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1 The formula balancing lemma

Definition 1 (Formulas). A formula is a circuit C : {0, 1}n → {0, 1} in which each gate has fan-out (out-
degree) at most 1. In other words, the underlying graph structure is a tree. A De Morgan formula is a
formula in which the gates are AND gates and OR gates with fan-in two, with literals and constants at the
leaves. The leafsize of a formula is the number of leaves in the underlying tree, excluding constants.

Lemma 1 (Formula balancing lemma). Let f : {0, 1}∗ → {0, 1}. The following are equivalent.

1. f ∈ NC1, i.e., f can be computed by circuits of depth O(log n) and size poly(n) over the full binary
basis.

2. For every n ∈ N, there is a De Morgan formula Cn of leafsize poly(n) that computes f restricted to
inputs of length n.

Proof. (1 =⇒ 2) If f ∈ NC1, then f can be computed by a “De Morgan circuit” (AND/OR gates of fan-in
two, with literals and constants at the bottom) of depth d = O(log n). It is straightforward to show by
induction on d that such a circuit can be simulated by a de Morgan formula of leafsize 2d.

(2 =⇒ 1) Let C be a De Morgan formula of leafsize S = poly(n). We will show by induction on S that
C can be computed by a De Morgan formula of depth 3 logS. By starting at the root and always choosing
the child with more leaf descendants, we can find a gate u in C with children uL, uR such that u has at
least S/2 leaf descendants, whereas uL and uR have fewer than S/2 leaf descendants each. Identify u with
the function u(x) giving the output value at that gate. Let C0 and C1 be the formulas obtained from C by
replacing u and all of its descendants with a 0 and a 1 respectively. Then

C(x) = (C1(x) ∧ u(x)) ∨ (C0(x) ∧ ¬u(x)). (1)

By induction, the output values of uL and uR can be computed by De Morgan formulas of depth at
most 3 log(S/2), hence u(x) and ¬u(x) can be computed by de Morgan formulas of depth 1 + 3 log(S/2).
Furthermore, C0 and C1 have leafsize at most S/2, so by induction, C0(x) and C1(x) can be computed by
De Morgan formulas of depth 3 log(S/2). Therefore, C can be computed by a De Morgan formula of depth
3 + 3 log(S/2) = 3 logS. Note that such a formula necessarily has at most O(S3) = poly(n) gates, hence it
shows f ∈ NC1.

Thus, the question of whether NC1 = P/poly is the question of whether circuits can be converted into
formulas with polynomial overhead. The standard conjecture is “no.”

2 Subbotovskaya’s lower bound

For a function f : {0, 1}n → {0, 1}, let L(f) denote the minimum leafsize of any De Morgan formula computing
f . It turns out that L(PARITYn) = Θ(n2). In this section, we will prove the weaker bound L(PARITYn) ≥ n1.5

via a beautiful and powerful technique called random restrictions.

Definition 2 (Restrictions). A restriction is a string ρ ∈ {0, 1, ⋆}n. If f is a function on {0, 1}n, then f |ρ is
another function on {0, 1}n, defined by the rule f |ρ(x) = f(y), where

yi =

{
ρi if ρi ∈ {0, 1}
xi if ρi = ⋆.

1



Lemma 2 (Assigning a value to a single variable). Let C : {0, 1}n → {0, 1} be a De Morgan formula of size S,
where n ≥ 2. There exists a restriction ρ ∈ {0, 1, ⋆}n such that |ρ−1({0, 1})| = 1 and L(C|ρ) ≤

(
1− 1.5

n

)
· S.

Proof. If C is equivalent to a constant or a literal, then the lemma is trivial, so assume otherwise. The first
step is to perform some simplifications to C before applying any restriction. For each subformula of the form
xi ∧ g, we can replace each occurrence of xi in g with the constant 1, because if xi = 0, then the subformula
will evaluate to false regardless of what g does. Similarly, in a subformula of the form ¬xi ∧ g, xi ∨ g, or
¬xi ∧ g, we can replace each occurrence of xi in g with an appropriate constant. Then, afterward, we can
remove all constants from the formula, because 0 ∧ g ≡ 0, 1 ∧ g ≡ g, 0 ∨ g ≡ g, and 1 ∨ g ≡ 1. After making
these simplifications, the new formula C ′ still has size at most S, and now it has the following property: For
each vertex u, if ℓ is a leaf that is a child of u and ℓ′ is a distinct leaf that is a descendant of u, then ℓ and ℓ′

read distinct variables.
Now we are ready to perform the restriction. Pick ρ uniformly at random among all restrictions such

that |ρ−1({0, 1})| = 1. For each leaf ℓ, we divide into three cases.

• Perhaps ρ does not assign a value to the variable that ℓ reads. In this case, we define Kℓ = ∅.

• Perhaps ρ assigns a value to the variable that ℓ reads, making ℓ a constant, but the parent u of ℓ
remains nonconstant. In this case, we define Kℓ = {ℓ}.

• Perhaps ρ assigns a value to the variable ℓ reads that makes both ℓ and its parent u constant. (Note
that 0 ∧ g ≡ 0 and 1 ∨ g ≡ 1 for any g.) In this case, we define Kℓ = {ℓ, ℓ′}, where ℓ′ is any other leaf
that is a descendant of u.

By construction, the function C|ρ can be computed by a De Morgan formula constructed from C ′ by replacing
some nodes with constants, thereby eliminating all the leaves in

⋃
ℓKℓ. Furthermore, because of the way we

constructed C ′, we have Kℓ ∩Kℓ′ = ∅ whenever ℓ ̸= ℓ′. Therefore,

E[L(C|ρ)] ≤ E

[
S −

∑
ℓ

|Kℓ|

]
= S −

∑
ℓ

(
1 · 0.5

n
+ 2 · 0.5

n

)
= S ·

(
1− 1.5

n

)
.

The best case is at least as good as the average case.

Lemma 3 (Non-optimal shrinkage of De Morgan formulas). Let f : {0, 1}n → {0, 1}, let p ∈ [0, 1], and assume
that pn is an integer. There exists a restriction ρ ∈ {0, 1, ⋆}n such that |ρ−1(⋆)| = pn and L(f |ρ) ≤ p1.5 ·L(f).

Proof. Let k = pn. If k = 0, the lemma is trivial, so assume k ≥ 1. By applying Lemma 2 n− k times, we
construct a restriction ρ such that |ρ−1(⋆)| = pn and

L(f |ρ) ≤ L(f) ·
n∏

i=k+1

(
1− 1.5

i

)

≤ L(f) ·
n∏

i=k+1

(
1− 1

i

)1.5

(Bernoulli’s inequality)

= L(f) ·

(
n∏

i=k+1

i− 1

i

)1.5

= L(f) · (k/n)1.5.

Theorem 1 (Non-optimal formula lower bound for parity). L(PARITYn) ≥ n1.5.

Proof. By Lemma 3, there exists a restriction ρ ∈ {0, 1, ⋆}n such that |ρ−1(⋆)| = 1 and

L(PARITYn|ρ) ≤ (1/n)1.5 · L(PARITYn).

On the other hand, PARITYn|ρ is non-constant, so L(PARITYn|ρ) ≥ 1.
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3 Near-cubic formula lower bounds

In the previous section, we used two steps to show that there exists an explicit function f (namely, the parity
function) such that L(f) ≥ n1.5:

1. We showed that small De Morgan formulas simplify under random restrictions.

2. We constructed f such that f does not simplify under random restrictions.

It turns out that both of the steps above can be improved, as we now discuss.

3.1 Optimal shrinkage of De Morgan formulas

Definition 3 (Random restrictions). Let n ∈ N and p ∈ [0, 1]. We define Rp to be the distribution over
{0, 1, ⋆}n defined as follows. To sample ρ ∼ Rp, for each coordinate i ∈ [n] independently, set

ρi =


⋆ with probability p

0 with probability (1− p)/2

1 with probability (1− p)/2.

Theorem 2 (Optimal shrinkage of De Morgan formulas [Tal14]). For every function f : {0, 1}n → {0, 1} and
every p ∈ [0, 1], we have

E
ρ∼Rp

[L(f |ρ)] ≤ O
(
p2 · L(f) + p ·

√
L(f)

)
≤ O(p2 · L(f) + 1).

The proof of Theorem 2 is omitted.

3.2 Andreev’s function

Theorem 3 (Near-cubic formula lower bound). For every n ∈ N, there exists a function A : {0, 1}2n → {0, 1}
(“Andreev’s function”) such that A ∈ P and L(A) ≥ Ω̃(n3).

Proof. Given f ∈ {0, 1}n and x(1), . . . , x(logn) ∈ {0, 1}n/ logn, we interpret f as the truth table of a function
f : {0, 1}logn → {0, 1}, and we define

A(f, x(1), . . . , x(logn)) = f(PARITYn/ logn(x
(1)), . . . ,PARITYn/ logn(x

(logn))).

Clearly, A ∈ P. To prove the formula lower bound, sample a restriction ρ ∼ Rp, where p = Θ((log2 n)/n).
On the one hand, by Theorem 2, we have

E[L(A|ρ)] ≤ O(1 + p2 · L(A)) = O

(
1 +

L(A) · (log n)4

n2

)
.

On the other hand, let us show that E[L(A|ρ)] ≥ Ω̃(n).
After applying ρ, let us randomly assign values to the remaining variables in the “f” portion of the

input of A. This can only make the formula size smaller. By Shannon’s counting argument, with probability
at least 0.9, the function f has circuit complexity Ω(n/ log n), hence it also satisfies L(f) ≥ Ω(n/ log n).1

Meanwhile, the probability that ρ assigns values to all n/ log n of the variables in some block x(i) is at
most log n · (1 − p)n/ logn ≤ log n · exp(−pn/ log n) ≪ 0.1. Assuming this does not occur, it is possible to
deterministically assign values to all but one variable in each block x(i) such that PARITYn(x

(i)) is simply

1In fact, Shannon’s counting argument can be improved for the special case of De Morgan formulas, but let’s just use the
bound that we already proved.
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a single variable. Consequently, under the resulting restriction ρ′, the restricted function A|ρ′ is simply f ,
applied to a subset of the variables. Thus, we have shown that

Pr[L(A|ρ) ≥ Ω(n/ log n)] ≥ 0.8,

and hence E[L(A|ρ)] ≥ Ω(n/ log n) by Markov’s inequality. Combined with the upper bound on E[L(A|ρ)],
this implies L(A) ≥ Ω̃(n3).

It is an open problem to show that some h ∈ NP satisfies L(h) ≥ n3+Ω(1).
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