
ACC lower bounds (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

Recall that “AC0[m] circuits” can use AND gates, OR gates, and MODm gates, all with unbounded fan-in.
There are constants and literals at the bottom. When m is not a power of a prime, the class AC0[m] is poorly
understood. As mentioned previously in this course, it is an open problem to show NP ̸⊆ AC0[6].

On the bright side, there is a line of work showing that there are “somewhat explicit” functions that
cannot be computed by small AC0[6] circuits and similar models. In particular, Murray and Williams showed
NQP ̸⊆ ACC [MW18], where NQP is nondeterministic quasipolynomial time and ACC =

⋃
m AC0[m].

The full proof that NQP ̸⊆ ACC is beyond the scope of this course. In these lecture notes, we will sketch
the proof of the weaker theorem ENP ̸⊆ ACC, where ENP denotes the class of functions that can be computed
in 2O(n) time using an NP oracle.

1 Depth reduction for ACC circuits

In this section, we will show that ACC circuits can be simulated by low-degree polynomials in a certain sense,
despite the fact that we do not know how to construct low-degree probabilistic polynomials computing the
MOD6 function. Recall that Z[x1, . . . , xn] is the set of n-variate polynomials with integer coefficients.

Definition 1 (L1 norm of a polynomial). If h ∈ Z[x1, . . . , xn], then we define L1(h) to be the sum of the
absolute values of the coefficients.

Definition 2 (SYM+). We define SYM+[k] to be the class of functions C : {0, 1}n → {0, 1} of the form
C(x) = g(h(x)), where h ∈ Z[x1, . . . , xn] satisfies deg(h) ≤ k and L1(h) ≤ 2k. Note that h is multilinear
without loss of generality. The function g : Z → {0, 1} can be arbitrary, but we emphasize that it is a function
of just one integer variable.

You can double check that each function in SYM+[k] can be computed by a “SYM of AND of literals,”
where the AND gates have fan-in at most k and the SYM gate has fan-in at most 2O(k). Consequently, each
function in SYM+[k] can be computed by a TC0

3 circuit of size 2O(k). The following theorem is a key step in
the proof that ENP ̸⊆ ACC, as well as being interesting in its own right.

Theorem 1 (Simulating AC0[m] circuits using SYM+ circuits). Let m, d ∈ N be constants. If C : {0, 1}n →
{0, 1} is an AC0

d[m] circuit of size S ≥ n, then C ∈ SYM+[polylogS].

When d and m are growing parameters, the best bound known is C ∈ SYM+[(logS)O(d·s)], where s is the
number of distinct prime factors of m [CP19]. In these lecture notes, we assume d and m are constant for
simplicity.

1.1 Simulating MODm gates using MODp gates

Lemma 1. Let p, e ∈ N be constants, where p is prime and e ≥ 1. Then MODpe ∈ AC0[p].

Proof. We prove it by induction on e. The base case e = 1 is trivial. For the inductive step, let e ≥ 2, let
x ∈ {0, 1}n, and let N be the Hamming weight of x. We claim that1

MODpe(x) = MODp(x) ∨MODpe−1

 ∧
i∈S1

xi, . . . ,
∧

i∈S(np)

xi

 , (1)

1Recall that we defined MODm(x) = 1 ⇐⇒ x1 + · · ·+ xn ̸≡ 0 (mod m), which is opposite to the way many sources define it.
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where S1, S2, . . . , S(np)
is an enumeration of all size-p subsets of [n]. If N is not a multiple of p, this is trivial:

MODpe(x) = MODp(x) = 1. Now assume N is a multiple of p. In this case, observe that(
N

p

)
=

N · (N − 1) · · · (N − p+ 1)

p · (p− 1) · · · 1
.

In both the numerator and the denominator, only the first term is a multiple of p. Therefore, the exponent of
p in the prime factorization of

(
N
p

)
is one less than the exponent of p in the prime factorization of N . That

is, pe | N if and only if pe−1 |
(
N
p

)
. Eq. (1) follows. By induction, Eq. (1) shows MODpe ∈ AC0[p]; note that

poly(
(
n
p

)
) = poly(n) since p is a constant.

More generally, let m be an arbitrary positive integer, with prime factorization m = pe11 · pe22 · · · pess . Then

MODm(x) = MODp
e1
1
(x) ∨ · · · ∨MODpess (x).

Thus, we can simulate an AC0[m] circuit using AND gates, OR gates, MODp1 gates, MODp2 gates, . . . , and
MODps gates. The depth blows up by a constant factor and the size blows up polynomially, assuming m is a
constant.

1.2 Eliminating one layer of MODp gates

Lemma 2 (Modulus-amplifying polynomials). For every k ∈ N, there exists a polynomial Mk ∈ Z[x] such
that deg(Mk) = O(k), L1(Mk) = 2O(k), and for every x ∈ Z and every p ∈ N,

x ≡ 0 (mod p) =⇒ Mk(x) ≡ 0 (mod pk) (2)

x ≡ 1 (mod p) =⇒ Mk(x) ≡ 1 (mod pk).

Proof. Define

Mk(x) =

k−1∑
i=0

(
2k − 1

i

)
· x2k−1−i · (1− x)i.

The degree and L1 bounds are straightforward. Observe that Mk(x) is a multiple of xk, which proves Eq. (2).
Now suppose x ≡ 1 (mod p). Then 1 − x is a multiple of p, so (1 − x)i ≡ 0 (mod pk) whenever i ≥ k.
Consequently,

Mk(x) ≡
2k−1∑
i=0

(
2k − 1

i

)
· x2k−1−i · (1− x)i (mod pk)

= (x+ 1− x)2k−1 by the binomial theorem

= 1.

Lemma 3 (SYM+ can simulate SYM+ ◦MODp). Let n, k ∈ N, let p be prime, and let C : {0, 1}n → {0, 1}
be a formula consisting of variables feeding into MODp gates feeding into a SYM+[k] gate. Then C ∈
SYM+[O(k3 · p · log n)].

Proof. By introducing dummy variables if necessary, we can write

C(x) = g

 L∑
i=1

ci

k∏
j=1

MODp(xij1, . . . , xijℓ)

 mod pk+2

 ,
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where g : Z → {0, 1}, each ci ∈ Z, we have
∑L

i=1 |ci| ≤ 2k, and ℓ ≤ n. (Reducing mod pk+2 doesn’t destroy
any information, because the sum lies between −2k and 2k.) Therefore,

C(x) = g

 L∑
i=1

ci

k∏
j=1

1

[
ℓ∑

t=1

xijt ̸≡ 0 mod p

] mod pk+2

 by definition of MODp

= g

 L∑
i=1

ci · 1

 k∏
j=1

ℓ∑
t=1

xijt ̸≡ 0 mod p

 mod pk+2

 because a product of nonzero elements
is nonzero in any field, including Fp

= g

 L∑
i=1

ci ·Mk+2

 k∏
j=1

ℓ∑
t=1

xijt

p−1 mod pk+2

 by Fermat’s little theorem and modulus
amplification.

The expression above has the format of SYM+: first we apply a multivariate polynomial, and then we
apply a univarate function (“reduce mod pk+2, then apply g”). The degree of the polynomial is at most
k ·(p−1)·deg(Mk+2) = O(p·k2). The L1 norm of this polynomial is at most 2k ·L1(Mk+2)·(ℓk·(p−1))deg(Mk+2) =
nO(p·k3).

1.3 Simulating the entire circuit

Proof sketch of Theorem 1. There are several steps, but none is too difficult, given the tools that we have
developed.

1. Replace each MODm gate with AND gates, OR gates, MODp1 gates, . . . , and MODps gates, as described
in Section 1.1.

2. Replace each AND/OR gate with a probabilistic polynomial over the field F2 with error 0.1/S and
degree ℓ = O(logS). Note that a degree-ℓ polynomial over F2 is a MOD2 ◦ ANDℓ circuit, where the
MOD2 gate has fan-in at most SO(logS). Let D be the resulting distribution over circuits.

3. Independently sample t = O(n) circuits C1, . . . , Ct ∼ D and set C(x) = MAJt(C1(x), . . . , Ct(x)). By
Hoeffding’s inequality and the union bound over all x ∈ {0, 1}n, there is some fixing of C1, . . . , Ct

such that C computes f . Note that each Ci consists of MOD2 gates, MODp1 gates, MODp2 gates, . . . ,
MODps gates, and ANDℓ gates (with literals and constants at the bottom).

4. By introducing dummy gates if necessary, we can ensure that all gates at the same level are of the same
type. In other words, we can compute f using a circuit of the following form:

MAJt ◦ (MOD2 ◦MODp1 ◦ · · · ◦MODps ◦ ANDℓ)
O(1).

5. Note that MAJt ∈ SYM+[log t]. We eliminate the layers underneath the SYM+ gate one by one to get a
SYM+[k] circuit. To handle MODp layers, we use Lemma 3. To handle ANDℓ layers, we use the trivial
fact SYM+[k] ◦ ANDℓ ⊆ SYM+[k · ℓ]. Since the number of layers is O(1), we get f ∈ SYM+[polylog(S)].

2 A nontrivial satisfiability algorithm for ACC circuits

The next step in the proof that ENP ̸⊆ ACC is to design a nontrivial algorithm that analyzes a given ACC
circuit and determines whether it is satisfiable. The algorithm is based on the following lemma, which shows
how to evaluate a polynomial h on all points in {0, 1}n using amortized time poly(n, logL1(h)) per evaluation.
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Lemma 4 (Fast multipoint evaluation of multilinear polynomials). Let h : {0, 1}n → Z be a multilinear
polynomial with integer coefficients. Given h, represented as a list of 2n coefficients, it is possible to compute
h(x) for all x ∈ {0, 1}n in time 2n · poly(n, logL1(h)).

2

Proof. Let s = L1(f). If n = 0, then the problem is trivial. Otherwise, there are polynomials h0, h1 such
that

h(x1, . . . , xn) = h0(x2, . . . , xn) + x1 · h1(x2, . . . , xn). (3)

Considered as lists of coefficients, h0 and h1 are simply the first half and the second half of h, respectively.
In particular, L1(h0) ≤ s and L1(h1) ≤ s. We recursively compute h0(x) and h1(x) for all x ∈ {0, 1}n−1, and
then we use Eq. (3) to compute h(x) for all x ∈ {0, 1}n. The time complexity of this algorithm, T (n, s),
satisfies

T (n, s) ≤ 2T (n− 1, s) + 2n · poly(n, log s),
because |h0(x)| ≤ s and |h1(x)| ≤ s for all x ∈ {0, 1}n−1. This implies T (n, s) ≤ 2n · poly(n, log s).

Theorem 2 (Nontrivial satisfiability algorithm for ACC). There exists an algorithm that determines whether a
given AC0

d[m] circuit C : {0, 1}n → {0, 1} is satisfiable, and if m and d are held constant, then the algorithm’s

time complexity is 2n−nΩ(1)
+ 2polylogS, where S is the size of C.

Proof sketch. First, let us design a satisfiability algorithm that runs in time 2n · poly(n) + 2polylog(S). If
S > 2n or S < n, then the trivial algorithm (try all possible inputs) is fast enough. If n ≤ S ≤ 2n, then we
use the following algorithm:

1. By Theorem 1, it is possible to write C in the form C(x) = g(h(x)) where h : {0, 1}n → Z is a multilinear
polynomial satisfying L1(h) ≤ 2polylogS . We only showed that such a representation exists, but it
turns out that it can be constructed in quasipolynomial (2polylogS) time, if we represent h as a list of
monomials with nonzero coefficients and we represent g as a list of 2polylog(S) output values. We omit
the proof that g and h can be efficiently constructed.

2. Rewrite h as a list of 2n coefficients, many of which may be zero. This can be done in time 2polylogS +
2n · poly(n).

3. Compute h(x) for all x ∈ {0, 1}n. By Lemma 4, this can be done in time 2n · poly(n).

4. Check whether there is some x ∈ {0, 1}n such that g(h(x)) = 1. This can be done in time 2n · poly(n).

Now we explain how to improve the time complexity to 2n−nΩ(1)
+2polylogS . Given C, define C ′ : {0, 1}n−nε →

{0, 1} by the rule

C ′(x) =
∨

y∈{0,1}nε

C(xy).

Then C is satisfiable if and only if C ′ is satisfiable. The circuit C ′ is an AC0
d+1[m] circuit of size 2n

ε ·S, so using

the algorithm described above, we can decide whether it is satisfiable in time 2n−nε · poly(n) + 2poly(n
ε,logS).

The theorem follows by picking a small enough ε.

3 Nontrivial satisfiability algorithms imply circuit lower bounds

We are working toward proving ENP ̸⊆ ACC. The last part of the proof consists of showing that nontrivial
satisfiability algorithms, such as the one we constructed in the last section, imply circuit lower bounds. This
last part of the proof is not specific to ACC; it could also be applied to a hypothetical nontrivial satisfiability
algorithm for (say) TC0 circuits.

Our “hard problem” will be a version of the classic 3-SAT problem. Basically, the problem is to construct
a satisfying assignment for an exponential-size 3-SAT instance, given a circuit that constructs the 3-SAT
instance. To be more precise, we make the following definitions.

2We assume a random access model of computation throughout these lecture notes.
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Definition 3 (Succinct representation of a 3-CNF formula). Let ϕ : {0, 1}2b → {0, 1} be a 3-CNF formula
with 2a clauses. We say that a circuit C : {0, 1}a → {0, 1}3·(b+1) over the full binary basis succinctly represents
ϕ if C(i) describes the i-th clause of ϕ by providing the names of the three variables in the clause, along
with three additional bits to indicate the presence/absence of negations. Note that the formula ϕ does not
necessarily use all 2b available variables.

Definition 4 (The problem in ENP that we will show is not in ACC). We define h : {0, 1}∗ → {0, 1} as follows.

Let C : {0, 1}a → {0, 1}3·(b+1) be a circuit that succinctly represents a 3-CNF formula ϕ : {0, 1}2b → {0, 1}.
Let σ ∈ {0, 1}2b be the lexicographically-first satisfying assignment for ϕ, or let σ = 02

b
if ϕ is unsatisfiable.

For each i ∈ {0, 1}b, we define
h(C, i) = σi.

Proposition 1. h ∈ ENP.

Proof sketch. First, construct the full description of the 3-CNF formula ϕ that is succinctly represented by
C. This takes time 2O(n). Then, construct the lexicographically-first satisfying assignment σ for ϕ, bit by bit.
We can extend σ by one bit using the NP oracle, so this also takes time 2O(n). Finally, output the i-th bit of
σ.

It remains to show that h /∈ ACC. The proof is a reduction from the following uniform time complexity
lower bound.

Theorem 3 (Nondeterministic time complexity lower bound for succinct 3-SAT). There does not exist a
nondeterministic algorithm that satisfies both of the following two conditions.

1. Given a circuit C : {0, 1}a → {0, 1}3·(b+1) that succinctly represents a 3-CNF formula ϕ, the algorithm
determines whether ϕ is satisfiable.

2. If C has depth O(1) and size poly(a) (i.e., C ∈ NC0), then the algorithm’s runtime is 2a−ω(log a).

The proof of Theorem 3 is beyond the scope of this course, but we will briefly summarize the proof idea.
The first step is something called the Nondeterministic Time Hierarchy Theorem, which tells us that there
exists f : {0, 1}∗ → {0, 1} that can be computed nondeterministically in time O(2n) but not o(2n). The proof
of the Nondeterministic Time Hierarchy Theorem is a clever and nontrivial diagonalization argument.

The second step of the proof of Theorem 3 is a sophisticated version of the Cook-Levin theorem. Recall
that the classic Cook-Levin theorem says that 3-SAT is NP-complete. It immediately follows that there is an
exponential-time reduction from f to 3-SAT. It turns out that something much stronger is true: There is a
polynomial -time reduction that converts x ∈ {0, 1}n into a circuit C : {0, 1}a → {0, 1}3·(b+1) that succinctly
represents a 3-CNF formula ϕ that is satisfiable if and only if f(x) = 1. Furthermore, this reduction can
be carried out in such a way that a = n+O(log n) and C ∈ NC0 [JMV18]. Consequently, if an algorithm
as described in Theorem 3 did exist, then we could run it to compute f(x) nondeterministically in time
poly(n) + 2a−ω(log a) = 2n−ω(logn), which would contradict the Nondeterministic Time Hierarchy Theorem.

Now let us take Theorem 3 for granted and use it to complete the proof that ENP ̸⊆ ACC.

Theorem 4. h /∈ ACC.

Proof sketch. Assume for the sake of contradiction that h ∈ ACC. We will show how to contradict Theorem 3
using the so-called “guess-and-SAT” method. Let C : {0, 1}a → {0, 1}3·(b+1) be a given NC0 circuit that

succinctly represents a 3-CNF formula ϕ : {0, 1}2b → {0, 1}. Since h ∈ ACC, the value h(C, i) can be computed
by an AC0

d[m] circuit of size S = poly(a) for some constants d,m ∈ N. We determine whether ϕ is satisfiable
as follows.

1. Nondeterministically guess an AC0
d[m] circuit A : {0, 1}b → {0, 1} of size S. We think of A as a succinct

representation of an exponentially long assignment σ̂ ∈ {0, 1}2b .
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2. For each i ∈ [2a], let D(i) indicate whether σ̂ violates clause i of ϕ. Construct a circuit that computes
D by starting with C, feeding its output into three copies of A, then applying three XOR gates to
account for negations, and finally applying an AND3 gate. Altogether, D is an AC0[m] circuit of depth
d+O(1) = O(1) and size poly(a).

3. Use the ACC satisfiability algorithm (Theorem 2) to check whether D is satisfiable. If so, reject,
otherwise, accept.

If ϕ is satisfiable, then we can nondeterministically guess a circuit A computing A(i) = h(C, i), in which case
σ̂ satisfies ϕ, hence D is unsatisfiable. On the other hand, if ϕ is unsatisfiable, then σ̂ violates at least one
clause of ϕ, hence D is satisfiable. Constructing D takes poly(a) time, and testing whether it is satisfiable

takes time 2a−aΩ(1)
.
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