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Circuits vs. Turing machines

* Let :{0,1}* - {0, 1}

* Theorem: The following are equivalent:

* f can be computed by poly-size circuits (f € PSIZE)

* f can be computed by a poly-time Turing machine with a poly-length advice

string (f € P/poly)

* Adleman’s Theorem: BPP € P/poly



Circuit complexity and P vs. NP

 Shannon’s Counting Argument: For most functions f:{0,1}"* — {0, 1},

the circuit complexity of f is Q(2™/n)

* If you can show 3f € NP with circuit complexity n®?@ then it follows

that P = NP (&

* So far, the best circuit complexity lower bound for a function in NP is

approximately 3.1 - n [Li, Yang 2022]



Shallow circuits

* We have better tools for reasoning about shallow circuits
* Constant-depth circuits represent ultra-fast parallel algorithms
* Depth = Time

e Size =~ Work



Shallow circuits can do interesting stuff

 Examples of problems in NC": \

* Three-to-two addition * “Local functions”

* Each output bit depends on
O(1) input bits

* Examples of problems in ACY:

* Integer addition

* Promise majority (Exercise 4)



Shallow circuits can do interesting stuff

 Examples of problems in AC’[D]:

* Nisan-Wigderson PRG

* Examples of problems in TC":

* All symmetric functions (SYM < TC?)
* |terated integer addition (Exercise 5)

* Candidate cryptographic PRFs

TC® ~ Neural Networks




Shallow circuits can do interesting stuff

 Examples of problems in NC*:

« Majority (TC® € NC?)

 Examples of problems in AC*:

e s-t connectivity (NL € AC?)



The complexity class AC°

» ACP is one of my favorite complexity classes!
* The theory of AC® is a “mini complexity theory”

* Maybe someday, your great-grandchildren will understand P /poly as

thoroughly as we understand AC® today...

e Studying ACO gives us a taste of that glorious future (&



The Razborov-Smolensky method

e Let C:{0,1}" - {0, 1} be an AC} circuit of size S > n
* Let [F be any field and let € € (0,1)

* Theorem: There exists a probabilistic polynomial P over [F that

computes C with error € and degree O(log S - log(S/€))“

* In contrast, the parity function cannot be approximated by low-

degree polynomials over F5, hence PARITY ¢ AC"



Weak polynomial representations

e Let C:{0,1}" - {0,1} be a MAJ o AC)) circuit of size S > n

 Let f:{0,1}" — {0, 1} be a function that agrees with Con 1/2 + ¢

fraction of inputs

* Theorem: The function f has a weak polynomial representation of

degree n — Q(e - vn) + (log $)0@

* In contrast, the parity function has no nontrivial weak polynomial

representation, hence PARITY & MA] o AC"
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Impagliazzo’s Hard-Core Lemma

* Let C be a circuit class and let h: {0, 1}" — {0, 1}

* Assume that VC € MAJ, o C, we have Pr[C(x) = h(x)] < 0.9
X

* Impagliazzo’s Hard-Core Lemma: There exists a set H € {0, 1}" of

size Q(2™) such that VC € C, we have

Pr
XEH

IC(x) = h(x)] < % + 0(1/\/f

AN

)

Ignoring some
technicalities...
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Yao’s XOR Lemma

* Let C be a circuit class and let h: {0, 1}"* — {0, 1}

* Assume that VC € MAJ, o C, we have Pr[C(x) = h(x)] < 0.9
X

* Yao’s XOR Lemma: VC € C, Vk € N, we have Ignoring some
technicalities...

Pr[C(x) = h®*(x)] < % + 27909 + 0(1/+/t)

e Consequence: Correlation between PARITY and AC? is exponentially small
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Nisan-Wigderson Pseudorandom Generator

*letn,S,d € Nande € (0,1) where S = n

* Theorem: There exists a PRG G:{0,1}* — {0, 1}" such that: \CK/'J

» (Fooling) For every AC) circuit C of size at most S, we have

Pr[c(G(x)) =1| - Pr [C(y) =1]| <

* (Efficiency) Given n, S, d, €, x, the string G(x) can be computed in poly(n) time

* (Seed length) We have s = (log(§/€))°@

—_

More sophisticated PRGs are
known, with better seed lengths
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ACP can be computed by probabilistic polynomials

U

MA]J o AC° has weak polynomial representations

U

Correlation between PARITY and MAJ o AC? is 0(1)

Yy

Von Neumann’s Minimax Theorem

U

Impagliazzo’s Hard-Core Lemma

U

Yao’s XOR Lemma

4

Correlation between PARITY and AC% is 27"

Q1)

U

Nisan-Wigderson PRG
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The Switching Lemma

* Distribution R,, over {0, 1,%}": For each variable independently, keep it

alive with probability p, otherwise assigh a random value

* The Switching Lemma: If C is a width-w DNF/CNF, then

Pr [DTDepth(C|,) = D| < 0(pw)P
~hp

* For example, when D = 1, we get Pr[C|p iS nonconstant] < 0(pw)

15



The ACP Criticality Theorem

e Let C:{0,1}" - {0, 1} be an AC} circuit of size S

e AC Criticality Theorem:pP}; [DTDepth(C|p) > D] < (p . 0(log S)d‘l)D
~hp

* In contrast, the parity function does not simplify under restrictions, hence

= 1 _
Pr[C(x) = PARITY,(x)] < > 4 2-n/0(log s)d-1
X <
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Fourier analysis of Boolean functions

* Fact: Every function C: {+1}" — {+1} can be uniquely written as a

multilinear polynomial:

/ Correlation

o= ) C) - x50
Sl T

Parity functions

* Parseval’s Theorem: Y. C(S)? = E,[C(x)?] =1
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AC° Fourier tail bound

e Let C: {#1}" - {+1} be an AC} circuit of size S

 AC? Fourier Tail Bound, aka LMN Theorem: For all k € N, we have

z C(S)Z <?2. Z—R/O(logS)d_l
Sc[n],|S|=k

* Consequence: ACP circuits are learnable in quasipolynomial time

under the uniform distribution, given random labeled examples
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Limited independence fools AC°

e Let d € N be a constant

* Braverman’s Theorem: VS € N, Ve € (0,1), 3k = polylog(S) - log(1/¢)
such thatif C:{0,1}" — {0,1}is an AC2 circuit of size S > n and X is k-wise

uniform, then

|IPr[C(X) = 1] —Pr[C(U,) =1]| <€

* Follows from construction of low-degree sandwiching polynomials
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(Multi) Switching Lemma

U

ACP Criticality Theorem

U

ACP Fourier tail bound

74

Optimal bound on the correlation

between parity and AC°

U

Learnability of AC°

Ny

Limited independence fools AC°
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Beyond ACP: Sipser’s program

* Strategy for proving P #+ NP: Prove NP € C for stronger and stronger C
until eventually we prove NP € P/poly

* PARITY ¢ AC’

* If p is a power of a prime, then MAJORITY ¢ AC[p]| «

* Open problem: Prove NP & ACY[6]...
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The frontier of Sipser’s program: ACC

NQP = Nondeterministic Quasipoly Time ACC = U,, AC°[m]

AN /

* Theorem [Murray, Williams 2018]: NQP € ACC

* Proof step 1: Every C € AC°[m] can be computed by a SYM of AND of literals,
where the SYM has quasipoly fan-in and each AND has polylog fan-in

* Proof step 2: There is a nontrivial satisfiability algorithm for AC®[m] circuits

* Proof step 3: Nontrivial satisfiability algorithms imply lower bounds

* This last step is not specific to ACC



Can also define AC°-natural, NC*-natural, etc.

Natural properties

* Why has Sipser’s program stalled? How can we make progress?

* We say that H is a P-natural property of Boolean functions if:
* Density: If we pick f:{0, 1}* — {0, 1} u.a.r., then Pr[f has property H| > 2-0(m)

* Constructivity: Can determine whether f has property H in time 20(m) given the

2™-bit truth table of f

* We say H is useful against C if functions in C do not have property H
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How powerful are natural proofs?

* Theorem: There exists an AC"-natural property that is useful against AC"

N

» Theorem: There does not exist an AC"-natural property that is useful

against ACY [@]\ Nisan-Wigderson PRG
/ Naor-Reingold PRF

* Theorem: Under appropriate cryptographic assumptions, there does not

Random restrictions

exist a P-natural property that is useful against TC"



Natural proofs: Interpretation

* Conventional interpretation:

* We ought to study non-natural proof techniques

e That way, someday, we can prove NP & TCY, and eventually NP & P/poly
* Another possibility: Candidate PRFs such as Naor-Reingold are insecure

* Yet another possibility: NP < TC"
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The complexity class NC1

* Theorem: For any f:{0,1}* — {0, 1}, the following are equivalent:

 f € NC! (log-depth poly-size circuits with bounded fan-in)
* f can be computed by a De Morgan formula with poly leafsize
* “Formula Balancing Lemma”

* f can be computed by poly-length constant-width branching programs

* “Barrington’s Theorem” \

Computing with O(1) bits of memory
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Formula lower bounds

 Andreev’s function A: {0, 1}°™ — {0, 1} is defined by
A(f,x®, ..., x08™) = £ (PARITY(x™), ..., PARITY (x (%8 ™))

 Theorem: L(A) > Q(n3), where L(+) is De Morgan leafsize

* Proof is based on shrinkage of De Morgan formulas:

Ep-r, [L(f1o)] < 0 (p* - L) +p - VL))
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NCO # ACO # AC°[@] # ACC

Summary of complexity classes

L/poly | NL/poly | AC?!




A few of the many topics we didn’t discuss

* Arithmetic circuits (+ and X gates)
* Monotone circuit lower bounds
* Connections between circuit complexity and communication complexity

* (Weak) TC" lower bounds
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Advertisement

* Consider enrolling in my seminar course next quarter!

* Topic: Derandomizing Space-Bounded Computation

* |s randomness ever necessary for space-efficient computation?

* Less emphasis on exercises, more emphasis on cutting-edge research

* Will not count as a graduate elective

 Also consider Sasha Razborov’s complexity theory course in the spring!
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Thank youl!

* Being your instructor has been a privilege
* | look forward to reading your expositions

* Please fill out the Graduate Course Feedback Form using My.UChicago

(deadline is Sunday, December 15)
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