
Circuit complexity basics (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

1 Boolean functions

In this course, we will study the computational complexity of functions of the form f : {0, 1}n → {0, 1}m. A
few important examples are defined below.

Definition 1 (The majority function). For each n ∈ N, we define MAJn : {0, 1}n → {0, 1} by the rule

MAJn(x) =

{
1 if

∑n
i=1 xi ≥ n/2

0 if
∑n

i=1 xi < n/2.

Definition 2 (The parity function). For each n ∈ N, we define PARITYn : {0, 1}n → {0, 1} by the rule

PARITYn(x) = x1 + x2 + · · ·+ xn mod 2.

Definition 3 (Integer addition). For each n,m ∈ N, we define ADDm×n : {0, 1}m×n → {0, 1}n+⌈logm⌉ to be
the problem of computing the sum of m integers x1, x2, . . . , xm ∈ {0, 1, . . . , 2n − 1}, represented in binary.

2 The Boolean circuit model

Our primary computational model in this course is the Boolean circuit, defined next.

Definition 4 (Boolean circuits). A circuit C : {0, 1}n → {0, 1}m is a directed acyclic multigraph with three
types of vertices, each of which computes a function fv : {0, 1}n → {0, 1}:

• Each constant vertex v has fan-in zero and is labeled with a constant b ∈ {0, 1}. It computes the
constant function fv(x) = b.

• Each input vertex v has fan-in zero and is labeled with a Boolean variable xi where i ∈ [n]. It computes
the function fv(x) = xi.

• Each gate v has fan-in two and is labeled with a function ϕ : {0, 1}2 → {0, 1}.1 It computes the function
fv(x) = ϕ(fu(x), fu′(x)), where (u, v) and (u′, v) are the two incoming wires (edges) of v.

Furthermore, there is a list of designated output vertices v1, . . . , vm. The circuit as a whole computes the
function

C(x) = (fv1(x), fv2(x), . . . , fvm(x)).

Boolean circuits are equivalent to Boolean straight-line programs. Instead of defining Boolean straight-line
programs properly, let’s simply do an example of a program computing MAJ3.

1We allow ϕ to be any function mapping two bits to one bit. This type of circuit is called a circuit over the full binary basis.
It is also common to study other gate bases. For example, we could have chosen to only permit AND, OR, and NOT gates.

1

Program C(x1, x2, x3):

1. Let y1 = x1 ∧ x2.

2. Let y2 = x1 ∧ x3.

3. Let y3 = x2 ∧ x3.

4. Let y4 = y1 ∨ y2.

5. Let y5 = y4 ∨ y3.

6. Return y5.

Lemma 1 (Brute-force CNFs). For every function f : {0, 1}n → {0, 1}m, there exists a circuit C that
computes f .

Proof. First, suppose m = 1. Then we can express f in conjunctive normal form:

f(x) =
∧

y∈f−1(0)

n∨
i=1

(xi ⊕ yi).

We can compute an AND/OR over many bits by using a tree of binary AND/OR operations, giving us a
circuit computing f . Now, suppose m > 1. Then we can write f = (f1, . . . , fm). By combining circuits
computing f1, . . . , fm, we can construct a circuit that computes f .

3 Circuit size

Definition 5 (Circuit size). The size of a circuit is the number of gates. Equivalently, if we express the
circuit as a Boolean straight-line program, then the size of the circuit is the number of assignment operations
in the program.

Let’s do a couple of examples.

Lemma 2 (Addition circuit). For every n,m ∈ N , the function ADDm×n can be computed by a circuit of
size O(nm).

Proof sketch. The function ADD3×1 can be computed by a circuit of size O(1), since it is a constant-size
function. To compute ADD2×n, one can implement the grade-school addition algorithm (the “ripple-carry”
method) by chaining together ADD3×1 circuits. Finally, one can compute ADDm×n by doing a binary tree of
ADD2× operations.

Lemma 3 (Majority circuit). For every n ∈ N, the function MAJn can be computed by a circuit of size O(n).

Proof sketch. Assume for simplicity that n+ 1 is a power of two. Then we can compute MAJn by computing
ADDn×1 and then outputting the highest-order bit.

4 Comparing circuits to Turing machines

The standard universal model of computation is of course the Turing machine. This course isn’t really about
Turing machines, but we will briefly investigate the fundamental relationships between circuits and Turing
machines, because it helps to clarify the power of circuits and motivate the study of circuit complexity.

2

4.1 Implementing Turing machines as circuits

Theorem 1 (Converting Turing machines to circuits). Let M be a Turing machine and let T, S : N → N
be functions. Assume that given any x ∈ {0, 1}∗, the Turing machine M runs in time T (n) and space S(n)
where n = |x|, and then it halts and outputs a binary value M(x) ∈ {0, 1}. Then for every n ∈ N, there is a
circuit Cn : {0, 1}n → {0, 1} of size O(T (n) · S(n)) such that for every x ∈ {0, 1}n, we have Cn(x) = M(x).

Proof sketch. Let ℓ = O(1) be large enough that using ℓ bits, we can describe everything that is happening
at a single cell of the M ’s tape: what symbol is written on that cell, whether the head is present there,
and, if so, the internal state of M . Because Turing machine computation is local, there is some function
NEXTM : {0, 1}3ℓ → {0, 1}ℓ that computes a description of everything happening in a cell at time t+1, given
descriptions of everything happening in the cell and its two neighbors at time t. We can construct our circuit
Cn by arranging copies of NEXTM in an S(n)× T (n) grid.

We always have S(n) ≤ T (n), so the size bound in the theorem above is at most O(T 2). With more
effort, one can simulate time-T Turing machines using circuits of size O(T · log T).

4.2 The complexity class PSIZE

A Turing machine can handle inputs of any finite length. Recall that P is the class of functions f : {0, 1}∗ →
{0, 1} that can be computed by deterministic polynomial-time Turing machines. In contrast, each Boolean
circuit has a finite domain ({0, 1}n). Nevertheless, we can use the Boolean circuit model to study the
complexity of functions on {0, 1}∗ by making the following definition.

Definition 6 (The complexity class PSIZE). A function f : {0, 1}∗ → {0, 1} is in PSIZE if, for every n ∈ N,
there is a circuit Cn : {0, 1}n → {0, 1} of size poly(n) such that for every x ∈ {0, 1}n, we have Cn(x) = f(x).

For reasons that we will discuss shortly, the class PSIZE is more commonly denoted “P/poly.” Theorem 1
implies that P ⊆ PSIZE.

4.3 Derandomization: Adleman’s theorem

Definition 7 (The complexity class BPP). A function f : {0, 1}∗ → {0, 1} is in BPP if there exists a
polynomial-time randomized Turing machine M such that for every x ∈ {0, 1}∗, we have Pr[M(x) ̸= f(x)] ≤
1/3.

Lemma 4 (Amplification for BPP). For every f ∈ BPP and every constant k ∈ N, there is a randomized
polynomial-time Turing machine M such that for every n ∈ N and every x ∈ {0, 1}n, we have

Pr[M(x) ̸= f(x)] ≤ 2−nk
.

Proof. Let M0 be a randomized polynomial-time Turing machine that computes f with error probability 1/3.
Given x ∈ {0, 1}n, the machine M runs M0(x) t times, using fresh randomness for each run, where t = Θ(nk).
This produces t candidate answers y1, y2, . . . , yt. Then M outputs MAJt(Y1, . . . , Yt). The correctness of this
algorithm follows from Chernoff/Hoeffding bounds.2

Theorem 2 (Adleman’s theorem). BPP ⊆ PSIZE.

Proof. Let f ∈ BPP and let M be a randomized polynomial-time Turing machine that computes f with error
probability strictly less than 2−n. Let g(x, y) be the output of M when its input is x and its random bits

2Hoeffding’s inequality says that if Y1, . . . , Yt ∈ [0, 1] are independent random variables, µ = 1
t

∑t
i=1 E[Yi], and ε ∈ (0, 1), then

Pr[|µ− 1
t

∑t
i=1 Yi| > ε] ≤ 2e−2ε2t. Actually, Hoeffding’s inequality is more general, but this is the special case that is relevant to

us.

3

are y. Then g ∈ P ⊆ PSIZE, so for each n ∈ N, there is a circuit Cn of size poly(n) computing g(x, y) where
|x| = n and |y| = poly(n). If we pick y ∈ {0, 1}n uniformly at random, then by the union bound,

Pr[∃x ∈ {0, 1}n such that g(x, y) ̸= f(x)] ≤
∑

x∈{0,1}n
Pr[g(x, y) ̸= f(x)] <

∑
x∈{0,1}n

2−n = 1.

Therefore, there exists some y∗ ∈ {0, 1}n such that for every x ∈ {0, 1}n, we have g(x, y∗) = f(x). Define
C ′
n(x) = Cn(x, y∗). Then C ′

n is a polynomial-size circuit computing f on inputs of length n.

4.4 Advice

Definition 8 (The complexity class P/poly). A function f : {0, 1}∗ → {0, 1} is in P/poly if there exists
a polynomial-time Turing machine M and a sequence of “advice strings” a0, a1, a2, · · · ∈ {0, 1}∗, where
|an| ≤ poly(n), such that for every n ∈ N and every x ∈ {0, 1}n, we have M(x, an) = f(x).

Proposition 1 (Circuits are equivalent to Turing machines with advice). PSIZE = P/poly.

Proof. First, suppose f ∈ PSIZE. Let an be the description of a polynomial-size circuit Cn computing f on
inputs of length n, and let M(x, an) = Cn(x).

Now, conversely, suppose f ∈ P/poly. Let M be the Turing machine computing f using advice strings
a0, a1, a2, The function g(x, a) = M(x, a) is in P, hence it is also in PSIZE, so for each n ∈ N, there is a
circuit Cn of size poly(n) computing M(x, a) where |x| = n and |a| = poly(n). By hard-coding a = an, we
get a polynomial-size circuit computing f .

It is not hard to show that advice gives extra power, i.e., P ̸= P/poly. Indeed, P/poly contains undecidable
problems.

4.5 Uniformity

Definition 9 (Uniform circuit families). Let C = (C0, C1, C2, . . .) be a family of circuits, where Cn : {0, 1}n →
{0, 1}. We say that C is uniform if there is a log-space3 Turing machine M such that on input 1n, M produces
a description of Cn.

Proposition 2 (Turing machines are equivalent to uniform families of circuits). Let f : {0, 1}∗ → {0, 1}.
Then f ∈ P if and only if there is a uniform family of circuits C = (C0, C1, C2, . . .) such that for every n ∈ N
and every x ∈ {0, 1}n, we have Cn(x) = f(x).

Proof sketch. First, suppose f ∈ P. Then f ∈ PSIZE because P ⊆ PSIZE. In fact, if you double check our
proof that P ⊆ PSIZE, you will see that we actually constructed a uniform circuit family computing f .

Conversely, suppose f can be computed by a uniform family of circuits. Then f ∈ P, because given
x ∈ {0, 1}n, we can first compute the circuit Cn (this process runs in O(log n) space, hence poly(n) time)
and then evaluate Cn(x).

In this course, we will mostly focus on nonuniform circuit models.

5 Functions with maximal circuit complexity

Definition 10 (Circuit complexity). Let f : {0, 1}n → {0, 1}m. The circuit complexity of f is the size of the
smallest circuit that computes f .

Theorem 3 (Shannon’s counting argument). For every n ∈ N, there exists a function f : {0, 1}n → {0, 1}
with circuit complexity Ω(2n/n).

3What we are considering here is “log-space uniformity.” One can define various other notions of uniformity, based on various
standards of efficiency.

4

Proof. A circuit of size S can be encoded using O(S · log(nS)) bits. (Think of storing a Boolean straight-line
program as a text file.) Consequently, if S = 2n

Cn where C is a sufficiently large constant, then there are at
most 20.5·2

n
functions that can be computed by circuits of size at most S. In contrast, there are a total of

22
n
functions mapping {0, 1}n to {0, 1}.

We defined circuit complexity for functions of a fixed input length. We can extend the definition by
saying that the circuit complexity of a function f : {0, 1}∗ → {0, 1} is a function S : N → N, where S(n) is
the circuit complexity of f restricted to {0, 1}n. Theorem 3 can be rephrased to say that there exists a
single function f : {0, 1}∗ → {0, 1} with circuit complexity Ω(2n/n). If we could show that some f ∈ NP has
super-polynomial circuit complexity, it would follow that P ̸= NP, since P ⊆ PSIZE. Amazingly, nobody
knows how to rule out the ridiculous-sounding possibility that every function in NP has circuit complexity
O(n).

Next, we will show that Theorem 3 is tight, i.e., every function f : {0, 1}n → {0, 1} can be computed by a
circuit of size O(2n/n).

Lemma 5 (Computing one-hot encodings). For every m ∈ N, there is a circuit C : {0, 1}m → {0, 1}2m of
size 2m+1 − 1 that computes the one-hot encoding of a given string x. That is, if we enumerate {0, 1}m as
x1, x2, . . . , x2m, then C(xi) = 0i−1102

m−i for every i ∈ [2m].

Proof. Let us describe C as a Boolean straight-line program. For each z ∈ {0, 1}≤m, we’ll have a variable yz
that indicates whether z is a prefix of x. After computing yz, we can compute yz0 and yz1 by the following
operations:

1. Let yz1 = yz ∧ x|z|+1.

2. Let yz0 = yz ∧ ¬x|z|+1.

Finally, we return (y0m , . . . , y1m), i.e., the list of yz for all z ∈ {0, 1}m.

Lemma 6 (Computing all possible functions). There is a circuit C : {0, 1}k → {0, 1}22
k

of size 22
k
that

computes all possible functions from {0, 1}k to {0, 1}. That is, if we list out all such functions as f1, f2, . . . , f22k ,

then such that C(x)j = fj(x) for every j ∈ [22
k
] and every x ∈ {0, 1}k.

Proof. C can be computed by some finite-size circuit, simply because every Boolean function can be computed
by a circuit. Then, if any two gates compute the same function, then they can be merged. After merging,
there can only be 22

k
gates, because there are only 22

k
different functions on {0, 1}k.

Theorem 4 (Tightness of Shannon’s counting argument). For every n ∈ N, every function f : {0, 1}n → {0, 1}
can be computed by a circuit of size O(2n/n).

Proof. Write n = m+ k, where k = log(n/2). For each y ∈ {0, 1}k and z ∈ {0, 1}m, let fz(y) = f(yz). Then

f(yz) = fz(y) =
∨

z′∈{0,1}m
1[z = z′] ∧ fz′(y).

We can compute all the fz′ functions by computing all possible functions on k bits, using 22
k
gates (Lemma 6).

We can compute all the 1[z = z′] functions using O(2m) gates (Lemma 5). Then the AND and OR operations

take another O(2m) gates, so altogether we have a circuit of size O(2m) + 22
k
. By our choice of k, we have

O(2m) = O(2n−log(n/2)) = O(2n/n) and 22
k
= 2n/2 = o(2n/n).

With more effort, one can nail down the leading constant: every function f : {0, 1}n → {0, 1} can be
computed by a circuit of size (1 + o(1)) · 2n/n, and for all sufficiently large n, there exists a function with
circuit complexity at least 2n/n.

5

	Boolean functions
	The Boolean circuit model
	Circuit size
	Comparing circuits to Turing machines
	Implementing Turing machines as circuits
	The complexity class PSIZE
	Derandomization: Adleman's theorem
	Advice
	Uniformity

	Functions with maximal circuit complexity

