Simple Optimal Hitting Sets for Small-Success RL

<u>William M. Hoza</u>¹ David Zuckerman² The University of Texas at Austin

> September 24, 2018 Dagstuhl Seminar 18391

 $^{^1}$ Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin 2 Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investigator Award (#409864)

Randomized log-space complexity classes

Let L be a language

Randomized log-space complexity classes

- Let L be a language
- ► L ∈ BPL if there is a randomized log-space algorithm A that always halts such that

$$x \in L \implies \Pr[A(x) \text{ accepts}] \ge 2/3$$

 $x \notin L \implies \Pr[A(x) \text{ accepts}] \le 1/3.$

Randomized log-space complexity classes

- Let L be a language
- ► L ∈ BPL if there is a randomized log-space algorithm A that always halts such that

$$x \in L \implies \Pr[A(x) \text{ accepts}] \ge 2/3$$

 $x \notin L \implies \Pr[A(x) \text{ accepts}] \le 1/3.$

► L ∈ RL if there is a randomized log-space algorithm A that always halts such that

$$x \in L \implies \Pr[A(x) \text{ accepts}] \ge 1/2$$

 $x \notin L \implies \Pr[A(x) \text{ accepts}] = 0.$

$\blacktriangleright \ L \subseteq RL \subseteq BPL$

```
\blacktriangleright \ \mathsf{L} \subseteq \mathsf{RL} \subseteq \mathsf{BPL}
```

Conjecture: L = RL = BPL

 $\blacktriangleright \ \mathbf{L} \subseteq \mathbf{R}\mathbf{L} \subseteq \mathbf{B}\mathbf{P}\mathbf{L}$

Conjecture: L = RL = BPL

- $\blacktriangleright \ \mathbf{L} \subseteq \mathbf{R}\mathbf{L} \subseteq \mathbf{B}\mathbf{P}\mathbf{L}$
- **Conjecture**: L = RL = BPL

• Computes function $f : \{0,1\}^n \rightarrow \{0,1\}$

Pseudorandom generator: For every width-n ROBP,

$$|\Pr_{x}[f(x) = 1] - \Pr_{z}[f(\operatorname{Gen}(z)) = 1]| \leq \varepsilon$$

$s \text{ bits}$ \longrightarrow Gen $n \text{ bits}$	
Pseudorandom generator: For every width- <i>n</i> ROBP, $ \Pr_{x}[f(x) = 1] - \Pr_{z}[f(\text{Gen}(z)) = 1] \le \varepsilon$	Suitable for derandomizing BPL
Hitting set generator: For every width- <i>n</i> ROBP, $\Pr_{x}[f(x) = 1] \ge \varepsilon \implies \exists z, f(\text{Gen}(z)) = 1$	Suitable for derandomizing RL

▶ Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$

- ▶ Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length

 $2^{O(\sqrt{\log n})} \cdot \log(1/\varepsilon)$

- ▶ Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length

 $2^{O(\sqrt{\log n})} \cdot \log(1/\varepsilon)$

Nisan 1990: PRG with seed length

 $O(\log^2 n + \log(1/\varepsilon)\log n)$

- ▶ Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length

 $2^{O(\sqrt{\log n})} \cdot \log(1/\varepsilon)$

Nisan 1990: PRG with seed length

 $O(\log^2 n + \log(1/\varepsilon)\log n)$

Braverman, Cohen, Garg 2018: HSG with seed length

 $\widetilde{O}(\log^2 n + \log(1/\varepsilon))$

- ▶ Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length

 $2^{O(\sqrt{\log n})} \cdot \log(1/\varepsilon)$

Nisan 1990: PRG with seed length

 $O(\log^2 n + \log(1/\varepsilon)\log n)$

Braverman, Cohen, Garg 2018: HSG with seed length

 $\widetilde{O}(\log^2 n + \log(1/\varepsilon))$

• This work: HSG with seed length

 $O(\log^2 n + \log(1/\varepsilon))$

Our construction and analysis are simple

- Our construction and analysis are simple
- Braverman, Cohen, Garg '18:

	0.1	Matrix Dundles	20
	5.2	Matrix bundles sequences	23
	5.3	Gluing MBSs	25
6	Mu	ltiplication Rules for Matrix Bundle Sequences	26
	6.1	The multiplication rules $\vec{\circ}$, $\vec{\circ}$ parameterized by a sampler	26
	6.2	The multiplication rules $\vec{\bullet}$, $\vec{\bullet}$ parameterized by a sampler	29
	6.3	The multiplication rules $\stackrel{\rightarrow}{\bullet}$, $\stackrel{\leftarrow}{\bullet}$ parameterized by delta of samplers	34
7	Lev	eled Matrix Representations	39
8	The	• Family $\mathcal{F}(\mathbf{A}, \mathbf{B})$	41
	8.1	Basic properties of the MBSs in $\mathcal{F}(\mathbf{A}, \mathbf{B})$	44
	82	The slices of $\mathcal{F}(\mathbf{A}, \mathbf{B})$	48

- Our construction and analysis are simple
- Braverman, Cohen, Garg '18:

	0.1	Matrix buildies	-20
	5.2	Matrix bundles sequences	23
	5.3	Gluing MBSs	25
6	Mu	ltiplication Rules for Matrix Bundle Sequences	26
	6.1	The multiplication rules $\vec{\circ}$, $\overleftarrow{\circ}$ parameterized by a sampler	26
	6.2	The multiplication rules $\vec{\bullet}$, $\vec{\bullet}$ parameterized by a sampler	29
	6.3	The multiplication rules $\overrightarrow{\bullet}$, $\overleftarrow{\bullet}$ parameterized by delta of samplers	34
7	Lev	eled Matrix Representations	39
8	The	e Family $\mathcal{F}(\mathbf{A},\mathbf{B})$	41
	8.1	Basic properties of the MBSs in $\mathcal{F}(\mathbf{A}, \mathbf{B})$	44
	82	The slices of $F(\mathbf{A} \mathbf{B})$	48

This work

Suitable for **RL**

- Our construction and analysis are simple
- Braverman, Cohen, Garg '18:

	0.1 IV	aurix dundies	-20
	5.2 M	latrix bundles sequences	23
	5.3 G	luing MBSs	25
6	Multi	plication Rules for Matrix Bundle Sequences	26
	6.1 T	he multiplication rules $\vec{\circ}, \vec{\circ}$ parameterized by a sampler	26
	6.2 T	he multiplication rules $\vec{\bullet}, \vec{\bullet}$ parameterized by a sampler	29
	6.3 T	he multiplication rules $\overrightarrow{\bullet}$, $\overleftarrow{\bullet}$ parameterized by delta of samplers	34
7	Levele	d Matrix Representations	39
8	The F	amily $\mathcal{F}(\mathbf{A},\mathbf{B})$	41
	8.1 B	asic properties of the MBSs in $\mathcal{F}(\mathbf{A}, \mathbf{B})$	44
	82 T	he slices of $\mathcal{F}(\mathbf{A}, \mathbf{B})$	48

- Our construction and analysis are simple
- Braverman, Cohen, Garg '18:

	0.1	Matrix buildies	-20
	5.2	Matrix bundles sequences	23
	5.3	Gluing MBSs	25
6	Mu	tiplication Rules for Matrix Bundle Sequences	26
	6.1	The multiplication rules $\vec{\circ}$, $\overleftarrow{\circ}$ parameterized by a sampler	26
	6.2	The multiplication rules $\vec{\bullet}$, $\vec{\bullet}$ parameterized by a sampler	29
	6.3	The multiplication rules $\overrightarrow{\bullet}, \overleftarrow{\bullet}$ parameterized by delta of samplers	34
7	Lev	eled Matrix Representations	39
8	The	Family $\mathcal{F}(\mathbf{A}, \mathbf{B})$	41
	8.1	Basic properties of the MBSs in $\mathcal{F}(\mathbf{A}, \mathbf{B})$	44
	82	The slices of $\mathcal{F}(\mathbf{A}, \mathbf{B})$	48

Structural lemma for ROBPs

▶ Let *f* be a width-*n*, length-*n* ROBP

Structural lemma for ROBPs

▶ Let *f* be a width-*n*, length-*n* ROBP

• Assume $\Pr[\operatorname{accept}] = \varepsilon \ll 1/n^3$

Structural lemma for ROBPs

- Let f be a width-n, length-n ROBP
- Assume $\Pr[\operatorname{accept}] = \varepsilon \ll 1/n^3$
- **Lemma**: There is a vertex *u* so that

$$\Pr[\operatorname{reach} u] \geq \frac{1}{2n^3}$$
 and $\Pr[\operatorname{accept} | \operatorname{reach} u] \geq \varepsilon n$.

Proof of lemma $(\exists u, \Pr[u] \ge \frac{1}{2n^3} \land \Pr[\operatorname{acc} | u] \ge \varepsilon n)$

Say *u* is a milestone if $Pr[accept | reach u] \in [\varepsilon n, 2\varepsilon n]$
- ▶ Say *u* is a milestone if $Pr[accept | reach u] \in [\varepsilon n, 2\varepsilon n]$
- Claim: Every accepting path passes through a milestone

- Say *u* is a milestone if $Pr[accept | reach u] \in [\varepsilon n, 2\varepsilon n]$
- Claim: Every accepting path passes through a milestone
 - Proof: Probability of acceptance at most doubles in each step

- Say *u* is a milestone if $Pr[accept | reach u] \in [\varepsilon n, 2\varepsilon n]$
- Claim: Every accepting path passes through a milestone
 - Proof: Probability of acceptance at most doubles in each step

- Say *u* is a milestone if $Pr[accept | reach u] \in [\varepsilon n, 2\varepsilon n]$
- Claim: Every accepting path passes through a milestone
 - Proof: Probability of acceptance at most doubles in each step

- Say *u* is a milestone if $Pr[accept | reach u] \in [\varepsilon n, 2\varepsilon n]$
- Claim: Every accepting path passes through a milestone
 - Proof: Probability of acceptance at most doubles in each step

►
$$\varepsilon = \Pr[\operatorname{accept}] \le \sum_{\substack{u \text{ milestone}}} \Pr[\operatorname{reach} u \text{ and accept}]$$

 $\le \sum \Pr[\operatorname{reach} u] \cdot 2\varepsilon n$

u milestone

- Say *u* is a milestone if $Pr[accept | reach u] \in [\varepsilon n, 2\varepsilon n]$
- Claim: Every accepting path passes through a milestone
 - Proof: Probability of acceptance at most doubles in each step

►
$$\varepsilon = \Pr[\operatorname{accept}] \le \sum_{u \text{ milestone}} \Pr[\operatorname{reach} u \text{ and accept}]$$

 $\le \sum_{v \text{ Pr}[\operatorname{reach} u] \cdot 2\varepsilon n$

u milestone

• # milestones $\leq n^2$, so for some milestone u, $\Pr[\text{reach } u] \geq \frac{1}{2n^3}$

Idea of our HSG

• Use Nisan's generator for each individual hop $u_i \rightarrow u_{i+1}$

Idea of our HSG

- Use Nisan's generator for each individual hop $u_i \rightarrow u_{i+1}$
- Use a "hitter" to recycle the seed of Nisan's generator from one hop to the next

▶ Assume query access to unknown $E \subseteq \{0,1\}^m$ with density $(E) \ge \theta$

- ▶ Assume query access to unknown $E \subseteq \{0,1\}^m$ with density $(E) \ge \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability 1δ

- ▶ Assume query access to unknown $E \subseteq \{0,1\}^m$ with density $(E) \ge \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability 1δ
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$

- ▶ Assume query access to unknown $E \subseteq \{0,1\}^m$ with density $(E) \ge \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability 1δ
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
 - # random bits: $O(m + \log(1/\delta))$

- Assume query access to unknown $E \subseteq \{0,1\}^m$ with density $(E) \ge \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability 1δ
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
 - # random bits: $O(m + \log(1/\delta))$

- Assume query access to unknown $E \subseteq \{0,1\}^m$ with density $(E) \ge \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability 1δ
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
 - # random bits: $O(m + \log(1/\delta))$

- Assume query access to unknown $E \subseteq \{0,1\}^m$ with density $(E) \ge \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability 1δ
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
 - # random bits: $O(m + \log(1/\delta))$

Hitter as a function

Hitter as a function

For any *E* with density(*E*) $\geq \theta$,

$$\Pr_{x}[\exists y, \mathsf{Hit}(x, y) \in E] \geq 1 - \delta$$

For numbers n_1, \ldots, n_t with $n_1 + \cdots + n_t = n$:

 $Gen(x, y_1, \dots, y_t, n_1, \dots, n_t) =$ NisGen(Hit(x, y_1))|_{n_1} \circ \cdots \circ NisGen(Hit(x, y_t))|_{n_t} \in \{0, 1\}^n

For numbers n_1, \ldots, n_t with $n_1 + \cdots + n_t = n$:

 $\begin{aligned} &\mathsf{Gen}(x, y_1, \dots, y_t, n_1, \dots, n_t) = \\ &\mathsf{NisGen}(\mathsf{Hit}(x, y_1))|_{n_1} \circ \dots \circ \mathsf{NisGen}(\mathsf{Hit}(x, y_t))|_{n_t} \in \{0, 1\}^n \end{aligned}$

• Here \circ = concatenation, $|_r$ = first r bits

For numbers n_1, \ldots, n_t with $n_1 + \cdots + n_t = n$:

 $\begin{aligned} &\mathsf{Gen}(x, y_1, \dots, y_t, n_1, \dots, n_t) = \\ &\mathsf{NisGen}(\mathsf{Hit}(x, y_1))|_{n_1} \circ \dots \circ \mathsf{NisGen}(\mathsf{Hit}(x, y_t))|_{n_t} \in \{0, 1\}^n \end{aligned}$

• Here
$$\circ =$$
 concatenation, $|_r =$ first r bits

$$\blacktriangleright |x| = O(\log^2 n), |y_i| = O(\log n), t = \frac{\log(1/\varepsilon)}{\log n}$$

For numbers n_1, \ldots, n_t with $n_1 + \cdots + n_t = n$:

 $\begin{aligned} &\mathsf{Gen}(x, y_1, \dots, y_t, n_1, \dots, n_t) = \\ &\mathsf{NisGen}(\mathsf{Hit}(x, y_1))|_{n_1} \circ \dots \circ \mathsf{NisGen}(\mathsf{Hit}(x, y_t))|_{n_t} \in \{0, 1\}^n \end{aligned}$

• Here
$$\circ =$$
 concatenation, $|_r =$ first r bits

$$\blacktriangleright |x| = O(\log^2 n), |y_i| = O(\log n), t = \frac{\log(1/\varepsilon)}{\log n}$$

• So seed length =
$$O(\log^2 n + \log(1/\varepsilon))$$

Proof of correctness of our HSG

• Define $E_i \subseteq \{0,1\}^m$ by

 $E_i = \{z \mid \text{start at } u_{i-1}, \text{ read NisGen}(z) \implies \text{ reach } u_i\}$

▶ Define $E_i \subseteq \{0,1\}^m$ by

 $E_i = \{z \mid \text{start at } u_{i-1}, \text{ read NisGen}(z) \implies \text{ reach } u_i\}$

▶ Pr[reach u_i | reach u_{i-1}] $\geq \frac{1}{2n^3} \implies \text{density}(E_i) > \frac{1}{4n^3}$

• Define
$$E_i \subseteq \{0,1\}^m$$
 by

 $E_i = \{z \mid \text{start at } u_{i-1}, \text{ read NisGen}(z) \implies \text{ reach } u_i\}$

▶ Pr[reach u_i | reach u_{i-1}] $\geq \frac{1}{2n^3} \implies \text{density}(E_i) > \frac{1}{4n^3}$

► Hitter property: $\Pr_x[\exists y, \operatorname{Hit}(x, y) \in E_i] > 1 - \frac{1}{t}$

• Define
$$E_i \subseteq \{0,1\}^m$$
 by

 $E_i = \{z \mid \text{start at } u_{i-1}, \text{ read NisGen}(z) \implies \text{ reach } u_i\}$

- ▶ Pr[reach $u_i \mid \text{reach } u_{i-1}] \ge \frac{1}{2n^3} \implies \text{density}(E_i) > \frac{1}{4n^3}$
- ▶ Hitter property: $\Pr_x[\exists y, \operatorname{Hit}(x, y) \in E_i] > 1 \frac{1}{t}$
- Union bound: There is one x so that for all i,

 $\exists y_i, \operatorname{Hit}(x, y_i) \in E_i.$

• Define
$$E_i \subseteq \{0,1\}^m$$
 by

 $E_i = \{z \mid \text{start at } u_{i-1}, \text{ read NisGen}(z) \implies \text{ reach } u_i\}$

- ▶ Pr[reach $u_i \mid \text{reach } u_{i-1}] \ge \frac{1}{2n^3} \implies \text{density}(E_i) > \frac{1}{4n^3}$
- ▶ Hitter property: $\Pr_x[\exists y, \operatorname{Hit}(x, y) \in E_i] > 1 \frac{1}{t}$
- Union bound: There is one x so that for all i,

 $\exists y_i, \operatorname{Hit}(x, y_i) \in E_i.$

$$f(Gen(x, y_1, \ldots, y_t, n_1, \ldots, n_t)) = 1$$

Suppose language L can be decided by a randomized log-space algorithm A that always halts with

$$\begin{array}{l} x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n) \\ x \notin L \implies \Pr[A(x) \text{ accepts}] = 0. \end{array}$$

Suppose language L can be decided by a randomized log-space algorithm A that always halts with

$$\begin{array}{l} x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n) \\ x \notin L \implies \Pr[A(x) \text{ accepts}] = 0. \end{array}$$

 $\triangleright \ \varepsilon = \frac{1}{2} \implies L \in \mathbf{RL}.$

Suppose language L can be decided by a randomized log-space algorithm A that always halts with

$$\begin{array}{l} x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n) \\ x \notin L \implies \Pr[A(x) \text{ accepts}] = 0. \end{array}$$

► $\varepsilon = \frac{1}{2} \implies L \in \mathbf{RL}$. Saks, Zhou '95: $\mathbf{RL} \subseteq \mathbf{DSPACE}(\log^{3/2} n)$

Suppose language L can be decided by a randomized log-space algorithm A that always halts with

$$\begin{array}{l} x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n) \\ x \notin L \implies \Pr[A(x) \text{ accepts}] = 0. \end{array}$$

ε = 1/2 ⇒ L ∈ RL. Saks, Zhou '95: RL ⊆ DSPACE(log^{3/2} n)
 In general, Saks and Zhou showed

$$L \in \mathbf{DSPACE}(\log^{3/2} n + \sqrt{\log n}\log(1/\varepsilon))$$

Suppose language L can be decided by a randomized log-space algorithm A that always halts with

$$\begin{array}{l} x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n) \\ x \notin L \implies \Pr[A(x) \text{ accepts}] = 0. \end{array}$$

ε = 1/2 ⇒ L ∈ RL. Saks, Zhou '95: RL ⊆ DSPACE(log^{3/2} n)
 In general, Saks and Zhou showed

$$L \in \mathbf{DSPACE}(\log^{3/2} n + \sqrt{\log n}\log(1/\varepsilon))$$

Theorem:

$$L \in \mathsf{DSPACE}(\log^{3/2} n + \log n \log \log(1/\varepsilon))$$

Saks, Zhou '95: Can distinguish in $O(\log^{3/2} n)$ space between Pr[reach v | reach u] = 0 vs. $Pr[reach v | reach u] \ge \frac{1}{2n^3}$

 Saks, Zhou '95: Can distinguish in O(log^{3/2} n) space between Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1/(2n³)
 In second case, add red edge (u, v)

 Saks, Zhou '95: Can distinguish in O(log^{3/2} n) space between Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1/(2n³)
 In second case, add red edge (u, v)

Saks, Zhou '95: Can distinguish in O(log^{3/2} n) space between
 Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1/(2n³)
 In second case, add red edge (u, v)

• Use Savitch's algorithm to check for path of length $t = \frac{\log(1/\varepsilon)}{\log n}$ from start to acc using red edges

- Use Savitch's algorithm to check for path of length $t = \frac{\log(1/\varepsilon)}{\log n}$ from start to acc using red edges
- If $x \in L$, such a path exists by structural lemma

- Use Savitch's algorithm to check for path of length $t = \frac{\log(1/\varepsilon)}{\log n}$ from start to acc using red edges
- If $x \in L$, such a path exists by structural lemma
- If $x \notin L$, no path exists

▶ How many random bits can be derandomized in O(log n) space?

- ▶ How many random bits can be derandomized in *O*(log *n*) space?
- ▶ (log n)-space algorithm that uses r random bits ⇒ ROBP with width n and length r

- ▶ How many random bits can be derandomized in *O*(log *n*) space?
- ▶ (log n)-space algorithm that uses r random bits ⇒ ROBP with width n and length r
- > Ajtai, Komlós, Szemerédi '87: HSG with seed length $O(\log n)$ for

$$r \leq O\left(\frac{\log^2 n}{\log\log n}
ight), \qquad arepsilon = rac{1}{\operatorname{poly}(n)}$$

- ▶ How many random bits can be derandomized in *O*(log *n*) space?
- ▶ (log n)-space algorithm that uses r random bits ⇒ ROBP with width n and length r
- > Ajtai, Komlós, Szemerédi '87: HSG with seed length $O(\log n)$ for

$$r \leq O\left(rac{\log^2 n}{\log\log n}
ight), \qquad arepsilon = rac{1}{\operatorname{poly}(n)}$$

Nisan, Zuckerman '93: PRG with seed length $O(\log n)$ for

$$r \leq \operatorname{polylog} n, \qquad \varepsilon = \frac{1}{2^{\log^{0.99} n}}$$

- ▶ How many random bits can be derandomized in *O*(log *n*) space?
- ▶ (log n)-space algorithm that uses r random bits ⇒ ROBP with width n and length r
- ▶ Ajtai, Komlós, Szemerédi '87: HSG with seed length O(log n) for

$$r \leq O\left(rac{\log^2 n}{\log\log n}
ight), \qquad arepsilon = rac{1}{\operatorname{poly}(n)}$$

Nisan, Zuckerman '93: PRG with seed length $O(\log n)$ for

$$r \leq \operatorname{polylog} n, \qquad \varepsilon = rac{1}{2^{\log^{0.99} n}}$$

▶ **Theorem**: HSG with seed length $O(\log(n/\varepsilon))$ for $r \le \operatorname{polylog} n$

The generator: Same as main construction but with the Nisan-Zuckerman PRG in place of Nisan's PRG

The generator: Same as main construction but with the Nisan-Zuckerman PRG in place of Nisan's PRG

Analysis difficulty: Vertex u from structural lemma merely satisfies

$$\Pr[\operatorname{reach} u] \geq \frac{1}{2nr^2}.$$

- The generator: Same as main construction but with the Nisan-Zuckerman PRG in place of Nisan's PRG
- Analysis difficulty: Vertex u from structural lemma merely satisfies

$$\Pr[\text{reach } u] \geq \frac{1}{2nr^2}.$$

Nizan-Zuckerman PRG has too much error

- The generator: Same as main construction but with the Nisan-Zuckerman PRG in place of Nisan's PRG
- Analysis difficulty: Vertex u from structural lemma merely satisfies

$$\Pr[\text{reach } u] \geq \frac{1}{2nr^2}.$$

- Nizan-Zuckerman PRG has too much error
- Solution: Better structural lemma!

▶ Let *f* be a length-*r* ROBP of any width

▶ Let *f* be a length-*r* ROBP of any width

• Assume $\Pr[\operatorname{accept}] = \varepsilon \ll 1/r^2$

Let f be a length-r ROBP of any width

• Assume
$$\Pr[\operatorname{accept}] = \varepsilon \ll 1/r^2$$

Lemma: There is a subset *U* of some layer so that

$$\Pr[\operatorname{reach} U] \geq rac{1}{2r^2}$$
 and $\forall u \in U$, $\Pr[\operatorname{accept} | \operatorname{reach} u] \geq \varepsilon r$.

- Let f be a length-r ROBP of any width
- Assume $\Pr[\operatorname{accept}] = \varepsilon \ll 1/r^2$
- **Lemma**: There is a subset U of some layer so that

$$\Pr[\text{reach } U] \ge \frac{1}{2r^2}$$
 and $\forall u \in U$, $\Pr[\text{accept} | \text{reach } u] \ge \varepsilon r$.

Proof: Similar to the proof of the original structural lemma
Better structural lemma

- Let f be a length-r ROBP of any width
- Assume $\Pr[\operatorname{accept}] = \varepsilon \ll 1/r^2$
- **Lemma**: There is a subset *U* of some layer so that

$$\Pr[\text{reach } U] \geq rac{1}{2r^2}$$
 and $\forall u \in U$, $\Pr[\text{accept} \mid \text{reach } u] \geq \varepsilon r$.

- Proof: Similar to the proof of the original structural lemma
- (Error of NZ generator) $\ll \frac{1}{2r^2} = \frac{1}{\text{polylog }n}$

 \blacktriangleright RL \subseteq NL

 $\blacktriangleright \mathsf{RL} \subseteq \mathsf{NL}$

Theorem: For any
$$r = r(n)$$

(**RL** with *r* coins) \subseteq

- $\blacktriangleright \mathsf{RL} \subseteq \mathsf{NL}$
- **Theorem**: For any r = r(n) and any constant c,

(**RL** with *r* coins)
$$\subseteq \left(\mathsf{NL} \text{ with } \frac{r}{\log^c n} \text{ nondeterministic bits} \right)$$

- $\blacktriangleright \mathsf{RL} \subseteq \mathsf{NL}$
- **Theorem**: For any r = r(n) and any constant c,

(**RL** with *r* coins)
$$\subseteq \left($$
NL with $\frac{r}{\log^{c} n}$ nondeterministic bits $\right)$

• Proof that this works: Suppose $Pr[accept] = \alpha$

- ▶ Proof that this works: Suppose $Pr[accept] = \alpha$
- Let *L* be the layer reached after $\log^{c+1} n$ steps

- Proof that this works: Suppose $Pr[accept] = \alpha$
- Let L be the layer reached after log^{c+1} n steps
- ▶ Define $U = \{u \in L : Pr[accept | reach u] \ge \alpha \varepsilon\}$

- ▶ Proof that this works: Suppose $Pr[accept] = \alpha$
- Let L be the layer reached after log^{c+1} n steps
- ▶ Define $U = \{u \in L : Pr[accept | reach u] \ge \alpha \varepsilon\}$

► Then
$$\alpha = \Pr[\operatorname{accept}]$$

= $\sum_{u \in U} \Pr[u] \cdot \Pr[\operatorname{acc} | u] + \sum_{u \in L \setminus U} \Pr[u] \cdot \Pr[\operatorname{acc} | u]$

- ▶ Proof that this works: Suppose $Pr[accept] = \alpha$
- Let L be the layer reached after log^{c+1} n steps
- ▶ Define $U = \{u \in L : Pr[accept | reach u] \ge \alpha \varepsilon\}$

► Then
$$\alpha = \Pr[\operatorname{accept}]$$

= $\sum_{u \in U} \Pr[u] \cdot \Pr[\operatorname{acc} | u] + \sum_{u \in L \setminus U} \Pr[u] \cdot \Pr[\operatorname{acc} | u]$
≤ $\Pr[U] + (\alpha - \varepsilon)$

- Proof that this works: Suppose $Pr[accept] = \alpha$
- Let L be the layer reached after log^{c+1} n steps
- ▶ Define $U = \{u \in L : Pr[accept | reach u] \ge \alpha \varepsilon\}$

► Then
$$\alpha = \Pr[\operatorname{accept}]$$

= $\sum_{u \in U} \Pr[u] \cdot \Pr[\operatorname{acc} | u] + \sum_{u \in L \setminus U} \Pr[u] \cdot \Pr[\operatorname{acc} | u]$
 $\leq \Pr[U] + (\alpha - \varepsilon)$
 $\Pr[U] \geq \varepsilon.$

- Proof that this works: Suppose $Pr[accept] = \alpha$
- Let L be the layer reached after log^{c+1} n steps
- ▶ Define $U = \{u \in L : Pr[accept | reach u] \ge \alpha \varepsilon\}$

► Then
$$\alpha = \Pr[\operatorname{accept}]$$

= $\sum_{u \in U} \Pr[u] \cdot \Pr[\operatorname{acc} | u] + \sum_{u \in L \setminus U} \Pr[u] \cdot \Pr[\operatorname{acc} | u]$
 $\leq \Pr[U] + (\alpha - \varepsilon)$
 $\Pr[U] \geq \varepsilon.$

So some seed x leads to U. Induct

General theorem: Reduction to 1/poly error case

Assume efficient PRG for ROBPs with seed length m and error $\frac{1}{r^2}$

General theorem: Reduction to 1/poly error case

- Assume efficient PRG for ROBPs with seed length m and error $\frac{1}{r^2}$
- ► Theorem: For every ε > 0, there's an efficient HSG for ROBPs with seed length

 $O(m + \log(nr/\varepsilon))$

The case polylog $n \ll r \ll n$

Theorem: HSG for width-*n*, length-*r* ROBPs with seed length

$$O\left(\frac{\log(nr)\log r}{\max\{1,\log\log n-\log\log r\}}+\log(1/\varepsilon)\right)$$

Proof: Plug in PRG of [Armoni '98]

Conjecture: For any r = r(n), for any constant c,

(**BPL** with *r* coins) =
$$\left(\text{BPL with } \frac{r}{\log^c n} \text{ coins} \right)$$

• **Conjecture**: For any r = r(n), for any constant c,

(**BPL** with *r* coins) =
$$\left(\mathsf{BPL} \text{ with } \frac{r}{\log^c n} \text{ coins} \right)$$

• True for
$$r \leq 2^{\log^{0.99} n}$$
 by Nisan-Zuckerman

• **Conjecture**: For any r = r(n), for any constant c,

(**BPL** with *r* coins) =
$$\left(\mathsf{BPL} \text{ with } \frac{r}{\log^c n} \text{ coins} \right)$$

• True for
$$r \leq 2^{\log^{0.99} n}$$
 by Nisan-Zuckerman

ACR '96: Explicit HSG for circuits theorem for BPL?

• **Conjecture**: For any r = r(n), for any constant c,

(**BPL** with *r* coins) =
$$\left(\mathsf{BPL} \text{ with } \frac{r}{\log^c n} \text{ coins} \right)$$

• True for
$$r \leq 2^{\log^{0.99} n}$$
 by Nisan-Zuckerman

ACR '96: Explicit HSG for circuits theorem for BPL?

Thanks! Questions?