
Simple Optimal Hitting Sets for Small-Success RL

William M. Hoza1 David Zuckerman2

The University of Texas at Austin

September 24, 2018
Dagstuhl Seminar 18391

1
Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin

2
Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investigator Award (#409864)

Randomized log-space complexity classes

I Let L be a language

I L ∈ BPL if there is a randomized log-space algorithm A that
always halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 2/3

x 6∈ L =⇒ Pr[A(x) accepts] ≤ 1/3.

I L ∈ RL if there is a randomized log-space algorithm A that always
halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 1/2

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

Randomized log-space complexity classes

I Let L be a language

I L ∈ BPL if there is a randomized log-space algorithm A that
always halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 2/3

x 6∈ L =⇒ Pr[A(x) accepts] ≤ 1/3.

I L ∈ RL if there is a randomized log-space algorithm A that always
halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 1/2

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

Randomized log-space complexity classes

I Let L be a language

I L ∈ BPL if there is a randomized log-space algorithm A that
always halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 2/3

x 6∈ L =⇒ Pr[A(x) accepts] ≤ 1/3.

I L ∈ RL if there is a randomized log-space algorithm A that always
halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 1/2

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

The power of randomness for small-space algorithms

I L ⊆ RL ⊆ BPL

I Conjecture:

The power of randomness for small-space algorithms

I L ⊆ RL ⊆ BPL

I Conjecture: L = RL = BPL

The power of randomness for small-space algorithms

I L ⊆ RL ⊆ BPL

I Conjecture: L = RL = BPL

The power of randomness for small-space algorithms

I L ⊆ RL ⊆ BPL

I Conjecture: L = RL = BPL

Read-once branching programs

start acc

n + 1 layers

width n

I Computes function f : {0, 1}n → {0, 1}

Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

I Computes function f : {0, 1}n → {0, 1}

Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x =

I Computes function f : {0, 1}n → {0, 1}

Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1

I Computes function f : {0, 1}n → {0, 1}

Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0

I Computes function f : {0, 1}n → {0, 1}

Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0 0

I Computes function f : {0, 1}n → {0, 1}

Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0 0 1

I Computes function f : {0, 1}n → {0, 1}

Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0 0 1 1

I Computes function f : {0, 1}n → {0, 1}

Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0 0 1 1

I Computes function f : {0, 1}n → {0, 1}

Fooling / Hitting ROBPs

s bits Gen n bits

Pseudorandom generator: For every width-n ROBP,

|Pr
x

[f (x) = 1]− Pr
z

[f (Gen(z)) = 1]| ≤ ε
Suitable for

derandomizing
BPL

Hitting set generator: For every width-n ROBP,

Pr
x

[f (x) = 1] ≥ ε =⇒ ∃z , f (Gen(z)) = 1

Suitable for
derandomizing

RL

Fooling / Hitting ROBPs

s bits Gen n bits

Pseudorandom generator: For every width-n ROBP,

|Pr
x

[f (x) = 1]− Pr
z

[f (Gen(z)) = 1]| ≤ ε

Suitable for
derandomizing

BPL

Hitting set generator: For every width-n ROBP,

Pr
x

[f (x) = 1] ≥ ε =⇒ ∃z , f (Gen(z)) = 1

Suitable for
derandomizing

RL

Fooling / Hitting ROBPs

s bits Gen n bits

Pseudorandom generator: For every width-n ROBP,

|Pr
x

[f (x) = 1]− Pr
z

[f (Gen(z)) = 1]| ≤ ε
Suitable for

derandomizing
BPL

Hitting set generator: For every width-n ROBP,

Pr
x

[f (x) = 1] ≥ ε =⇒ ∃z , f (Gen(z)) = 1

Suitable for
derandomizing

RL

Fooling / Hitting ROBPs

s bits Gen n bits

Pseudorandom generator: For every width-n ROBP,

|Pr
x

[f (x) = 1]− Pr
z

[f (Gen(z)) = 1]| ≤ ε
Suitable for

derandomizing
BPL

Hitting set generator: For every width-n ROBP,

Pr
x

[f (x) = 1] ≥ ε =⇒ ∃z , f (Gen(z)) = 1

Suitable for
derandomizing

RL

Fooling / Hitting ROBPs

s bits Gen n bits

Pseudorandom generator: For every width-n ROBP,

|Pr
x

[f (x) = 1]− Pr
z

[f (Gen(z)) = 1]| ≤ ε
Suitable for

derandomizing
BPL

Hitting set generator: For every width-n ROBP,

Pr
x

[f (x) = 1] ≥ ε =⇒ ∃z , f (Gen(z)) = 1

Suitable for
derandomizing

RL

Prior generators and main result

I Nonconstructive: PRG with seed length O(log n + log(1/ε))

I Babai, Nisan, Szegedy 1989: PRG with seed length

2O(
√
log n) · log(1/ε)

I Nisan 1990: PRG with seed length

O(log2 n + log(1/ε) log n)

I Braverman, Cohen, Garg 2018: HSG with seed length

Õ(log2 n + log(1/ε))

I This work: HSG with seed length

O(log2 n + log(1/ε))

Prior generators and main result

I Nonconstructive: PRG with seed length O(log n + log(1/ε))

I Babai, Nisan, Szegedy 1989: PRG with seed length

2O(
√
log n) · log(1/ε)

I Nisan 1990: PRG with seed length

O(log2 n + log(1/ε) log n)

I Braverman, Cohen, Garg 2018: HSG with seed length

Õ(log2 n + log(1/ε))

I This work: HSG with seed length

O(log2 n + log(1/ε))

Prior generators and main result

I Nonconstructive: PRG with seed length O(log n + log(1/ε))

I Babai, Nisan, Szegedy 1989: PRG with seed length

2O(
√
log n) · log(1/ε)

I Nisan 1990: PRG with seed length

O(log2 n + log(1/ε) log n)

I Braverman, Cohen, Garg 2018: HSG with seed length

Õ(log2 n + log(1/ε))

I This work: HSG with seed length

O(log2 n + log(1/ε))

Prior generators and main result

I Nonconstructive: PRG with seed length O(log n + log(1/ε))

I Babai, Nisan, Szegedy 1989: PRG with seed length

2O(
√
log n) · log(1/ε)

I Nisan 1990: PRG with seed length

O(log2 n + log(1/ε) log n)

I Braverman, Cohen, Garg 2018: HSG with seed length

Õ(log2 n + log(1/ε))

I This work: HSG with seed length

O(log2 n + log(1/ε))

Prior generators and main result

I Nonconstructive: PRG with seed length O(log n + log(1/ε))

I Babai, Nisan, Szegedy 1989: PRG with seed length

2O(
√
log n) · log(1/ε)

I Nisan 1990: PRG with seed length

O(log2 n + log(1/ε) log n)

I Braverman, Cohen, Garg 2018: HSG with seed length

Õ(log2 n + log(1/ε))

I This work: HSG with seed length

O(log2 n + log(1/ε))

Comparison with [BCG ’18]

I Our construction and analysis are simple

I Braverman, Cohen, Garg ’18:

Pseudorandom
Generator

Nisan ’90

Suitable for BPL

“Pseudorandom
Pseudodistribution”

BCG ’18

Suitable for BPL

=⇒=⇒ Hitting Set
Generator

This work

Suitable for RL

=⇒

Comparison with [BCG ’18]

I Our construction and analysis are simple

I Braverman, Cohen, Garg ’18:

Pseudorandom
Generator

Nisan ’90

Suitable for BPL

“Pseudorandom
Pseudodistribution”

BCG ’18

Suitable for BPL

=⇒=⇒ Hitting Set
Generator

This work

Suitable for RL

=⇒

Comparison with [BCG ’18]

I Our construction and analysis are simple

I Braverman, Cohen, Garg ’18:

Pseudorandom
Generator

Nisan ’90

Suitable for BPL

“Pseudorandom
Pseudodistribution”

BCG ’18

Suitable for BPL

=⇒=⇒

Hitting Set
Generator

This work

Suitable for RL

=⇒

Comparison with [BCG ’18]

I Our construction and analysis are simple

I Braverman, Cohen, Garg ’18:

Pseudorandom
Generator

Nisan ’90

Suitable for BPL

“Pseudorandom
Pseudodistribution”

BCG ’18

Suitable for BPL

=⇒=⇒

Hitting Set
Generator

This work

Suitable for RL

=⇒

Comparison with [BCG ’18]

I Our construction and analysis are simple

I Braverman, Cohen, Garg ’18:

Pseudorandom
Generator

Nisan ’90

Suitable for BPL

“Pseudorandom
Pseudodistribution”

BCG ’18

Suitable for BPL

=⇒=⇒ Hitting Set
Generator

This work

Suitable for RL

=⇒

Structural lemma for ROBPs

I Let f be a width-n, length-n ROBP

I Assume Pr[accept] = ε� 1/n3

I Lemma: There is a vertex u so that

Pr[reach u] ≥ 1

2n3
and Pr[accept | reach u] ≥ εn.

Structural lemma for ROBPs

I Let f be a width-n, length-n ROBP

I Assume Pr[accept] = ε� 1/n3

I Lemma: There is a vertex u so that

Pr[reach u] ≥ 1

2n3
and Pr[accept | reach u] ≥ εn.

Structural lemma for ROBPs

I Let f be a width-n, length-n ROBP

I Assume Pr[accept] = ε� 1/n3

I Lemma: There is a vertex u so that

Pr[reach u] ≥ 1

2n3
and Pr[accept | reach u] ≥ εn.

Proof of lemma (∃u,Pr[u] ≥ 1
2n3 ∧ Pr[acc | u] ≥ εn)

I Say u is a milestone if Pr[accept | reach u] ∈ [εn, 2εn]

I Claim: Every accepting path passes through a milestone

I Proof: Probability of acceptance at most doubles in each step

3% chance of accept

0% chance of accept

6% chance of accept

0

1

I ε = Pr[accept] ≤
∑

u milestone

Pr[reach u and accept]

≤
∑

u milestone

Pr[reach u] · 2εn

I # milestones ≤ n2, so for some milestone u, Pr[reach u] ≥ 1
2n3

Proof of lemma (∃u,Pr[u] ≥ 1
2n3 ∧ Pr[acc | u] ≥ εn)

I Say u is a milestone if Pr[accept | reach u] ∈ [εn, 2εn]

I Claim: Every accepting path passes through a milestone

I Proof: Probability of acceptance at most doubles in each step

3% chance of accept

0% chance of accept

6% chance of accept

0

1

I ε = Pr[accept] ≤
∑

u milestone

Pr[reach u and accept]

≤
∑

u milestone

Pr[reach u] · 2εn

I # milestones ≤ n2, so for some milestone u, Pr[reach u] ≥ 1
2n3

Proof of lemma (∃u,Pr[u] ≥ 1
2n3 ∧ Pr[acc | u] ≥ εn)

I Say u is a milestone if Pr[accept | reach u] ∈ [εn, 2εn]

I Claim: Every accepting path passes through a milestone

I Proof: Probability of acceptance at most doubles in each step

3% chance of accept

0% chance of accept

6% chance of accept

0

1

I ε = Pr[accept] ≤
∑

u milestone

Pr[reach u and accept]

≤
∑

u milestone

Pr[reach u] · 2εn

I # milestones ≤ n2, so for some milestone u, Pr[reach u] ≥ 1
2n3

Proof of lemma (∃u,Pr[u] ≥ 1
2n3 ∧ Pr[acc | u] ≥ εn)

I Say u is a milestone if Pr[accept | reach u] ∈ [εn, 2εn]

I Claim: Every accepting path passes through a milestone

I Proof: Probability of acceptance at most doubles in each step

3% chance of accept

0% chance of accept

6% chance of accept

0

1

I ε = Pr[accept] ≤
∑

u milestone

Pr[reach u and accept]

≤
∑

u milestone

Pr[reach u] · 2εn

I # milestones ≤ n2, so for some milestone u, Pr[reach u] ≥ 1
2n3

Proof of lemma (∃u,Pr[u] ≥ 1
2n3 ∧ Pr[acc | u] ≥ εn)

I Say u is a milestone if Pr[accept | reach u] ∈ [εn, 2εn]

I Claim: Every accepting path passes through a milestone

I Proof: Probability of acceptance at most doubles in each step

3% chance of accept

0% chance of accept

6% chance of accept

0

1

I ε = Pr[accept] ≤
∑

u milestone

Pr[reach u and accept]

≤
∑

u milestone

Pr[reach u] · 2εn

I # milestones ≤ n2, so for some milestone u, Pr[reach u] ≥ 1
2n3

Proof of lemma (∃u,Pr[u] ≥ 1
2n3 ∧ Pr[acc | u] ≥ εn)

I Say u is a milestone if Pr[accept | reach u] ∈ [εn, 2εn]

I Claim: Every accepting path passes through a milestone

I Proof: Probability of acceptance at most doubles in each step

3% chance of accept

0% chance of accept

6% chance of accept

0

1

I ε = Pr[accept] ≤
∑

u milestone

Pr[reach u and accept]

≤
∑

u milestone

Pr[reach u] · 2εn

I # milestones ≤ n2, so for some milestone u, Pr[reach u] ≥ 1
2n3

Proof of lemma (∃u,Pr[u] ≥ 1
2n3 ∧ Pr[acc | u] ≥ εn)

I Say u is a milestone if Pr[accept | reach u] ∈ [εn, 2εn]

I Claim: Every accepting path passes through a milestone

I Proof: Probability of acceptance at most doubles in each step

3% chance of accept

0% chance of accept

6% chance of accept

0

1

I ε = Pr[accept] ≤
∑

u milestone

Pr[reach u and accept]

≤
∑

u milestone

Pr[reach u] · 2εn

I # milestones ≤ n2, so for some milestone u, Pr[reach u] ≥ 1
2n3

Iterating the structural lemma

u0 = start

Pr[accept] = ε

acc

Iterating the structural lemma

u0 = start

Pr[accept] = ε

acc

u1

nε

Iterating the structural lemma

u0 = start

Pr[accept] = ε

acc

u1

nε

u2

n2ε

Iterating the structural lemma

u0 = start

Pr[accept] = ε

acc

u1

nε

u2

n2ε

u3

n3ε

Iterating the structural lemma

u0 = start

Pr[accept] = ε

u1

nε

u2

n2ε

u3

n3ε

acc = ut

ntε = 1

Idea of our HSG

I Use Nisan’s generator for each individual hop ui → ui+1

I Use a “hitter” to recycle the seed of Nisan’s generator from one
hop to the next

Idea of our HSG

I Use Nisan’s generator for each individual hop ui → ui+1

I Use a “hitter” to recycle the seed of Nisan’s generator from one
hop to the next

Hitters (equivalent to dispersers)

I Assume query access to unknown E ⊆ {0, 1}m with density(E) ≥ θ

I Theorem (BGG ’93): Algorithm that outputs some z ∈ E with
probability 1− δ

I # queries: O(θ−1 · log(1/δ))

I # random bits: O(m + log(1/δ))

{0, 1}O(m) {0, 1}m

Hitters (equivalent to dispersers)

I Assume query access to unknown E ⊆ {0, 1}m with density(E) ≥ θ
I Theorem (BGG ’93): Algorithm that outputs some z ∈ E with

probability 1− δ

I # queries: O(θ−1 · log(1/δ))

I # random bits: O(m + log(1/δ))

{0, 1}O(m) {0, 1}m

Hitters (equivalent to dispersers)

I Assume query access to unknown E ⊆ {0, 1}m with density(E) ≥ θ
I Theorem (BGG ’93): Algorithm that outputs some z ∈ E with

probability 1− δ
I # queries: O(θ−1 · log(1/δ))

I # random bits: O(m + log(1/δ))

{0, 1}O(m) {0, 1}m

Hitters (equivalent to dispersers)

I Assume query access to unknown E ⊆ {0, 1}m with density(E) ≥ θ
I Theorem (BGG ’93): Algorithm that outputs some z ∈ E with

probability 1− δ
I # queries: O(θ−1 · log(1/δ))

I # random bits: O(m + log(1/δ))

{0, 1}O(m) {0, 1}m

Hitters (equivalent to dispersers)

I Assume query access to unknown E ⊆ {0, 1}m with density(E) ≥ θ
I Theorem (BGG ’93): Algorithm that outputs some z ∈ E with

probability 1− δ
I # queries: O(θ−1 · log(1/δ))

I # random bits: O(m + log(1/δ))

{0, 1}O(m) {0, 1}m

Hitters (equivalent to dispersers)

I Assume query access to unknown E ⊆ {0, 1}m with density(E) ≥ θ
I Theorem (BGG ’93): Algorithm that outputs some z ∈ E with

probability 1− δ
I # queries: O(θ−1 · log(1/δ))

I # random bits: O(m + log(1/δ))

{0, 1}O(m) {0, 1}m
E

Hitters (equivalent to dispersers)

I Assume query access to unknown E ⊆ {0, 1}m with density(E) ≥ θ
I Theorem (BGG ’93): Algorithm that outputs some z ∈ E with

probability 1− δ
I # queries: O(θ−1 · log(1/δ))

I # random bits: O(m + log(1/δ))

{0, 1}O(m) {0, 1}m
E

Hitter as a function

Hit

left vertex label
right vertex label

edge label

I For any E with density(E) ≥ θ,

Pr
x

[∃y ,Hit(x , y) ∈ E] ≥ 1− δ

Hitter as a function

Hit

left vertex label
right vertex label

edge label

I For any E with density(E) ≥ θ,

Pr
x

[∃y ,Hit(x , y) ∈ E] ≥ 1− δ

Our HSG

Our HSG

Our HSG

Our HSG

Our HSG

Our HSG

Our HSG

Our HSG

Our HSG

Our HSG in symbols

I For numbers n1, . . . , nt with n1 + · · ·+ nt = n:

Gen(x , y1, . . . , yt , n1, . . . , nt) =

NisGen(Hit(x , y1))|n1 ◦ · · · ◦ NisGen(Hit(x , yt))|nt ∈ {0, 1}n

I Here ◦ = concatenation, |r = first r bits

I |x | = O(log2 n), |yi | = O(log n), t = log(1/ε)
log n

I So seed length = O(log2 n + log(1/ε))

Our HSG in symbols

I For numbers n1, . . . , nt with n1 + · · ·+ nt = n:

Gen(x , y1, . . . , yt , n1, . . . , nt) =

NisGen(Hit(x , y1))|n1 ◦ · · · ◦ NisGen(Hit(x , yt))|nt ∈ {0, 1}n

I Here ◦ = concatenation, |r = first r bits

I |x | = O(log2 n), |yi | = O(log n), t = log(1/ε)
log n

I So seed length = O(log2 n + log(1/ε))

Our HSG in symbols

I For numbers n1, . . . , nt with n1 + · · ·+ nt = n:

Gen(x , y1, . . . , yt , n1, . . . , nt) =

NisGen(Hit(x , y1))|n1 ◦ · · · ◦ NisGen(Hit(x , yt))|nt ∈ {0, 1}n

I Here ◦ = concatenation, |r = first r bits

I |x | = O(log2 n), |yi | = O(log n), t = log(1/ε)
log n

I So seed length = O(log2 n + log(1/ε))

Our HSG in symbols

I For numbers n1, . . . , nt with n1 + · · ·+ nt = n:

Gen(x , y1, . . . , yt , n1, . . . , nt) =

NisGen(Hit(x , y1))|n1 ◦ · · · ◦ NisGen(Hit(x , yt))|nt ∈ {0, 1}n

I Here ◦ = concatenation, |r = first r bits

I |x | = O(log2 n), |yi | = O(log n), t = log(1/ε)
log n

I So seed length = O(log2 n + log(1/ε))

Proof of correctness of our HSG

u0 = start

Pr[accept] = ε

acc

Proof of correctness of our HSG

u0 = start

Pr[accept] = ε

acc

u1

nε

n1

Proof of correctness of our HSG

u0 = start

Pr[accept] = ε

acc

u1

nε

n1

u2

n2ε

n2

Proof of correctness of our HSG

u0 = start

Pr[accept] = ε

acc

u1

nε

n1

u2

n2ε

n2

u3

n3ε

n3

Proof of correctness of our HSG

u0 = start

Pr[accept] = ε

u1

nε

n1

u2

n2ε

n2

u3

n3ε

n3

acc = ut

ntε = 1

nt

Proof of correctness of our HSG (continued)

I Define Ei ⊆ {0, 1}m by

Ei = {z | start at ui−1, read NisGen(z) =⇒ reach ui}

I Pr[reach ui | reach ui−1] ≥ 1
2n3

=⇒ density(Ei) >
1

4n3

I Hitter property: Prx [∃y ,Hit(x , y) ∈ Ei] > 1− 1
t

I Union bound: There is one x so that for all i ,

∃yi ,Hit(x , yi) ∈ Ei .

I f (Gen(x , y1, . . . , yt , n1, . . . , nt)) = 1

Proof of correctness of our HSG (continued)

I Define Ei ⊆ {0, 1}m by

Ei = {z | start at ui−1, read NisGen(z) =⇒ reach ui}

I Pr[reach ui | reach ui−1] ≥ 1
2n3

=⇒ density(Ei) >
1

4n3

I Hitter property: Prx [∃y ,Hit(x , y) ∈ Ei] > 1− 1
t

I Union bound: There is one x so that for all i ,

∃yi ,Hit(x , yi) ∈ Ei .

I f (Gen(x , y1, . . . , yt , n1, . . . , nt)) = 1

Proof of correctness of our HSG (continued)

I Define Ei ⊆ {0, 1}m by

Ei = {z | start at ui−1, read NisGen(z) =⇒ reach ui}

I Pr[reach ui | reach ui−1] ≥ 1
2n3

=⇒ density(Ei) >
1

4n3

I Hitter property: Prx [∃y ,Hit(x , y) ∈ Ei] > 1− 1
t

I Union bound: There is one x so that for all i ,

∃yi ,Hit(x , yi) ∈ Ei .

I f (Gen(x , y1, . . . , yt , n1, . . . , nt)) = 1

Proof of correctness of our HSG (continued)

I Define Ei ⊆ {0, 1}m by

Ei = {z | start at ui−1, read NisGen(z) =⇒ reach ui}

I Pr[reach ui | reach ui−1] ≥ 1
2n3

=⇒ density(Ei) >
1

4n3

I Hitter property: Prx [∃y ,Hit(x , y) ∈ Ei] > 1− 1
t

I Union bound: There is one x so that for all i ,

∃yi ,Hit(x , yi) ∈ Ei .

I f (Gen(x , y1, . . . , yt , n1, . . . , nt)) = 1

Proof of correctness of our HSG (continued)

I Define Ei ⊆ {0, 1}m by

Ei = {z | start at ui−1, read NisGen(z) =⇒ reach ui}

I Pr[reach ui | reach ui−1] ≥ 1
2n3

=⇒ density(Ei) >
1

4n3

I Hitter property: Prx [∃y ,Hit(x , y) ∈ Ei] > 1− 1
t

I Union bound: There is one x so that for all i ,

∃yi ,Hit(x , yi) ∈ Ei .

I f (Gen(x , y1, . . . , yt , n1, . . . , nt)) = 1

Application: Derandomizing small-success RL

I Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x ∈ L =⇒ Pr[A(x) accepts] ≥ ε = ε(n)

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

I ε = 1
2 =⇒ L ∈ RL.

Saks, Zhou ’95: RL ⊆ DSPACE(log3/2 n)

I In general, Saks and Zhou showed

L ∈ DSPACE(log3/2 n +
√

log n log(1/ε))

I Theorem:

L ∈ DSPACE(log3/2 n + log n log log(1/ε))

Application: Derandomizing small-success RL

I Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x ∈ L =⇒ Pr[A(x) accepts] ≥ ε = ε(n)

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

I ε = 1
2 =⇒ L ∈ RL.

Saks, Zhou ’95: RL ⊆ DSPACE(log3/2 n)

I In general, Saks and Zhou showed

L ∈ DSPACE(log3/2 n +
√

log n log(1/ε))

I Theorem:

L ∈ DSPACE(log3/2 n + log n log log(1/ε))

Application: Derandomizing small-success RL

I Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x ∈ L =⇒ Pr[A(x) accepts] ≥ ε = ε(n)

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

I ε = 1
2 =⇒ L ∈ RL. Saks, Zhou ’95: RL ⊆ DSPACE(log3/2 n)

I In general, Saks and Zhou showed

L ∈ DSPACE(log3/2 n +
√

log n log(1/ε))

I Theorem:

L ∈ DSPACE(log3/2 n + log n log log(1/ε))

Application: Derandomizing small-success RL

I Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x ∈ L =⇒ Pr[A(x) accepts] ≥ ε = ε(n)

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

I ε = 1
2 =⇒ L ∈ RL. Saks, Zhou ’95: RL ⊆ DSPACE(log3/2 n)

I In general, Saks and Zhou showed

L ∈ DSPACE(log3/2 n +
√

log n log(1/ε))

I Theorem:

L ∈ DSPACE(log3/2 n + log n log log(1/ε))

Application: Derandomizing small-success RL

I Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x ∈ L =⇒ Pr[A(x) accepts] ≥ ε = ε(n)

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

I ε = 1
2 =⇒ L ∈ RL. Saks, Zhou ’95: RL ⊆ DSPACE(log3/2 n)

I In general, Saks and Zhou showed

L ∈ DSPACE(log3/2 n +
√

log n log(1/ε))

I Theorem:

L ∈ DSPACE(log3/2 n + log n log log(1/ε))

Derandomization algorithm for small-success RL

start acc

u

v

I Saks, Zhou ’95: Can distinguish in O(log3/2 n) space between

Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1

2n3

I In second case, add red edge (u, v)

Derandomization algorithm for small-success RL

start acc

u

v

I Saks, Zhou ’95: Can distinguish in O(log3/2 n) space between

Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1

2n3

I In second case, add red edge (u, v)

Derandomization algorithm for small-success RL

start acc

u

v

I Saks, Zhou ’95: Can distinguish in O(log3/2 n) space between

Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1

2n3

I In second case, add red edge (u, v)

Derandomization algorithm for small-success RL

start acc

u

v

I Saks, Zhou ’95: Can distinguish in O(log3/2 n) space between

Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1

2n3

I In second case, add red edge (u, v)

Derandomization algorithm for small-success RL

start acc

u

v

I Saks, Zhou ’95: Can distinguish in O(log3/2 n) space between

Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1

2n3

I In second case, add red edge (u, v)

Derandomization algorithm for small-success RL

start acc

u

v

I Saks, Zhou ’95: Can distinguish in O(log3/2 n) space between

Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1

2n3

I In second case, add red edge (u, v)

Derandomization algorithm for small-success RL (2)

I Use Savitch’s algorithm to check for path of length t = log(1/ε)
log n

from start to acc using red edges

I If x ∈ L, such a path exists by structural lemma

I If x 6∈ L, no path exists

Derandomization algorithm for small-success RL (2)

I Use Savitch’s algorithm to check for path of length t = log(1/ε)
log n

from start to acc using red edges

I If x ∈ L, such a path exists by structural lemma

I If x 6∈ L, no path exists

Derandomization algorithm for small-success RL (2)

I Use Savitch’s algorithm to check for path of length t = log(1/ε)
log n

from start to acc using red edges

I If x ∈ L, such a path exists by structural lemma

I If x 6∈ L, no path exists

Restricted case: Derandomizing low-randomness RL

I How many random bits can be derandomized in O(log n) space?

I (log n)-space algorithm that uses r random bits =⇒ ROBP with
width n and length r

I Ajtai, Komlós, Szemerédi ’87: HSG with seed length O(log n) for

r ≤ O

(
log2 n

log log n

)
, ε =

1

poly(n)

I Nisan, Zuckerman ’93: PRG with seed length O(log n) for

r ≤ polylog n, ε =
1

2log
0.99 n

I Theorem: HSG with seed length O(log(n/ε)) for r ≤ polylog n

Restricted case: Derandomizing low-randomness RL

I How many random bits can be derandomized in O(log n) space?

I (log n)-space algorithm that uses r random bits =⇒ ROBP with
width n and length r

I Ajtai, Komlós, Szemerédi ’87: HSG with seed length O(log n) for

r ≤ O

(
log2 n

log log n

)
, ε =

1

poly(n)

I Nisan, Zuckerman ’93: PRG with seed length O(log n) for

r ≤ polylog n, ε =
1

2log
0.99 n

I Theorem: HSG with seed length O(log(n/ε)) for r ≤ polylog n

Restricted case: Derandomizing low-randomness RL

I How many random bits can be derandomized in O(log n) space?

I (log n)-space algorithm that uses r random bits =⇒ ROBP with
width n and length r

I Ajtai, Komlós, Szemerédi ’87: HSG with seed length O(log n) for

r ≤ O

(
log2 n

log log n

)
, ε =

1

poly(n)

I Nisan, Zuckerman ’93: PRG with seed length O(log n) for

r ≤ polylog n, ε =
1

2log
0.99 n

I Theorem: HSG with seed length O(log(n/ε)) for r ≤ polylog n

Restricted case: Derandomizing low-randomness RL

I How many random bits can be derandomized in O(log n) space?

I (log n)-space algorithm that uses r random bits =⇒ ROBP with
width n and length r

I Ajtai, Komlós, Szemerédi ’87: HSG with seed length O(log n) for

r ≤ O

(
log2 n

log log n

)
, ε =

1

poly(n)

I Nisan, Zuckerman ’93: PRG with seed length O(log n) for

r ≤ polylog n, ε =
1

2log
0.99 n

I Theorem: HSG with seed length O(log(n/ε)) for r ≤ polylog n

Restricted case: Derandomizing low-randomness RL

I How many random bits can be derandomized in O(log n) space?

I (log n)-space algorithm that uses r random bits =⇒ ROBP with
width n and length r

I Ajtai, Komlós, Szemerédi ’87: HSG with seed length O(log n) for

r ≤ O

(
log2 n

log log n

)
, ε =

1

poly(n)

I Nisan, Zuckerman ’93: PRG with seed length O(log n) for

r ≤ polylog n, ε =
1

2log
0.99 n

I Theorem: HSG with seed length O(log(n/ε)) for r ≤ polylog n

Optimal HSG for r ≤ polylog n

I The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan’s PRG

I Analysis difficulty: Vertex u from structural lemma merely satisfies

Pr[reach u] ≥ 1

2nr2
.

I Nizan-Zuckerman PRG has too much error

I Solution: Better structural lemma!

Optimal HSG for r ≤ polylog n

I The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan’s PRG

I Analysis difficulty: Vertex u from structural lemma merely satisfies

Pr[reach u] ≥ 1

2nr2
.

I Nizan-Zuckerman PRG has too much error

I Solution: Better structural lemma!

Optimal HSG for r ≤ polylog n

I The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan’s PRG

I Analysis difficulty: Vertex u from structural lemma merely satisfies

Pr[reach u] ≥ 1

2nr2
.

I Nizan-Zuckerman PRG has too much error

I Solution: Better structural lemma!

Optimal HSG for r ≤ polylog n

I The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan’s PRG

I Analysis difficulty: Vertex u from structural lemma merely satisfies

Pr[reach u] ≥ 1

2nr2
.

I Nizan-Zuckerman PRG has too much error

I Solution: Better structural lemma!

Better structural lemma

I Let f be a length-r ROBP of any width

I Assume Pr[accept] = ε� 1/r2

I Lemma: There is a subset U of some layer so that

Pr[reach U] ≥ 1

2r2
and ∀u ∈ U, Pr[accept | reach u] ≥ εr .

I Proof: Similar to the proof of the original structural lemma

I (Error of NZ generator) � 1
2r2

= 1
polylog n

Better structural lemma

I Let f be a length-r ROBP of any width

I Assume Pr[accept] = ε� 1/r2

I Lemma: There is a subset U of some layer so that

Pr[reach U] ≥ 1

2r2
and ∀u ∈ U, Pr[accept | reach u] ≥ εr .

I Proof: Similar to the proof of the original structural lemma

I (Error of NZ generator) � 1
2r2

= 1
polylog n

Better structural lemma

I Let f be a length-r ROBP of any width

I Assume Pr[accept] = ε� 1/r2

I Lemma: There is a subset U of some layer so that

Pr[reach U] ≥ 1

2r2
and ∀u ∈ U, Pr[accept | reach u] ≥ εr .

I Proof: Similar to the proof of the original structural lemma

I (Error of NZ generator) � 1
2r2

= 1
polylog n

Better structural lemma

I Let f be a length-r ROBP of any width

I Assume Pr[accept] = ε� 1/r2

I Lemma: There is a subset U of some layer so that

Pr[reach U] ≥ 1

2r2
and ∀u ∈ U, Pr[accept | reach u] ≥ εr .

I Proof: Similar to the proof of the original structural lemma

I (Error of NZ generator) � 1
2r2

= 1
polylog n

Better structural lemma

I Let f be a length-r ROBP of any width

I Assume Pr[accept] = ε� 1/r2

I Lemma: There is a subset U of some layer so that

Pr[reach U] ≥ 1

2r2
and ∀u ∈ U, Pr[accept | reach u] ≥ εr .

I Proof: Similar to the proof of the original structural lemma

I (Error of NZ generator) � 1
2r2

= 1
polylog n

Application: Randomness vs. nondeterminism

I RL ⊆ NL

I Theorem: For any r = r(n)

and any constant c ,

(RL with r coins) ⊆

(
NL with

r

logc n
nondeterministic bits

)

≥

Application: Randomness vs. nondeterminism

I RL ⊆ NL

I Theorem: For any r = r(n)

and any constant c ,

(RL with r coins) ⊆

(
NL with

r

logc n
nondeterministic bits

)

≥

Application: Randomness vs. nondeterminism

I RL ⊆ NL

I Theorem: For any r = r(n) and any constant c ,

(RL with r coins) ⊆
(
NL with

r

logc n
nondeterministic bits

)

≥

Application: Randomness vs. nondeterminism

I RL ⊆ NL

I Theorem: For any r = r(n) and any constant c ,

(RL with r coins) ⊆
(
NL with

r

logc n
nondeterministic bits

)

≥

Simulating r coins with r/ logc n nondeterministic bits

O(log n)

Nondeterministic

Gen Gen Gen

logc+1 n

Pseudorandom

ε <
1

2r

Simulating r coins with r/ logc n nondeterministic bits

O(log n)

Nondeterministic

Gen Gen Gen

logc+1 n

Pseudorandom

ε <
1

2r

Simulating r coins with r/ logc n nondeterministic bits

O(log n)

Nondeterministic

Gen Gen Gen

logc+1 n

Pseudorandom

ε <
1

2r

Simulating r coins with r/ logc n nondeterministic bits (2)

I Proof that this works: Suppose Pr[accept] = α

I Let L be the layer reached after logc+1 n steps

I Define U = {u ∈ L : Pr[accept | reach u] ≥ α− ε}

I Then α = Pr[accept]

=
∑
u∈U

Pr[u] · Pr[acc | u] +
∑

u∈L\U

Pr[u] · Pr[acc | u]

≤ Pr[U] + (α− ε)

Pr[U] ≥ ε.

I So some seed x leads to U. Induct

Simulating r coins with r/ logc n nondeterministic bits (2)

I Proof that this works: Suppose Pr[accept] = α

I Let L be the layer reached after logc+1 n steps

I Define U = {u ∈ L : Pr[accept | reach u] ≥ α− ε}

I Then α = Pr[accept]

=
∑
u∈U

Pr[u] · Pr[acc | u] +
∑

u∈L\U

Pr[u] · Pr[acc | u]

≤ Pr[U] + (α− ε)

Pr[U] ≥ ε.

I So some seed x leads to U. Induct

Simulating r coins with r/ logc n nondeterministic bits (2)

I Proof that this works: Suppose Pr[accept] = α

I Let L be the layer reached after logc+1 n steps

I Define U = {u ∈ L : Pr[accept | reach u] ≥ α− ε}

I Then α = Pr[accept]

=
∑
u∈U

Pr[u] · Pr[acc | u] +
∑

u∈L\U

Pr[u] · Pr[acc | u]

≤ Pr[U] + (α− ε)

Pr[U] ≥ ε.

I So some seed x leads to U. Induct

Simulating r coins with r/ logc n nondeterministic bits (2)

I Proof that this works: Suppose Pr[accept] = α

I Let L be the layer reached after logc+1 n steps

I Define U = {u ∈ L : Pr[accept | reach u] ≥ α− ε}

I Then α = Pr[accept]

=
∑
u∈U

Pr[u] · Pr[acc | u] +
∑

u∈L\U

Pr[u] · Pr[acc | u]

≤ Pr[U] + (α− ε)

Pr[U] ≥ ε.

I So some seed x leads to U. Induct

Simulating r coins with r/ logc n nondeterministic bits (2)

I Proof that this works: Suppose Pr[accept] = α

I Let L be the layer reached after logc+1 n steps

I Define U = {u ∈ L : Pr[accept | reach u] ≥ α− ε}

I Then α = Pr[accept]

=
∑
u∈U

Pr[u] · Pr[acc | u] +
∑

u∈L\U

Pr[u] · Pr[acc | u]

≤ Pr[U] + (α− ε)

Pr[U] ≥ ε.

I So some seed x leads to U. Induct

Simulating r coins with r/ logc n nondeterministic bits (2)

I Proof that this works: Suppose Pr[accept] = α

I Let L be the layer reached after logc+1 n steps

I Define U = {u ∈ L : Pr[accept | reach u] ≥ α− ε}

I Then α = Pr[accept]

=
∑
u∈U

Pr[u] · Pr[acc | u] +
∑

u∈L\U

Pr[u] · Pr[acc | u]

≤ Pr[U] + (α− ε)

Pr[U] ≥ ε.

I So some seed x leads to U. Induct

Simulating r coins with r/ logc n nondeterministic bits (2)

I Proof that this works: Suppose Pr[accept] = α

I Let L be the layer reached after logc+1 n steps

I Define U = {u ∈ L : Pr[accept | reach u] ≥ α− ε}

I Then α = Pr[accept]

=
∑
u∈U

Pr[u] · Pr[acc | u] +
∑

u∈L\U

Pr[u] · Pr[acc | u]

≤ Pr[U] + (α− ε)

Pr[U] ≥ ε.

I So some seed x leads to U. Induct

General theorem: Reduction to 1/ poly error case

I Assume efficient PRG for ROBPs with seed length m and error 1
r2

I Theorem: For every ε > 0, there’s an efficient HSG for ROBPs
with seed length

O(m + log(nr/ε))

General theorem: Reduction to 1/ poly error case

I Assume efficient PRG for ROBPs with seed length m and error 1
r2

I Theorem: For every ε > 0, there’s an efficient HSG for ROBPs
with seed length

O(m + log(nr/ε))

The case polylog n� r � n

I Theorem: HSG for width-n, length-r ROBPs with seed length

O

(
log(nr) log r

max{1, log log n − log log r}
+ log(1/ε)

)
I Proof: Plug in PRG of [Armoni ’98]

Open questions

I Conjecture: For any r = r(n), for any constant c ,

(BPL with r coins) =

(
BPL with

r

logc n
coins

)

I True for r ≤ 2log0.99 n by Nisan-Zuckerman

I ACR ’96: Explicit HSG for circuits =⇒ P = BPP. Similar
theorem for BPL?

I Thanks! Questions?

Open questions

I Conjecture: For any r = r(n), for any constant c ,

(BPL with r coins) =

(
BPL with

r

logc n
coins

)

I True for r ≤ 2log0.99 n by Nisan-Zuckerman

I ACR ’96: Explicit HSG for circuits =⇒ P = BPP. Similar
theorem for BPL?

I Thanks! Questions?

Open questions

I Conjecture: For any r = r(n), for any constant c ,

(BPL with r coins) =

(
BPL with

r

logc n
coins

)

I True for r ≤ 2log0.99 n by Nisan-Zuckerman

I ACR ’96: Explicit HSG for circuits =⇒ P = BPP. Similar
theorem for BPL?

I Thanks! Questions?

Open questions

I Conjecture: For any r = r(n), for any constant c ,

(BPL with r coins) =

(
BPL with

r

logc n
coins

)

I True for r ≤ 2log0.99 n by Nisan-Zuckerman

I ACR ’96: Explicit HSG for circuits =⇒ P = BPP. Similar
theorem for BPL?

I Thanks! Questions?

	anm8:
	8.50:
	8.49:
	8.48:
	8.47:
	8.46:
	8.45:
	8.44:
	8.43:
	8.42:
	8.41:
	8.40:
	8.39:
	8.38:
	8.37:
	8.36:
	8.35:
	8.34:
	8.33:
	8.32:
	8.31:
	8.30:
	8.29:
	8.28:
	8.27:
	8.26:
	8.25:
	8.24:
	8.23:
	8.22:
	8.21:
	8.20:
	8.19:
	8.18:
	8.17:
	8.16:
	8.15:
	8.14:
	8.13:
	8.12:
	8.11:
	8.10:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.50:
	7.49:
	7.48:
	7.47:
	7.46:
	7.45:
	7.44:
	7.43:
	7.42:
	7.41:
	7.40:
	7.39:
	7.38:
	7.37:
	7.36:
	7.35:
	7.34:
	7.33:
	7.32:
	7.31:
	7.30:
	7.29:
	7.28:
	7.27:
	7.26:
	7.25:
	7.24:
	7.23:
	7.22:
	7.21:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.50:
	6.49:
	6.48:
	6.47:
	6.46:
	6.45:
	6.44:
	6.43:
	6.42:
	6.41:
	6.40:
	6.39:
	6.38:
	6.37:
	6.36:
	6.35:
	6.34:
	6.33:
	6.32:
	6.31:
	6.30:
	6.29:
	6.28:
	6.27:
	6.26:
	6.25:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.50:
	5.49:
	5.48:
	5.47:
	5.46:
	5.45:
	5.44:
	5.43:
	5.42:
	5.41:
	5.40:
	5.39:
	5.38:
	5.37:
	5.36:
	5.35:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

