Circuit Complexity: Autumn 2024

Course Summary & Review

Instructor: William Hoza

The University of Chicago

Circuits vs. Turing machines

- Let $f: \{0, 1\}^* \to \{0, 1\}$
- **Theorem:** The following are equivalent:
	- f can be computed by poly-size circuits ($f \in \text{PSIZE}$)
	- \bullet f can be computed by a poly-time Turing machine with a poly-length advice string $(f \in P/\text{poly})$
- **Adleman's Theorem:** BPP ⊆ P/poly

Circuit complexity and P vs. NP

- **Shannon's Counting Argument:** For most functions $f: \{0, 1\}^n \rightarrow \{0, 1\}$, the circuit complexity of f is $\Omega(2^n/n)$
- If you can show $\exists f \in \text{NP}$ with circuit complexity $n^{\omega(1)}$, then it follows that $P \neq NP$ Q
- So far, the best circuit complexity lower bound for a function in NP is approximately $3.1 \cdot n$ [Li, Yang 2022]

Shallow circuits

- We have better tools for reasoning about shallow circuits
- Constant-depth circuits represent ultra-fast parallel algorithms
- Depth \approx Time
- Size ≈ Work

Shallow circuits can do interesting stuff

- Examples of problems in $NC⁰$:
	- Three-to-two addition
- Examples of problems in $AC⁰$:
	- Integer addition
	- Promise majority (Exercise 4)
- *"Local functions"*
- *Each output bit depends on* $0(1)$ *input bits*

Shallow circuits can do interesting stuff

- Examples of problems in $AC^0[\bigoplus]$:
	- Nisan-Wigderson PRG
- Examples of problems in TC^0 : TC⁰ ≈ *Neural Networks*
	- All symmetric functions (SYM $\subseteq \text{TC}^0$)
	- Iterated integer addition (Exercise 5)
	- Candidate cryptographic PRFs

Shallow circuits can do interesting stuff

- Examples of problems in NC^1 :
	- Majority ($TC^0 \subseteq NC^1$)
- Examples of problems in AC^1 :
	- s-t connectivity ($NL \subseteq AC^1$)

The complexity class AC^U

- \cdot AC⁰ is one of my favorite complexity classes!
- The theory of AC^0 is a "mini complexity theory"
- Maybe someday, your great-grandchildren will understand P/poly as thoroughly as we understand AC^0 today...
- Studying AC^0 gives us a taste of that glorious future

The Razborov-Smolensky method

- Let C : $\{0, 1\}^n \rightarrow \{0, 1\}$ be an AC^0_d circuit of size $S \geq n$
- Let $\mathbb F$ be any field and let $\epsilon \in (0,1)$
- **Theorem:** There exists a probabilistic polynomial P over F that computes C with error ϵ and degree $O(\log S \cdot \log (S/\epsilon))^d$
- In contrast, the parity function cannot be approximated by lowdegree polynomials over \mathbb{F}_3 , hence PARITY $\notin AC^0$

Weak polynomial representations

- Let C : $\{0, 1\}^n \rightarrow \{0, 1\}$ be a MAJ ∘ AC_d^0 circuit of size $S \ge n$
- Let $f: \{0, 1\}^n \to \{0, 1\}$ be a function that agrees with C on $1/2 + \epsilon$ fraction of inputs
- **Theorem:** The function f has a weak polynomial representation of degree $n - \Omega(\epsilon \cdot \sqrt{n}) + (\log S)^{O(d)}$
- In contrast, the parity function has no nontrivial weak polynomial representation, hence PARITY \notin MAJ ∘ AC⁰

Impagliazzo's Hard-Core Lemma

- Let C be a circuit class and let $h: \{0, 1\}^n \to \{0, 1\}$
- Assume that $\forall C \in MAJ_t \circ C$, we have Pr χ $C(x) = h(x) \leq 0.9$
- **Impagliazzo's Hard-Core Lemma:** There exists a set $H \subseteq \{0, 1\}^n$ of

size $\Omega(2^n)$ such that $\forall C \in \mathcal{C}$, we have

$$
\Pr_{x \in H} [C(x) = h(x)] \le \frac{1}{2} + O(1/\sqrt{t})
$$

Ignoring some technicalities…

Yao's XOR Lemma

- Let C be a circuit class and let $h: \{0, 1\}^n \rightarrow \{0, 1\}$
- Assume that $\forall C \in MAJ_t \circ C$, we have Pr \mathcal{X} $C(x) = h(x) \leq 0.9$

• **Yao's XOR Lemma:** $\forall C \in C$, $\forall k \in \mathbb{N}$, we have

Ignoring some technicalities…

$$
\Pr_{x} [C(x) = h^{\oplus k}(x)] \le \frac{1}{2} + 2^{-\Omega(k)} + O(1/\sqrt{t})
$$

• Consequence: Correlation between PARITY and AC⁰ is exponentially small

Nisan-Wigderson Pseudorandom Generator

- Let $n, S, d \in \mathbb{N}$ and $\epsilon \in (0, 1)$ where $S \geq n$
- **Theorem:** There exists a PRG $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$ such that:
	- (Fooling) For every AC_d^0 circuit C of size at most S , we have

$$
\left|\Pr_x[C(G(x)) = 1] - \Pr_y[C(y) = 1]\right| \le \epsilon
$$

- (Efficiency) Given n, S, d, ϵ, x , the string $G(x)$ can be computed in $poly(n)$ time
- (Seed length) We have $s = (\log(S/\epsilon))^{O(d)}$

The Switching Lemma

- Distribution R_p over $\{0, 1, \star\}^n$: For each variable independently, keep it alive with probability p , otherwise assign a random value
- The Switching Lemma: If C is a width-w DNF/CNF, then

$$
\Pr_{\rho \sim R_p} \left[\text{DTDepth}(C|_{\rho}) \ge D \right] \le O(pw)^D
$$

• For example, when $D = 1$, we get $Pr|C|_p$ is nonconstant $\leq O(pw)$

The AC⁰ Criticality Theorem

- Let C : $\{0, 1\}^n \rightarrow \{0, 1\}$ be an AC^0_d circuit of size S
- AC⁰ Criticality Theorem: Pr $\rho \sim R_p$ $D\text{TDepth}(C|_{\rho}) \geq D \leq (p \cdot O(\log S)^{d-1})$ \boldsymbol{D}
- In contrast, the parity function does not simplify under restrictions, hence

$$
\Pr_x[C(x) = \text{PARITY}_n(x)] \le \frac{1}{2} + 2^{-n/O(\log S)^{d-1}}
$$

Fourier analysis of Boolean functions

• Fact: Every function $C: {\pm 1}^n \rightarrow {\pm 1}$ can be uniquely written as a

AC⁰ Fourier tail bound

- Let C : $\{\pm 1\}^n \rightarrow \{\pm 1\}$ be an AC^0_d circuit of size S
- AC⁰ Fourier Tail Bound, aka LMN Theorem: For all $k \in \mathbb{N}$, we have

$$
\sum_{S \subseteq [n], |S| \ge k} \hat{C}(S)^2 \le 2 \cdot 2^{-k/O(\log S)^{d-1}}
$$

• Consequence: AC⁰ circuits are learnable in quasipolynomial time under the uniform distribution, given random labeled examples

Limited independence fools $AC⁰$

- Let $d \in \mathbb{N}$ be a constant
- **Braverman's Theorem:** $\forall S \in \mathbb{N}$, $\forall \epsilon \in (0,1)$, $\exists k = \text{polylog}(S) \cdot \log(1/\epsilon)$ such that if C : $\{0, 1\}^n \rightarrow \{0, 1\}$ is an AC^0_d circuit of size $S \ge n$ and X is k -wise uniform, then

$$
|\Pr[C(X) = 1] - \Pr[C(U_n) = 1]| \le \epsilon
$$

• Follows from construction of low-degree sandwiching polynomials

Beyond AC⁰: Sipser's program

- Strategy for proving $P \neq NP$: Prove NP $\nsubseteq C$ for stronger and stronger C until eventually we prove $NP \nsubseteq P/poly$
- PARITY $\notin AC^0$
- If p is a power of a prime, then MAJORITY $\notin AC^0[p]$
- Open problem: Prove $NP \nsubseteq AC^0[6]...$

The frontier of Sipser's program: ACC

 $NQP = Nondeterministic Quasipoly Time$

$$
ACC = \bigcup_{m} AC^0[m]
$$

- **Theorem** [Murray, Williams 2018]: NQP ⊈ ACC
- Proof step 1: Every $C \in AC^0[m]$ can be computed by a SYM of AND of literals, where the SYM has quasipoly fan-in and each AND has polylog fan-in
- Proof step 2: There is a nontrivial satisfiability algorithm for $AC^0[m]$ circuits
- Proof step 3: Nontrivial satisfiability algorithms imply lower bounds
	- This last step is not specific to ACC

Natural properties Can also define AC⁰-natural, NC¹-natural, etc.

- Why has Sipser's program/stalled? How can we make progress?
- We say that H is a P-natural property of Boolean functions if:
	- Density: If we pick $f\!:\!\{0,1\}^n \to \{0,1\}$ u.a.r., then $\Pr[f$ has property $H] \geq 2^{-O(n)}$
	- Constructivity: Can determine whether f has property H in time $2^{O(n)}$, given the 2^n -bit truth table of f
- We say H is useful against C if functions in C do not have property H

How powerful are natural proofs?

 \bullet Theorem: There exists an AC^0 -natural property that is useful against AC^0

Random restrictions

• Theorem: There does not exist an AC⁰-natural property that is useful against AC⁰[⊕] *Nisan-Wigderson PRG*

Naor-Reingold PRF

• **Theorem:** Under appropriate cryptographic assumptions, there does not

exist a P-natural property that is useful against TC^0

Natural proofs: Interpretation

- Conventional interpretation:
	- We ought to study non-natural proof techniques
	- That way, someday, we can prove NP \nsubseteq TC⁰, and eventually NP \nsubseteq P/poly
- Another possibility: Candidate PRFs such as Naor-Reingold are insecure
- Yet another possibility: $NP \subseteq TC^0$

The complexity class $NC¹$

- **Theorem:** For any $f: \{0, 1\}^* \rightarrow \{0, 1\}$, the following are equivalent:
	- $f \in NC^1$ (log-depth poly-size circuits with bounded fan-in)
	- \bullet f can be computed by a De Morgan formula with poly leafsize
		- **"Formula Balancing Lemma"**
	- \bullet f can be computed by poly-length constant-width branching programs
		- **"Barrington's Theorem"**

Computing with $O(1)$ *bits of memory*

Formula lower bounds

• Andreev's function $A: \{0, 1\}^{2n} \rightarrow \{0, 1\}$ is defined by

$$
A(f, x^{(1)}, \dots, x^{(\log n)}) = f\left(\text{PARITY}(x^{(1)}), \dots, \text{PARITY}(x^{(\log n)})\right)
$$

- **Theorem:** $L(A) \ge \tilde{\Omega}(n^3)$, where $L(\cdot)$ is De Morgan leafsize
- Proof is based on shrinkage of De Morgan formulas:

$$
\mathbb{E}_{\rho \sim R_p} [L(f|_{\rho})] \le O\left(p^2 \cdot L(f) + p \cdot \sqrt{L(f)}\right)
$$

Summary of complexity classes $NC^0 \neq AC^0 \neq AC^0[\oplus] \neq ACC$

A few of the many topics we didn't discuss

- Arithmetic circuits $(+)$ and \times gates)
- Monotone circuit lower bounds
- Connections between circuit complexity and communication complexity
- (Weak) TC⁰ lower bounds

Advertisement

- Consider enrolling in my seminar course next quarter!
- Topic: Derandomizing Space-Bounded Computation
	- Is randomness ever necessary for space-efficient computation?
- Less emphasis on exercises, more emphasis on cutting-edge research
	- Will not count as a graduate elective
- Also consider Sasha Razborov's complexity theory course in the spring!

Thank you!

- Being your instructor has been a privilege
- I look forward to reading your expositions
- Please fill out the Graduate Course Feedback Form using My.UChicago (deadline is Sunday, December 15)