
Exercises 11-14 [Typo corrected 2024-11-19]

Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

Submission. Solutions are due Wednesday, November 20 at 5pm Central time. Submit your solutions
through Gradescope. You are encouraged, but not required, to typeset your solutions using a LATEX editor
such as Overleaf.

The policies below can also be found on the course webpage.

Collaboration. You are encouraged to collaborate with your classmates on homework, but you must
adhere to the following rules.

• Work on each exercise on your own for at least fifteen minutes before discussing it with your classmates.

• Feel free to explain your ideas to your classmates in person, and feel free to use whiteboards/chalkboards/etc.
However, do not share any written/typeset solutions with your classmates for them to study on their
own time. This includes partial solutions.

• Write your solutions on your own. While you are writing your solutions, do not consult any notes that
you might have taken during discussions with classmates.

• In your write-up, list any classmates who helped you figure out the solution. The fact that student A
contributed to student B’s solution does not necessarily mean that student B contributed to student
A’s solution.

Permitted Resources for Full Credit. In addition to discussions with me and discussions with classmates
as discussed above, you may also use any slides or notes posted in the “Course Timeline” section of the
course webpage, and you may also use Wikipedia. If you wish to receive full credit on an exercise, you may
not use any other resources.

Outside Resources for Partial Credit. If you wish, you may use outside resources (ChatGPT, Stack
Exchange, etc.) to solve an exercise for partial credit. If you decide to go this route, you must make a note
of which outside resources you used when you were working on each exercise. You must disclose using a
resource even if it was ultimately unhelpful for solving the exercise. Furthermore, if you consult an outside
resource while working on an exercise, then you must not discuss that exercise with your classmates.
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For a function f : {0, 1}n → {0, 1}, let CC(f) denote the circuit complexity of f , i.e., the size the minimum
circuit that computes f . For this exercise, we are working with unbounded-depth circuits over the full binary
basis. Each vertex with fan-in zero is labeled with a variable or a constant.

Exercise 11 (10 points). Define f : {0, 1}n → {0, 1} by f(x) = 1 if and only if x1 + x2 + · · ·+ xn ≥ 2.

(a) Assume n ≥ 3. Prove that there exists ρ ∈ {0, ⋆}n such that |ρ−1(0)| = 1 and CC(f |ρ) ≤ CC(f)− 2.

Hint: Is it possible to compute f using a circuit of the form C(x) = C ′(ϕ(x1, x2), x3, x4, . . . , xn) where
ϕ : {0, 1}2 → {0, 1}?

(b) Prove that CC(f) ≥ 2n−O(1).
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For a function f : {0, 1}n → {0, 1}, let L(f) denote the minimum leafsize of any formula computing f over
the full binary basis, , i.e., each gate has fan-in two and computes an arbitrary function {0, 1}2 → {0, 1}.

Exercise 12 (10 points). Prove that there exists f ∈ P such that L(f) ≥ Ω̃(n2).
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In class, we used the AC0 Criticality Theorem to prove an extremely strong bound on the correlation
between the parity function and AC0 circuits. In this exercise, you will prove that the bound is essentially
optimal.

Exercise 13 (10 points).

(a) Let n, d ∈ N where d ≥ 2. Assume for simplicity that n1/(d−1) is an integer. Prove that PARITYn can be

computed by an AC0
d circuit of size O(n · 2n1/(d−1)

), with an OR gate on top.

Hint: Divide and conquer, using both brute-force CNFs and brute-force DNFs. Watch out for negations.

(b) Let n, d, t ∈ N where d ≥ 2. Assume for simplicity that t is even and (n/t)1/(d−1) is an integer. Prove

that there exists an AC0
d circuit C : {0, 1}n → {0, 1} of size O(n · 2(n/t)d−1

) O(n · 2(n/t)
1

d−1
) such that

Pr
x∈{0,1}n

[C(x) = PARITYn(x)] ≥
1

2
+ 2−t.

Hint: Use part (a).
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In class, we discuss the AC0 Criticality Theorem:

Theorem 1 (AC0 Criticality Theorem). Let C be a size-S AC0
d circuit, let p ∈ (0, 1), and let D ∈ N. Then

Pr
ρ∼Rp

[DTDepth(C|ρ) ≥ D] ≤ (p ·O(logS)d−1)D.

We do not prove the AC0 Criticality Theorem in class. However, we do prove the Switching Lemma,
repeated here for convenience.

Lemma 1 (The Switching Lemma). Let C be a width-w DNF or CNF1 formula, let p ∈ (0, 1), and let D ∈ N.
Then

Pr
ρ∼Rp

[DTDepth(C|ρ) ≥ D] ≤ O(pw)D.

In this exercise, you will use the Switching Lemma to prove the following weaker variant of the AC0

Criticality Theorem.

Theorem 2. Let C be a size-S AC0
d circuit, let p ∈ (0, 1), and let D ∈ N. Then

Pr
ρ∼Rp

[DTDepth(C|ρ) ≥ D] ≤ (p ·O(logS)d−1)D +
1

S
.

Exercise 14 (10 points).

(a) Let T be a depth-w decision tree. Prove that T can be computed by a width-w DNF, and T can also be
computed by a width-w CNF.

(b) Let us define “AC0
d[S]◦DT[w]” to be the class of functions of the form C(x) = g(h1(x), . . . , hm(x)), where

g is an AC0
d circuit of size S and h1, . . . , hm are depth-w decision trees. Use the Switching Lemma and

part (a) to prove that if C ∈ AC0
d[S] ◦ DT[w] where d ≥ 1, then for every D ≥ 0, we have

Pr
ρ∼Rp

[
C|ρ /∈ AC0

d−1[S] ◦ DT[D]
]
≤ S ·O(pw)D+1.

(c) Use part (b) to prove Theorem 2.

Hints: Applying a restriction sampled from Rp is equivalent to applying d independent rounds of
restrictions, sampled from Rp1 , Rp2 , . . . , Rpd , such that p = p1 · p2 · · · pd. Under such a sequence of
restrictions, argue that the circuit simplifies as follows, for a suitable parameter w = Θ(logS):

AC0
d[S] ◦DT[1] → AC0

d−1[S] ◦DT[w] → AC0
d−2[S] ◦DT[w] → · · · → AC0

1[S] ◦DT[w] → AC0
0[S] ◦DT[D− 1].

Note that an AC0
1 circuit is simply a conjunction or disjunction of literals, and an AC0

0 circuit is simply a
literal or a constant.

(d) (Optional; 1 point extra credit) Use Theorem 2 to prove that every AC0
d circuit computing PARITYn

must have size 2Ω(n1/(d−1)).

1In class, we focused on the case of DNFs, but the CNF case follows by considering 1− C.
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