
Learnability of AC0 (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

In these notes, it will be convenient to encode bits using the values {±1} instead of {0, 1}.

Definition 1 (Closeness under the uniform distribution). Let C,C ′ : {±1}n → {±1}. We define

dist(C,C ′) = Pr
x∈{±1}n

[C(x) ̸= C ′(x)].

Our goal in these notes is to prove the following theorem:

Theorem 1 (Learnability of AC0). Let C : {±1}n → {±1} be an “unknown” AC0
d circuit of size at most

S. Suppose we are given access to an unlimited supply of independent samples of the form (x,C(x)) where
x ∈ {±1}n is drawn uniformly at random. Suppose also that we are given the parameters S and d, as well
as ε, δ ∈ (0, 1). Then with probability 1 − δ, we can construct a circuit h such that dist(h,C) ≤ ε in time

nO(logS)d−1·log(1/ε) · polylog(1/δ).

For example, if d = O(1), S = poly(n), ε = 1/poly(n), and δ = 2−n, then the time complexity is
quasipoly(n).

1 Fourier analysis of AC0

The proof of Theorem 1 is based on Fourier analysis of AC0 circuits. (If you’re not familiar with the Fourier
analysis of Boolean functions, then you should read sections 1.1-1.4 of O’Donnell’s book [O’D14] before
reading the rest of these lecture notes.) Indeed, the Fourier analysis involved in the proof of Theorem 1
is arguably more important than Theorem 1 itself. The main ingredient in the proof of Theorem 1 is the
following “Fourier tail bound” for AC0.

Theorem 2 (Fourier tail bound for AC0). Let C : {±1}n → {±1} be an AC0
d circuit of size S. Then for

every k ∈ N, we have ∑
S⊆[n]
|S|≥k

Ĉ(S)2 ≤ 2 · 2−k/O(logS)d−1
.

The first Fourier tail bound for AC0 was proven by Linial, Mansour, and Nisan [LMN93], and it is
sometimes called the “LMN theorem.” Theorem 2 is a quantitative improvement due to Tal [Tal17]. We will
prove Theorem 2 in the upcoming sections. Before we do so, let us show how to use Theorem 2 to prove
Theorem 1.

Proof of Theorem 1 given Theorem 2. Let Let k, t ∈ N be parameters that we will choose later. Recall that
for each S ⊆ [n], the Fourier coefficient Ĉ(S) is given by Ĉ(S) = Ex[C(x) · χS(x)]. For each S ⊆ [n] with
|S| < k, we use t random labeled examples (x(1), C(x(1))), . . . , (x(t), C(x(t))) to construct an estimate ϕ̂(S)
for Ĉ(S) as follows:

ϕ̂(S) =
1

t

t∑
i=1

C(x(i)) · χS(x
(i)).

Now define

ϕ(x) =
∑
S⊆[n]
|S|<k

ϕ̂(S) · χS(x), h(x) = sign(ϕ(x)).
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To prove that this works, observe that

dist(C, h) = Pr
x∈{±1}n

[C(x) ̸= h(x)] ≤ Pr
x∈{±1}n

[|C(x)− ϕ(x)| ≥ 1]

≤ E
x∈{±1}n

[(C(x)− ϕ(x))2]

=
∑
S⊆[n]
|S|<k

(ϕ̂(S)− Ĉ(S))2 +
∑
S⊆[n]
|S|≥k

Ĉ(S)2 (Parseval.)

By Theorem 2, the second term is at most ε/2, provided that we choose a suitable value k = O(logS)d−1 ·
log(1/ε). Regarding the first term, for each fixed S, we can apply Hoeffding’s inequality to get

Pr

[∣∣∣ϕ̂(S)− Ĉ(S)
∣∣∣ > √

ε

2nk

]
≤ 2 exp(−Ω(εt/nk)).

If we choose a suitable value t = O(nk · log(nk/δ)/ε), then this failure probability is less than δ/nk. By the
union bound, we may assume that |ϕ̂(S)− Ĉ(S)| ≤

√
ε

2nk for all S ⊆ [n] with |S| < k, and hence∑
S⊆[n]
|S|<k

(ϕ̂(S)− Ĉ(S))2 ≤ ε

2
.

2 AC0 circuits become low-degree functions under restrictions

In a previous class, we discussed the AC0 Criticality Theorem, which describes the effect of random restrictions
on AC0 circuits.

Theorem 3 (AC0 Criticality Theorem). Let C be a size-S AC0
d circuit, let p ∈ (0, 1), and let D ∈ N. Then

Pr
ρ∼Rp

[DTDepth(C|ρ) ≥ D] ≤ (p ·O(logS)d−1)D.

Theorem 3 is the only fact about AC0 circuits that we will use to prove Theorem 2. All of the other steps
of the proof are generic and apply to arbitrary Boolean functions.

The reason Theorem 3 is helpful for us is that low-depth decision trees have no high-degree Fourier mass,
as we will prove momentarily. On the other hand, we will prove in the next section that random restrictions
do not have a huge effect on a function’s Fourier tails. This will enable us to conclude that the circuit must
have had bounded Fourier tails to begin with, even before applying the random restriction.

Proposition 1 (Shallow decision trees have low degree). Let T : {±1}n → {±1} be a decision tree of depth
D. Then deg(T ) ≤ D, where deg(T ) denotes the Fourier degree of T , i.e., the degree of T as a multilinear
real polynomial.

Proof. We can write T in the form T (x) =
∑

ℓ∈L cℓ · Tℓ(x), where L is the set of leaves, cℓ is the output value
at leaf ℓ, and Tℓ(x) indicates whether the tree reaches leaf ℓ on input x. Each function Tℓ depends on at
most D variables, hence deg(Tℓ) ≤ D, hence deg(T ) ≤ D.

3 Random restrictions have little effect on Fourier tails

To complete the proof of Theorem 2, we need to bound the effect of random restrictions on the Fourier
weights. By Parseval’s theorem, we have

∑
S⊆[n] Ĉ(S)2 = 1. Consequently, we can interpret Ĉ(S)2 as a

probability. We define the spectral sample SC to be the probability distribution over subsets of [n] in which
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the probability of getting any particular set S is Ĉ(S)2. Thus, the Fourier tail bound we are trying to prove
(Theorem 2) can be rephrased as follows:

Pr
S∼SC

[|S| ≥ k] ≤ 2 · 2−k/O(logS)d−1
.

The key to proving it is the following lemma, which says that the operation of drawing a spectral sample
“commutes with” the operation of applying a random restriction.

Lemma 1 (Spectral sample after a random restriction). Let C : {±1}n → {±1}. The following two
distributions over subsets of [n] are identical.

1. Sample ρ ∼ Rp, then sample S ∼ SC|ρ, then output S.

2. Sample T ∼ SC , then sample ρ ∼ Rp, then output T ∩ ρ−1(⋆).

Proof. If ρ is a restriction and x is a completion of ρ, then we have

C(x) =
∑
T⊆[n]

Ĉ(T ) · χT (x) =
∑
T⊆[n]

Ĉ(T ) · χT∩ρ−1({0,1})(x) · χT∩ρ−1(⋆)(x).

Consequently, for any S ⊆ [n], the Fourier coefficient Ĉ|ρ(S) is given by the following formula.

Ĉ|ρ(S) =
∑
U⊆[n]

Ĉ(S ∪ U) · χU (x) · 1[S ⊆ ρ−1(⋆) and U ⊆ ρ−1({0, 1})].

Squaring the equation above, we get

Ĉ|ρ(S)2 =
∑

U,U ′⊆[n]

Ĉ(S ∪ U) · Ĉ(S ∪ U ′) · χU∆U ′(x) · 1[S ⊆ ρ−1(⋆) and U,U ′ ⊆ ρ−1({0, 1})],

where U∆U ′ is the symmetric difference between U and U ′. All of the above holds for any fixed restriction
ρ and any completion x of ρ. If ρ is a random restriction sampled from Rp and x is a uniform random
completion of ρ, then in expectation, we have

E
[
Ĉ|ρ(S)2

]
=

∑
U,U ′⊆[n]

Ĉ(S ∪ U) · Ĉ(S ∪ U ′) · E
[
χU∆U ′(x) · 1[S ⊆ ρ−1(⋆) and U,U ′ ⊆ ρ−1({0, 1})]

]
.

The completion x and the star-set ρ−1(⋆) are independent, so we can exchange the expectation with the
product:

E
[
Ĉ|ρ(S)2

]
=

∑
U,U ′⊆[n]

Ĉ(S ∪ U) · Ĉ(S ∪ U ′) · E[χU∆U ′(x)] · Pr[S ⊆ ρ−1(⋆) and U,U ′ ⊆ ρ−1({0, 1})].

Nontrivial character functions have expectation zero, so the equation above simplifies to

E
[
Ĉ|ρ(S)2

]
=

∑
U⊆[n]

Ĉ(S ∪ U)2 · Pr[S ⊆ ρ−1(⋆) and U ⊆ ρ−1({0, 1})]

=
∑
T⊆[n]

Ĉ(T )2 · Pr[S = T ∩ ρ−1(⋆)].

The left-hand side in the equation above is the probability of getting S under distribution 1 in the lemma
statement. The right-hand side is the probability of getting S under distribution 2 in the lemma statement.

3

https://en.wikipedia.org/wiki/Symmetric_difference


Proof of Theorem 2. On the one hand, by Proposition 1 and Theorem 3, there is a value p = 1/O(logS)d−1

such that for every D ∈ N, we have

Pr
ρ∼Rp

S∼SC|ρ

[|S| ≥ D] ≤ Pr
ρ∼Rp

[DTDepth(C|ρ) ≥ D] ≤ 2−D.

On the other hand, by Lemma 1, we have

Pr
ρ∼Rp

S∼SC|ρ

[|S| ≥ D] = E
T∼SC

[
Pr

ρ∼Rp

[|T ∩ ρ−1(⋆)| ≥ D]

]
.

For any fixed set T ⊆ [n], we expect |T ∩ ρ−1(⋆)| ≈ p · |T |. Indeed, one can show that

Pr
[
|T ∩ ρ−1(⋆)| ≥ ⌊ p · |T | ⌋

]
≥ 1/2.

(Note that such a statement amounts to bounding the median of the binomial distribution.1) Therefore,

E
T∼SC

[
Pr

ρ∼Rp

[
|T ∩ ρ−1(⋆)| ≥ ⌊pk⌋

]]
≥ Pr

T∼SC

[|T | ≥ k] · 1
2
.

Rearranging, we get PrT∼SC
[|T | ≥ k] ≤ 2 · 2−⌊pk⌋. If pk ≥ 2, then this is at most 2 · 2−pk/2, and if pk ≤ 2,

then trivially PrT∼SC
[|T | ≥ k] ≤ 2 · 2−pk/2.
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