
Exercises 5 & 6 [Edited 2024-10-22]

Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

Submission. Solutions are due Wednesday, October 23 at 5pm Central time. Submit your solutions
through Gradescope. You are encouraged, but not required, to typeset your solutions using a LATEX editor
such as Overleaf.

The policies below can also be found on the course webpage.

Collaboration. You are encouraged to collaborate with your classmates on homework, but you must
adhere to the following rules.

• Work on each exercise on your own for at least fifteen minutes before discussing it with your classmates.

• Feel free to explain your ideas to your classmates in person, and feel free to use whiteboards/chalkboards/etc.
However, do not share any written/typeset solutions with your classmates for them to study on their
own time. This includes partial solutions.

• Write your solutions on your own. While you are writing your solutions, do not consult any notes that
you might have taken during discussions with classmates.

• In your write-up, list any classmates who helped you figure out the solution. The fact that student A
contributed to student B’s solution does not necessarily mean that student B contributed to student
A’s solution.

Permitted Resources for Full Credit. In addition to discussions with me and discussions with classmates
as discussed above, you may also use any slides or notes posted in the “Course Timeline” section of the
course webpage, and you may also use Wikipedia. If you wish to receive full credit on an exercise, you may
not use any other resources.

Outside Resources for Partial Credit. If you wish, you may use outside resources (ChatGPT, Stack
Exchange, etc.) to solve an exercise for partial credit. If you decide to go this route, you must make a note
of which outside resources you used when you were working on each exercise. You must disclose using a
resource even if it was ultimately unhelpful for solving the exercise. Furthermore, if you consult an outside
resource while working on an exercise, then you must not discuss that exercise with your classmates.
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Recall that ADDn×m is the problem of adding n integers, each of which is represented by an m-bit string. In
class, we proved that ADDn×n ∈ NC1. In this exercise, you will prove the stronger statement ADDn×n ∈ TC0.

Exercise 5 (10 points). Throughout this exercise, let k(n) = ⌈log n⌉.

(a) Prove that ADDn×k(n) ∈ TC0.

Hint: Convert to unary, then add in unary, then convert back to binary. For the purposes of this exercise,
a “unary representation” of a number N is any bitstring with Hamming weight N .

(b) Let n ∈ N, let ℓ be an odd positive integer, let m = ℓ · k(n), and let M ∈ {0, 1}n×m. Write it as a block
matrix

M =

Mℓ−1 Mℓ−2 · · · M0

 ,

where Mi ∈ {0, 1}n×k(n) for every i ∈ {0, 1, . . . , ℓ− 1}. Prove that if M1 = M3 = M5 = · · · = Mℓ−2 = 0
(the all-zeroes matrix), then we can compute ADDn×m(M) in TC0.

Hint: Use part (a), and use the fact that ADDn×k(n) outputs strings of length 2k(n).

(c) Prove that ADDn×n ∈ TC0.

Hint: Given M ∈ {0, 1}n×n, split it into two matrices, M = M even +Modd.
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Throughout this exercise, let p and q be fixed, distinct primes. Define MODq : {0, 1}n → {0, 1}q by the
formula

MODq(x) = 0i−110q−i where i ≡ x1 + · · ·+ xn (mod q).

In this exercise, you will show that if p and q are distinct primes, then MODq /∈ AC0[p]. The proof has the
same structure as the proof that PARITY /∈ AC0 that we did in class. However, each step will be a bit trickier.

When we proved PARITY /∈ AC0, we found it convenient to work in the field F3. To prove MODq /∈ AC0[p],
it turns out to be wise to work in the field F = Fpq−1 , the unique field with pq−1 elements. I realize that
some of you might not be too familiar with this field,1 but I hope the exercise will nevertheless be doable and
interesting. The reason F is a good choice of field is that it has the following two features.

• Fp ⊆ F, where Fp denotes the integers modulo p.2

• There is a “primitive q-th root of unity” ω ∈ F, i.e., there exists ω ∈ F such that ωk = 1 if and only if k
is a multiple of q.3

You may take those two facts for granted.

Exercise 6 (15 points).

(a) Prove that for every size-S AC0
d[p] circuit C : {0, 1}n → {0, 1}q, there exists f⃗ = (f1, . . . , fq), where each

fi is a multilinear polynomial over F of degree at most (logS)O(d), such that

Pr
x∈{0,1}n

[
f⃗(x) = C(x)

]
≥ 0.99.

Hint: Use Fermat’s little theorem. (You may use it without proving it.)

You may assume that S ≥ n. It’s fine if the hidden constant under the O(·) depends on p, since we are
thinking of p and q as constants.

(b) Let D ∈ N, and let f⃗ = (f1, . . . , fq), where each fi is a multilinear polynomial over F of degree at most
D. Prove that there exists a multilinear polynomial g ∈ F[y1, . . . , yn] of degree at most D such that

Pr
x∈{0,1}n

[
f⃗(x) = MODq(x)

]
≤ Pr

y∈{1,ω}n
[g(y) = y1y2 · · · yn].

Hint: Let xi =
1−yi
1−ω .

(c) Let g ∈ F[y1, . . . , yn] be a multilinear polynomial of degree at most D, and define

Ω = {y ∈ {1, ω}n : g(y) = y1y2 · · · yn}.

Prove that every function h : Ω → F can be computed by a multilinear polynomial of degree at most
n/2 +D.

Hints: Simplify the expressions 1+ω−b
ω and b+ ωb− ω under the assumption b ∈ {1, ω}. Replace each

high-degree monomial cS
∏

i∈S yi of h with the low-degree polynomial cS ·g(y)∏
i/∈S yi

.

(d) Prove that MODq /∈ AC0[p].

(e) (Optional; 1 point of extra credit) Prove that MODq /∈ AC0[p] and MAJ /∈ AC0[p].

1Caution: F is not simply the integers modulo pq−1.
2Indeed, just like the complex numbers can be constructed by “extending” the real numbers to include an “imaginary solution”

to the equation x2 = −1, similarly, F can be constructed by “extending” Fp to include an “imaginary solution” to a certain
equation. You can read more about finite fields on Wikipedia if you want.

3Proof that ω exists: The multiplicative group F× is cyclic with order pq−1 − 1, which is a multiple of q by Fermat’s little
theorem.
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