
Circuits vs. space complexity (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 Uniform space complexity

Theorem 1. Uniform NC1 is contained in L (deterministic log space).

Proof sketch. We are given x ∈ {0, 1}n and we wish to compute C(x), where C is a uniform log-depth circuit
with bounded fan-in. We evaluate it recursively:

1. If C is a constant or a literal, consult x to compute C(x).

2. Otherwise, let CL and CR be the two subcircuits feeding into the output gate.

3. Recursively compute CL(x). If CL(x) = 0 and the output gate is ∧, or if CL(x) = 1 and the output
gate is ∨, then halt and output CL(x).

4. Otherwise, recursively compute CR(x). Halt and output CR(x).

The recursion depth is O(log n). Crucially, after computing CL(x), we can re-use the same work space for
computing CR(x). Therefore, we only store a single bit of information at each “inactive” level of the recursion
(L or R). At the “active” level of recursion, we use O(log n) bits of space to compute the structure of the
relevant part of the circuit; this is possible by the uniformity assumption.

Theorem 2. NL (nondeterministic log space) is contained in uniform AC1.

Proof sketch. For every N, k ∈ N and every s, t ∈ [N ], let us construct a circuit CN,s,t,k : {0, 1}(
N
2 ) → {0, 1}

such that if E is the adjacency matrix of a directed graph on N vertices, then CN,s,t,k(E) indicates whether
there is a directed path from vertex s to vertex t of length at most 2k. The construction is recursive. If k = 0,
then we set CN,s,t,0(E) = Ms,t. If k > 0, then we set

CN,s,t,k(E) =
∨

u∈[N ]

(CN,s,u,k−1(E) ∧ CN,u,t,k−1(E)).

Let CN = CN,1,N,⌈logN⌉, and observe that CN determines whether there is a directed path from vertex 1 to
vertex N with no length restrictions. This problem (“s-t connectivity”) is complete for NL. The circuit CN

is an AC circuit of depth 2⌈logN⌉ and size O(N3 · logN), because each CN,s,t,k contributes O(N) gates, and
there are N possible settings of s, N possible settings of t, and logN possible settings of k.

The proof above actually shows that NL ⊆ SAC1, where SAC1 is the subclass of AC1 where the ∧ gates
all have bounded fan-in.

2 Nonuniform space complexity: Barrington’s theorem

A branching program is a generalization of a decision tree in which vertices can have an unbounded number
of incoming edges. The size of a branching program is the number of vertices. One can show that a function
f : {0, 1}∗ → {0, 1} can be computed by polynomial-size branching programs if and only if it can be computed
by a log-space Turing machine with polynomially many bits of advice.

A more refined way to measure space complexity is to require a layered branching program, and to
distinguish between the program’s length and its width.

1



Definition 1 (Bounded-width branching programs). A width-w length-T branching program B is a directed
acyclic graph on the vertex set [w]× {0, 1, . . . , T}. For every i ∈ [T ], each vertex v ∈ [w]× {i− 1} is labeled
with a variable from among x1, . . . , xn, and it has two outgoing edges labeled 0 and 1 leading to [w]× {i}.

We define FinalStateB : [w] × {0, 1}n → [w] as follows. Given u ∈ [w] and x ∈ {0, 1}n, we start at the
vertex (u, 0). After reaching a vertex (v, i), labeled with a variable xj , we traverse the appropriate outgoing
edge based on the value of xj . In this manner, we walk through the graph, arriving at a vertex (v, T ). We
define FinalStateB(u, x) = v.

Finally, there is a designated “start state” ustart ∈ [w] and a designated “accept state” uaccept ∈ [w]. The
program B computes a Boolean function B : {0, 1}n → {0, 1} given by

B(x) =

{
1 if FinalStateB(ustart, x) = uaccept

0 otherwise.

Width (or rather logw) should be interpreted as space complexity, while length should be interpreted as
time complexity. The transitions can vary from one layer to the next, which can be interpreted to mean that
the program has access to a “clock.”

Theorem 3 (Barrington’s theorem). Let f : {0, 1}∗ → {0, 1}. Then f ∈ NC1 if and only if f can be computed
by constant-width, polynomial-length branching programs.

Proof of the easy direction. Let B be a width-w length-T branching program computing f on inputs of
length n, where w = O(1) and T = poly(n). Assume without loss of generality that T is a power of two. We
simulate B by a circuit using the same idea we used to prove NL ⊆ AC1. For every 0 ≤ i ≤ j ≤ T , let Bi...j

be the branching program consisting of only layers i, i + 1, . . . , j of B. Then we can recursively compute
FinalStateB(u, x) using the formula

FinalStateB(u, x) = v ⇐⇒
∨

m∈[w]

(FinalStateB0...T/2
(u, x) = m) ∧ (FinalStateBT/2...T

(m,x) = v).

This leads to a circuit of depth O(log T ) and size poly(T,w), similar to the proof that NL ⊆ AC1. However,
the maximum fan-out is w = O(1) this time, hence we get B ∈ NC1 rather than AC1.

The other direction of Barrington’s theorem is quite surprising. For example, it implies that the majority
function can be computed in “constant space” and polynomial time, which is highly counterintuitive. We
will present a proof due to Ben-Or and Cleve [BC92]. The crux of the matter is the following.

Lemma 1. Let C be a depth-d circuit in which each gate is either an “AND” gate or an “XOR” gate, each
with fan-in two, allowing negations at the inputs. There exists a branching program B of width 8 and length
4d such that for every (r, s, t) ∈ F3

2
∼= [8] and every x ∈ {0, 1}n, we have FinalStateB((r, s, t), x) = (r′, s, t),

where
r′ = r + s · C(x).

Proof. We prove it by induction on d. In the base case, if d = 0, then the lemma is trivial. Now assume
d ≥ 1. It’s helpful to think of three “registers” R,S, T , which initially contain the values r, s, t. We will
perform a sequence of “operations” on these registers so that the final values are r′, s, t.

For the first case, suppose C(x) = CL(x)⊕ CR(x) for some circuits CL, CR of depth at most d− 1. In
this case, we perform the following operations.

R← R+ S · CL(x)

R← R+ S · CR(x).

By induction, each of these operations can be implemented as a branching program of width 8 and length
4d−1.

2



Now, for the harder case, suppose C(x) = CL(x)∧CR(x). In this case, we perform the following sequence
of operations.

Operation New R Value New S Value New T Value

R← R+ T · CL(x) r + t · CL(x) s t

T ← T + S · CR(x) r + t · CL(x) s t+ s · CR(x)

R← R+ T · CL(x) r + s · CL(x) · CR(x) s t+ s · CR(x)

T ← T + S · CR(x) r + s · CL(x) · CR(x) s t

By induction, each of those operations can be performed by a branching program of width 8 and length
4d−1 (permuting the roles of R,S, T if necessary). We concatenate those programs to get our program of
length 4d.

Proof of the hard direction of Barrington’s theorem. Suppose f ∈ NC1. Then f can be computed by a log-
depth circuit C that only uses “AND” gates and “XOR” gates of fan-in two (and we allow negations at the
inputs). This is because a ∨ b ≡ a⊕ b⊕ (a ∧ b). By Lemma 1, it follows that there is a branching program B
of width 8 and length 4d such that for every x ∈ {0, 1}n, we have

FinalStateB((0, 1, 0), x) = (C(x), 1, 0).

Let ustart = (0, 1, 0) and uaccept = (1, 1, 0).

References

[BC92] Michael Ben-Or and Richard Cleve. “Computing algebraic formulas using a constant number of
registers”. In: SIAM J. Comput. 21.1 (1992), pp. 54–58. issn: 0097-5397. doi: 10.1137/0221006.

3

https://doi.org/10.1137/0221006

	Uniform space complexity
	Nonuniform space complexity: Barrington's theorem

