees have low degree). Let $T: \{\pm 1\}^n \to \{\pm 1\}$ be a decision tree of depth D. Then $\deg(T) \leq D$, where $\deg(T)$ denotes the Fourier degree of T, i.e., the degree of T as a multilinear real polynomial.

Proof. We can write T in the form $T(x) = \sum_{\ell \in L} c_{\ell} \cdot T_{\ell}(x)$, where L is the set of leaves, c_{ℓ} is the output value at leaf ℓ , and $T_{\ell}(x)$ indicates whether the tree reaches leaf ℓ on input x. Each function T_{ℓ} depends on at most D variables, hence $\deg(T_\ell) \leq D$, hence $\deg(T) \leq D$. \Box

3 Random restrictions have little effect on Fourier tails

To complete the proof of [Theorem 2,](#page-0-1) we need to bound the effect of random restrictions on the Fourier weights. By Parseval's theorem, we have $\sum_{S \subseteq [n]} \widehat{C}(S)^2 = 1$. Consequently, we can interpret $\widehat{C}(S)^2$ as a probability. We define the *spectral sample* S_C to be the probability distribution over subsets of $[n]$ in which

the probability of getting any particular set S is $\widehat{C}(S)^2$. Thus, the Fourier tail bound we are trying to prove [\(Theorem 2\)](#page-0-1) can be rephrased as follows:

$$
\Pr_{S \sim \mathcal{S}_C} [|S| \ge k] \le 2 \cdot 2^{-k/O(\log S)^{d-1}}.
$$

The key to proving it is the following lemma, which says that the operation of drawing a spectral sample "commutes with" the operation of applying a random restriction.

Lemma 1 (Spectral sample after a random restriction). Let $C: \{\pm 1\}^n \to {\pm 1}$. The following two distributions over subsets of [n] are identical.

- 1. Sample $\rho \sim R_p$, then sample $S \sim \mathcal{S}_{C|_{\rho}},$ then output S.
- 2. Sample $T \sim \mathcal{S}_C$, then sample $\rho \sim R_p$, then output $T \cap \rho^{-1}(\star)$.

Proof. If ρ is a restriction and x is a completion of ρ , then we have

$$
C(x) = \sum_{T \subseteq [n]} \widehat{C}(T) \cdot \chi_T(x) = \sum_{T \subseteq [n]} \widehat{C}(T) \cdot \chi_{T \cap \rho^{-1}(\{0,1\})}(x) \cdot \chi_{T \cap \rho^{-1}(\star)}(x).
$$

Consequently, for any $S \subseteq [n]$, the Fourier coefficient $\widehat{C|_{\rho}}(S)$ is given by the following formula.

$$
\widehat{C|_{\rho}}(S) = \sum_{U \subseteq [n]} \widehat{C}(S \cup U) \cdot \chi_U(x) \cdot 1[S \subseteq \rho^{-1}(\star) \text{ and } U \subseteq \rho^{-1}(\{0, 1\})].
$$

Squaring the equation above, we get

$$
\widehat{C|_{\rho}}(S)^{2} = \sum_{U,U'\subseteq[n]}\widehat{C}(S\cup U)\cdot\widehat{C}(S\cup U')\cdot\chi_{U\Delta U'}(x)\cdot 1[S\subseteq\rho^{-1}(\star) \text{ and } U,U'\subseteq\rho^{-1}(\{0,1\})],
$$

where $U\Delta U'$ is the [symmetric difference](https://en.wikipedia.org/wiki/Symmetric_difference) between U and U'. All of the above holds for any fixed restriction $ρ$ and any completion x of $ρ$. If $ρ$ is a random restriction sampled from R_p and x is a uniform random completion of ρ , then in expectation, we have

$$
\mathbb{E}\left[\widehat{C|_{\rho}}(S)^{2}\right] = \sum_{U,U'\subseteq[n]} \widehat{C}(S\cup U) \cdot \widehat{C}(S\cup U') \cdot \mathbb{E}\left[\chi_{U\Delta U'}(x) \cdot 1\big[S \subseteq \rho^{-1}(\star) \text{ and } U, U' \subseteq \rho^{-1}(\{0,1\})\big]\right].
$$

The completion x and the star-set $\rho^{-1}(x)$ are independent, so we can exchange the expectation with the product:

$$
\mathbb{E}\left[\widehat{C|_{\rho}}(S)^{2}\right] = \sum_{U,U'\subseteq[n]} \widehat{C}(S\cup U) \cdot \widehat{C}(S\cup U') \cdot \mathbb{E}[\chi_{U\Delta U'}(x)] \cdot \Pr[S \subseteq \rho^{-1}(\star) \text{ and } U, U' \subseteq \rho^{-1}(\{0,1\})].
$$

Nontrivial character functions have expectation zero, so the equation above simplifies to

$$
\mathbb{E}\left[\widehat{C|_{\rho}}(S)^{2}\right] = \sum_{U \subseteq [n]} \widehat{C}(S \cup U)^{2} \cdot \Pr[S \subseteq \rho^{-1}(\star) \text{ and } U \subseteq \rho^{-1}(\{0, 1\})]
$$

$$
= \sum_{T \subseteq [n]} \widehat{C}(T)^{2} \cdot \Pr[S = T \cap \rho^{-1}(\star)].
$$

The left-hand side in the equation above is the probability of getting S under distribution 1 in the lemma statement. The right-hand side is the probability of getting S under distribution 2 in the lemma statement. \Box

Proof of [Theorem 2.](#page-0-1) On the one hand, by [Proposition 1](#page-1-1) and [Theorem 3,](#page-1-0) there is a value $p = 1/O(\log S)^{d-1}$ such that for every $D \in \mathbb{N}$, we have

$$
\Pr_{\substack{\rho \sim R_p \\ S \sim \mathcal{S}_{C|_{\rho}}}}\left[|S| \geq D\right] \leq \Pr_{\rho \sim R_p}[\textsf{DTDepth}(C|_{\rho}) \geq D] \leq 2^{-D}.
$$

On the other hand, by [Lemma 1,](#page-2-0) we have

$$
\Pr_{\substack{\rho \sim R_p \\ S \sim \mathcal{S}_{C|\rho}}} [|S| \geq D] = \mathop{\mathbb{E}}_{T \sim \mathcal{S}_C} \left[\Pr_{\rho \sim R_p} [|T \cap \rho^{-1}(\star)| \geq D] \right].
$$

For any fixed set $T \subseteq [n]$, we expect $|T \cap \rho^{-1}(\star)| \approx p \cdot |T|$. Indeed, one can show that

$$
\Pr\left[|T \cap \rho^{-1}(\star)| \ge |p \cdot |T| \rfloor\right] \ge 1/2.
$$

(Note that such a statement amounts to bounding the median of the binomial distribution.^{[1](#page-3-3)}) Therefore,

$$
\mathop{\mathbb{E}}_{T \sim \mathcal{S}_C} \left[\Pr_{\rho \sim R_p} \left[|T \cap \rho^{-1}(\star)| \geq \lfloor pk \rfloor \right] \right] \geq \Pr_{T \sim \mathcal{S}_C} [|T| \geq k] \cdot \frac{1}{2}.
$$

Rearranging, we get $Pr_{T \sim S_C} [|T| \ge k] \le 2 \cdot 2^{-\lfloor pk \rfloor}$. If $pk \ge 2$, then this is at most $2 \cdot 2^{-pk/2}$, and if $pk \le 2$, then trivially $Pr_{T \sim S_C} [|T| \ge k] \le 2 \cdot 2^{-pk/2}$. \Box

References

- [LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. "Constant depth circuits, Fourier transform, and learnability". In: *J. Assoc. Comput. Mach.* 40.3 (1993), pp. 607–620. ISSN: 0004-5411. DOI: [10.1145/174130.174138](https://doi.org/10.1145/174130.174138). url: <https://doi.org/10.1145/174130.174138>.
- [O'D14] Ryan O'Donnell. Analysis of Boolean functions. Available online at [https://arxiv.org/abs/](https://arxiv.org/abs/2105.10386) [2105.10386](https://arxiv.org/abs/2105.10386). Cambridge University Press, New York, 2014, pp. xx+423. isbn: 978-1-107-03832-5. doi: [10.1017/CBO9781139814782](https://doi.org/10.1017/CBO9781139814782).
- [Tal17] Avishay Tal. "Tight Bounds on the Fourier Spectrum of AC0". In: Proceedings of the 32nd Computational Complexity Conference (CCC). Ed. by Ryan O'Donnell. Vol. 79. 2017, 15:1–15:31. doi: [10.4230/LIPIcs.CCC.2017.15](https://doi.org/10.4230/LIPIcs.CCC.2017.15).

¹An alternative and more elementary approach is to use [Cantelli's inequality](https://en.wikipedia.org/wiki/Cantelli%27s_inequality) to prove $Pr[|T \cap \rho^{-1}(\star)| \geq |pk/2|] \geq 1/3$.