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Circuits vs. Turing machines

• Let 𝑓: 0, 1 ∗ → {0, 1}

• Theorem: The following are equivalent:

• 𝑓 can be computed by poly-size circuits (𝑓 ∈ PSIZE)

• 𝑓 can be computed by a poly-time Turing machine with a poly-length advice 

string (𝑓 ∈ P/poly)

• Adleman’s Theorem: BPP ⊆ P/poly
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Circuit complexity and P vs. NP

• Shannon’s Counting Argument: For most functions 𝑓: 0, 1 𝑛 → 0, 1 , 

the circuit complexity of 𝑓 is Ω 2𝑛/𝑛

• If you can show ∃𝑓 ∈ NP with circuit complexity 𝑛𝜔 1 , then it follows 

that P ≠ NP 

• So far, the best circuit complexity lower bound for a function in NP is 

approximately 3.1 ⋅ 𝑛 [Li, Yang 2022]
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Shallow circuits

• We have better tools for reasoning about shallow circuits

• Constant-depth circuits represent ultra-fast parallel algorithms

• Depth ≈ Time

• Size ≈ Work
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Shallow circuits can do interesting stuff

• Examples of problems in NC0:

• Three-to-two addition

• Examples of problems in AC0:

• Integer addition

• Promise majority (Exercise 4)
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• “Local functions”

• Each output bit depends on 

𝑂 1  input bits



Shallow circuits can do interesting stuff
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• Examples of problems in AC0 ⊕ :

• Nisan-Wigderson PRG

• Examples of problems in TC0:

• All symmetric functions (SYM ⊆ TC0)

• Iterated integer addition (Exercise 5)

• Candidate cryptographic PRFs

TC0 ≈ Neural Networks



Shallow circuits can do interesting stuff

• Examples of problems in NC1:

• Majority (TC0 ⊆ NC1)

• Examples of problems in AC1:

• 𝑠-𝑡 connectivity (NL ⊆ AC1)
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The complexity class AC0

• AC0 is one of my favorite complexity classes!

• The theory of AC0 is a “mini complexity theory”

• Maybe someday, your great-grandchildren will understand P/poly as 

thoroughly as we understand AC0 today…

• Studying AC0 gives us a taste of that glorious future 
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The Razborov-Smolensky method

• Let 𝐶: 0, 1 𝑛 → 0, 1  be an AC𝑑
0  circuit of size 𝑆 ≥ 𝑛

• Let 𝔽 be any field and let 𝜖 ∈ 0, 1

• Theorem: There exists a probabilistic polynomial 𝑃 over 𝔽 that 

computes 𝐶 with error 𝜖 and degree 𝑂 log 𝑆 ⋅ log 𝑆/𝜖 𝑑

• In contrast, the parity function cannot be approximated by low-

degree polynomials over 𝔽3, hence PARITY ∉ AC0
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Weak polynomial representations

• Let 𝐶: 0, 1 𝑛 → 0, 1  be a MAJ ∘ AC𝑑
0  circuit of size 𝑆 ≥ 𝑛

• Let 𝑓: 0, 1 𝑛 → 0, 1  be a function that agrees with 𝐶 on 1/2 + 𝜖 

fraction of inputs

• Theorem: The function 𝑓 has a weak polynomial representation of 

degree 𝑛 − Ω 𝜖 ⋅ 𝑛 + log 𝑆 𝑂 𝑑

• In contrast, the parity function has no nontrivial weak polynomial 

representation, hence PARITY ∉ MAJ ∘ AC0
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Impagliazzo’s Hard-Core Lemma

• Let 𝒞 be a circuit class and let ℎ: 0, 1 𝑛 → {0, 1}

• Assume that ∀𝐶 ∈ MAJ𝑡 ∘ 𝒞, we have Pr
𝑥

𝐶 𝑥 = ℎ 𝑥 ≤ 0.9

• Impagliazzo’s Hard-Core Lemma: There exists a set 𝐻 ⊆ 0, 1 𝑛 of 

size Ω 2𝑛  such that ∀𝐶 ∈ 𝒞, we have

Pr
𝑥∈𝐻

𝐶 𝑥 = ℎ 𝑥 ≤
1

2
+ 𝑂 1/ 𝑡
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Ignoring some 
technicalities…



Yao’s XOR Lemma 

• Let 𝒞 be a circuit class and let ℎ: 0, 1 𝑛 → {0, 1}

• Assume that ∀𝐶 ∈ MAJ𝑡 ∘ 𝒞, we have Pr
𝑥

𝐶 𝑥 = ℎ 𝑥 ≤ 0.9

• Yao’s XOR Lemma: ∀𝐶 ∈ 𝒞, ∀𝑘 ∈ ℕ, we have 

Pr
𝑥

𝐶 𝑥 = ℎ⊕𝑘 𝑥 ≤
1

2
+ 2−Ω 𝑘 + 𝑂 1/ 𝑡

• Consequence: Correlation between PARITY and AC0 is exponentially small
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Ignoring some 
technicalities…



Nisan-Wigderson Pseudorandom Generator

• Let 𝑛, 𝑆, 𝑑 ∈ ℕ and 𝜖 ∈ (0, 1) where 𝑆 ≥ 𝑛

• Theorem: There exists a PRG 𝐺: 0, 1 𝑠 → 0, 1 𝑛 such that:

• (Fooling) For every AC𝑑
0  circuit 𝐶 of size at most 𝑆, we have

Pr
𝑥

𝐶 𝐺 𝑥 = 1 − Pr
𝑦

𝐶 𝑦 = 1 ≤ 𝜖

• (Efficiency) Given 𝑛, 𝑆, 𝑑, 𝜖, 𝑥, the string 𝐺 𝑥  can be computed in poly 𝑛  time

• (Seed length) We have 𝑠 = log 𝑆/𝜖 𝑂 𝑑
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More sophisticated PRGs are 
known, with better seed lengths
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AC0 can be computed by probabilistic polynomials

MAJ ∘ AC0 has weak polynomial representations

Correlation between PARITY and MAJ ∘ AC0 is 𝑜 1

Von Neumann’s Minimax Theorem

Impagliazzo’s Hard-Core Lemma

Yao’s XOR Lemma

Correlation between PARITY and AC0 is 2−𝑛Ω 1

Nisan-Wigderson PRG

⇒
⇒

⇒
⇒

⇒



The Switching Lemma

• Distribution 𝑅𝑝 over 0, 1,⋆ 𝑛: For each variable independently, keep it 

alive with probability 𝑝, otherwise assign a random value

• The Switching Lemma: If 𝐶 is a width-𝑤 DNF/CNF, then

Pr
𝜌∼𝑅𝑝

DTDepth 𝐶|𝜌 ≥ 𝐷 ≤ 𝑂 𝑝𝑤 𝐷

• For example, when 𝐷 = 1, we get Pr 𝐶|𝜌 is nonconstant ≤ 𝑂 𝑝𝑤
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The AC0 Criticality Theorem

• Let 𝐶: 0, 1 𝑛 → 0, 1  be an AC𝑑
0  circuit of size 𝑆

• AC𝟎 Criticality Theorem: Pr
𝜌∼𝑅𝑝

DTDepth 𝐶|𝜌 ≥ 𝐷 ≤ 𝑝 ⋅ 𝑂 log 𝑆 𝑑−1 𝐷

• In contrast, the parity function does not simplify under restrictions, hence

Pr
𝑥

[𝐶 𝑥 = PARITY𝑛 𝑥 ] ≤
1

2
+ 2−𝑛/𝑂 log 𝑆 𝑑−1
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Fourier analysis of Boolean functions

• Fact: Every function 𝐶: ±1 𝑛 → {±1} can be uniquely written as a 

multilinear polynomial:

𝐶 𝑥 = ෍

𝑆⊆[𝑛]

መ𝐶 𝑆 ⋅ 𝜒𝑆 𝑥

• Parseval’s Theorem: σ𝑆
መ𝐶 𝑆 2 = 𝔼𝑥 𝐶 𝑥 2 = 1
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Parity functions

Correlation



AC0 Fourier tail bound

• Let 𝐶: ±1 𝑛 → {±1} be an AC𝑑
0  circuit of size 𝑆

• AC𝟎 Fourier Tail Bound, aka LMN Theorem: For all 𝑘 ∈ ℕ, we have

෍

𝑆⊆ 𝑛 , 𝑆 ≥𝑘

መ𝐶 𝑆 2 ≤ 2 ⋅ 2−𝑘/𝑂 log 𝑆 𝑑−1

• Consequence: AC0 circuits are learnable in quasipolynomial time

under the uniform distribution, given random labeled examples
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Limited independence fools AC0

• Let 𝑑 ∈ ℕ be a constant

• Braverman’s Theorem: ∀𝑆 ∈ ℕ, ∀𝜖 ∈ 0, 1 , ∃𝑘 = polylog 𝑆 ⋅ log 1/𝜖  

such that if 𝐶: 0, 1 𝑛 → {0, 1} is an AC𝑑
0  circuit of size 𝑆 ≥ 𝑛 and 𝑋 is 𝑘-wise 

uniform, then

Pr 𝐶 𝑋 = 1 − Pr 𝐶 𝑈𝑛 = 1 ≤ 𝜖

• Follows from construction of low-degree sandwiching polynomials
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(Multi) Switching Lemma

AC0 Criticality Theorem

AC0 Fourier tail bound

Learnability of AC0 Limited independence fools AC0

⇒
⇒

Optimal bound on the correlation 

between parity and AC0

⇒



Beyond AC0: Sipser’s program

• Strategy for proving P ≠ NP: Prove NP ⊈ 𝒞 for stronger and stronger 𝒞 

until eventually we prove NP ⊈ P/poly

• PARITY ∉ AC0  

• If 𝑝 is a power of a prime, then MAJORITY ∉ AC0 𝑝

• Open problem: Prove NP ⊈ AC0 6 …
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The frontier of Sipser’s program: ACC

• Theorem [Murray, Williams 2018]: NQP ⊈ ACC

• Proof step 1: Every 𝐶 ∈ AC0 𝑚  can be computed by a SYM of AND of literals, 

where the SYM has quasipoly fan-in and each AND has polylog fan-in

• Proof step 2: There is a nontrivial satisfiability algorithm for AC0 𝑚  circuits

• Proof step 3: Nontrivial satisfiability algorithms imply lower bounds

• This last step is not specific to ACC
22

NQP = Nondeterministic Quasipoly Time ACC = 𝑚ڂ AC0[𝑚] 



Natural properties

• Why has Sipser’s program stalled? How can we make progress?

• We say that 𝐻 is a P-natural property of Boolean functions if:

• Density: If we pick 𝑓: 0, 1 𝑛 → 0, 1  u.a.r., then Pr 𝑓 has property 𝐻 ≥ 2−𝑂 𝑛

• Constructivity: Can determine whether 𝑓 has property 𝐻 in time 2𝑂 𝑛 , given the 

2𝑛-bit truth table of 𝑓

• We say 𝐻 is useful against 𝒞 if functions in 𝒞 do not have property 𝐻
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Can also define AC0-natural, NC1-natural, etc.



How powerful are natural proofs?

• Theorem: There exists an AC0-natural property that is useful against AC0

• Theorem: There does not exist an AC0-natural property that is useful 

against AC0 ⊕

• Theorem: Under appropriate cryptographic assumptions, there does not 

exist a P-natural property that is useful against TC0
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Random restrictions

Nisan-Wigderson PRG
Naor-Reingold PRF



Natural proofs: Interpretation

• Conventional interpretation:

• We ought to study non-natural proof techniques

• That way, someday, we can prove NP ⊈ TC0, and eventually NP ⊈ P/poly

• Another possibility: Candidate PRFs such as Naor-Reingold are insecure

• Yet another possibility: NP ⊆ TC0
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The complexity class NC1

• Theorem: For any 𝑓: 0, 1 ∗ → 0, 1 , the following are equivalent:

• 𝑓 ∈ NC1 (log-depth poly-size circuits with bounded fan-in)

• 𝑓 can be computed by a De Morgan formula with poly leafsize

• “Formula Balancing Lemma”

• 𝑓 can be computed by poly-length constant-width branching programs

• “Barrington’s Theorem”

26

Computing with 𝑂 1  bits of memory



Formula lower bounds

• Andreev’s function 𝐴: 0, 1 2𝑛 → 0, 1  is defined by

𝐴 𝑓, 𝑥 1 , … , 𝑥 log 𝑛 = 𝑓 PARITY 𝑥 1 , … , PARITY 𝑥 log 𝑛

• Theorem: 𝐿 𝐴 ≥ ෩Ω 𝑛3 , where 𝐿 ⋅  is De Morgan leafsize

• Proof is based on shrinkage of De Morgan formulas:

𝔼𝜌∼𝑅𝑝
𝐿 𝑓|𝜌 ≤ 𝑂 𝑝2 ⋅ 𝐿 𝑓 + 𝑝 ⋅ 𝐿 𝑓
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P/polyNCNC2
AC1NL/polyL/polyNC1TC0ACCAC0 ⊕AC0

Summary of complexity classes
NC0 ≠ AC0 ≠ AC0 ⊕ ≠ ACC
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NC0



A few of the many topics we didn’t discuss

• Arithmetic circuits (+ and × gates)

• Monotone circuit lower bounds

• Connections between circuit complexity and communication complexity

• (Weak) TC0 lower bounds
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Advertisement

• Consider enrolling in my seminar course next quarter!

• Topic: Derandomizing Space-Bounded Computation

• Is randomness ever necessary for space-efficient computation?

• Less emphasis on exercises, more emphasis on cutting-edge research

• Will not count as a graduate elective

• Also consider Sasha Razborov’s complexity theory course in the spring!
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Thank you!

• Being your instructor has been a privilege

• I look forward to reading your expositions

• Please fill out the Graduate Course Feedback Form using My.UChicago 

(deadline is Sunday, December 15)
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