Simple Optimal Hitting Sets for Small-Success RL

William M. Hozal David Zuckerman?

The University of Texas at Austin

September 24, 2018
Dagstuhl Seminar 18391

1Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin
Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investigator Award (#409864)

Randomized log-space complexity classes

» Let L be a language

Randomized log-space complexity classes

» Let L be a language

» | € BPL if there is a randomized log-space algorithm A that
always halts such that

x € L = Pr[A(x) accepts] >2/3
x ¢ L = Pr[A(x) accepts] < 1/3.

Randomized log-space complexity classes

» Let L be a language

» | € BPL if there is a randomized log-space algorithm A that
always halts such that

x € L = Pr[A(x) accepts] >2/3
x ¢ L = Pr[A(x) accepts] < 1/3.

» [€ RL if there is a randomized log-space algorithm A that always
halts such that

x € L = Pr[A(x) accepts] > 1/2
x & L = Pr[A(x) accepts] = 0.

The power of randomness for small-space algorithms

» LCRLC BPL

The power of randomness for small-space algorithms

» LCRLCBPL
» Conjecture: L = RL = BPL

The power of randomness for small-space algorithms

» LCRLCBPL
» Conjecture: L = RL = BPL

The power of randomness for small-space algorithms

» LCRLCBPL
» Conjecture: L = RL = BPL

Read-once branching programs

) n—+ 1 layers

4 start e (] (] °

° ° ° °

width n ° ° ° °
° ° ° °

\4 [[[[

acc

Read-once branching programs
n—+ 1 layers

acc

width n

Read-once branching programs
n—+ 1 layers

acc

width n

Read-once branching programs
n—+ 1 layers

acc

width n

Read-once branching programs
n—+ 1 layers

acc

width n

Read-once branching programs
n—+ 1 layers

acc

width n

Read-once branching programs
n—+ 1 layers

acc

width n

Read-once branching programs
n—+ 1 layers

acc

width n

Read-once branching programs
n—+ 1 layers

acc

width n

» Computes function f : {0,1}" — {0,1}

Fooling / Hitting ROBPs

Gen

-

n bits

Fooling / Hitting ROBPs

s bits Gen n bits
—

Pseudorandom generator: For every width-n ROBP,

[Prlf(x) = 1] — Prlf(Gen(2)) = 1] <

Fooling / Hitting ROBPs

s bits Gen n bits
—

Pseudorandom generator: For every width-n ROBP, Suitable for

derandomizin
Pr[f(x) = 1] — Pr[f(Gen(2)) =1]| < ¢ 8
| Prif(x) = 1] = Pr[f(Gen(2)) = 1]| < BPL

Fooling / Hitting ROBPs

s bits Gen n bits
—

Pseudorandom generator: For every width-n ROBP,

[Prlf(x) = 1] — Prlf(Gen(2)) = 1] <

Suitable for
derandomizing
BPL

Hitting set generator: For every width-n ROBP,

Br[f(x) =1]>e¢ = Jz,f(Gen(z)) =1

Fooling / Hitting ROBPs

s bits Gen n bits
—

Pseudorandom generator: For every width-n ROBP,

Suitable for
| Pr[f(x) = 1] — Pr[f(Gen(z)) =1]| < e derandomizing
) : BPL
Hitting set generator: For every width-n ROBP, Suitable for

Br[f(x) =1]>e¢ = Jz,f(Gen(z)) =1

derandomizing
RL

Prior generators and main result

» Nonconstructive: PRG with seed length O(log n + log(1/<))

Prior generators and main result

» Nonconstructive: PRG with seed length O(log n + log(1/<))
» Babai, Nisan, Szegedy 1989: PRG with seed length

20(Viogn) j6g(1 /¢)

Prior generators and main result

» Nonconstructive: PRG with seed length O(log n + log(1/<))
» Babai, Nisan, Szegedy 1989: PRG with seed length

20(Viogn) j6g(1 /¢)

» Nisan 1990: PRG with seed length

O(log? n + log(1/¢) log n)

Prior generators and main result

» Nonconstructive: PRG with seed length O(log n + log(1/<))
» Babai, Nisan, Szegedy 1989: PRG with seed length

20(VIogn) . jog(1/¢)
» Nisan 1990: PRG with seed length
O(log? n + log(1/¢) log n)
» Braverman, Cohen, Garg 2018: HSG with seed length

O(log? n + log(1/¢))

Prior generators and main result

» Nonconstructive: PRG with seed length O(log n + log(1/<))
» Babai, Nisan, Szegedy 1989: PRG with seed length

20(VIogn) . jog(1/¢)
» Nisan 1990: PRG with seed length
O(log? n + log(1/¢) log n)
» Braverman, Cohen, Garg 2018: HSG with seed length

O(log? n + log(1/¢))

» This work: HSG with seed length

O(log? n + log(1/¢))

Comparison with [BCG "18]

» Our construction and analysis are simple

Comparison with [BCG "18]

» Our construction and analysis are simple

» Braverman, Cohen, Garg '18:

DT MENX DORIES -~ >
5.2 Matrix bundles sequenceso 23
53 Glung MBSso 25
Multiplication Rules for Matrix Bundle Sequences 26
6.1 The multiplication rules o, 5 parameterized by a sampler 2
6.2 The multiplication rules ... parame d by asampler 29
-

6.3 The multiplication rules o, ® parameterized by delta of samplers 34
Leveled Matrix Representations 39
The Family F(A.B) 41
8.1 Basic properties of the MBSsin FIA,B). 44
R2 The slices of F(A RBR) 4,

Comparison with [BCG "18]

» Our construction and analysis are simple

» Braverman, Cohen, Garg '18:

DT MENX DMRIES - 5
5.2 Matrix bundles sequenceso Lol 23
5.3 Glung MBSso 25

6 Multiplication Rules for Matrix Bundle Sequences 26

6.1 The multiplication rules o, & parameterized by a

sampler L. 26

6.2 The multiplication rules o, s parame d by asampler L 29
6.3 The multiplication rules », e parameterized by delta of samplers 34
T Leveled Matrix Representations 39
8 The Family F(A,B) 41
8.1 Basic properties of the MBSsin FIA,B). 44
R2 The clices of FIA R\ Al

This work
Hitting Set
Generator
Suitable for RL

Comparison with [BCG "18]

» Our construction and analysis are simple

» Braverman, Cohen, Garg '18:

DT MENX DMRIES - >
5.2 Matrix bundles SeqUENCES i i 23
53 Gluing MBSs e e 25
6 Multiplication Rules for Matrix Bundle Sequences 26
6.1 The multiplication rules o, o parameterized by a sampler 26
6.2 The multiplication rules : parameterized by asampler L 29
6.3 The multiplication rules », e parameterized by delta of samplers 34
T Leveled Matrix Representations 39
8 The Family F(A,B) 41
8.1 Basic properties of the MBSsin FIA,B). 44
R2 The clices of FIA R\ 4,

Nisan '90
Pseudorandom

Generator
Suitable for BPL

This work
Hitting Set
Generator

Suitable for RL

Comparison with [BCG "18]

» Our construction and analysis are simple

» Braverman, Cohen, Garg '18:

DT MENX DMRIES - >
5.2 Matrix bundles SeqUENCES i i 23
53 Gluing MBSs e e 25
6 Multiplication Rules for Matrix Bundle Sequences 26
6.1 The multiplication rules o, o parameterized by a sampler 26
6.2 The multiplication rules o, e parameterized by asampler 29
6.3 The multiplication rules o, ® parameterized by delta of samplers 34
T Leveled Matrix Representations 39
8 The Family 7(A.B) 41
8.1 Basic properties of the MBSsin FIA,B). 44
R2 The clices of FIA R\ 4,

Nisan '90 BCG '18

This work

Pseudorandom “Pseudorandom

Generator Pseudodistribution”

Hitting Set
Generator

Suitable for BPL Suitable for BPL

Suitable for RL

Structural lemma for ROBPs

» Let f be a width-n, length-n ROBP

Structural lemma for ROBPs

» Let f be a width-n, length-n ROBP

» Assume Prlaccept] = ¢ < 1/n?

Structural lemma for ROBPs

» Let f be a width-n, length-n ROBP
» Assume Prlaccept] = ¢ < 1/n?

» Lemma: There is a vertex u so that

1
Pr[reach u] > 5 and Prfaccept | reach u] > en.
n

Proof of lemma (Ju, Pr[u] > 55 A Prlacc | u] > en)

n3

» Say u is a milestone if Pr[accept | reach u] € [en, 2en]

Proof of lemma (Ju, Pr[u] > 55 A Prlacc | u] > en)

n3

» Say u is a milestone if Pr[accept | reach u] € [en, 2en]

» Claim: Every accepting path passes through a milestone

Proof of lemma (Ju, Pr[u] > 55 A Prlacc | u] > en)

n3

» Say u is a milestone if Pr[accept | reach u] € [en, 2en]

» Claim: Every accepting path passes through a milestone

» Proof: Probability of acceptance at most doubles in each step

Proof of lemma (Ju, Pr[u] > 55 A Prlacc | u] > en)

n3

» Say u is a milestone if Pr[accept | reach u] € [en, 2en]

» Claim: Every accepting path passes through a milestone

» Proof: Probability of acceptance at most doubles in each step

1 .,® 6% chance of accept
3% chance of accept <
0

® 0% chance of accept

Proof of lemma (Ju, Pr[u] > 55 A Prlacc | u] > en)

n3

» Say u is a milestone if Pr[accept | reach u] € [en, 2en]

» Claim: Every accepting path passes through a milestone

» Proof: Probability of acceptance at most doubles in each step

1 .,® 6% chance of accept
3% chance of accept <
0

® 0% chance of accept

» ¢ = Prfaccept] < Z Pr[reach u and accept]

u milestone

Proof of lemma (Ju, Pr[u] > 55 A Prlacc | u] > en)

n3

» Say u is a milestone if Pr[accept | reach u] € [en, 2en]

» Claim: Every accepting path passes through a milestone

» Proof: Probability of acceptance at most doubles in each step

1 .,® 6% chance of accept
3% chance of accept <
0

® 0% chance of accept

» ¢ = Prfaccept] < Z Pr[reach u and accept]

u milestone

< Z Pr[reach u] - 2en

u milestone

Proof of lemma (Ju, Pr[u] > 55 A Prlacc | u] > en)

n3

» Say u is a milestone if Pr[accept | reach u] € [en, 2en]

» Claim: Every accepting path passes through a milestone

» Proof: Probability of acceptance at most doubles in each step

1 .,® 6% chance of accept
3% chance of accept <
0

® 0% chance of accept

» ¢ = Prfaccept] < Z Pr[reach u and accept]

u milestone

< Z Pr[reach u] - 2en

u milestone

» # milestones < n?, so for some milestone u, Pr[reach u] > ﬁ O

lterating the structural lemma

ug = start @

Prlaccept] = ¢

acc

lterating the structural lemma

Up = start

Prlaccept] = ¢ ne

acc

lterating the structural lemma

° °
° ° o\o
753
° o/ @ ®
° /o
e o\\e/0 °
o o /o °
u1
e © o © 0 o
e o 0o o o o
e o o 0 o o
Prlaccept] = ¢ ne nle

acc

lterating the structural lemma

°

°

°

o o

o o °

o o °

e o o o o o

e o o o o o
Prlaccept] = ¢ ne nle

acc

lterating the structural lemma

® _®accC = u;

' %
° °
° o o
o o ° o o
o o o o o o o o
o o o o o o o o
®© ¢ 06 06 06 0 0 06 0 0 0 o o
®© o 06 06 06 0 0 0 0 0 0 o o
Prlaccept] = ¢ ne n%e n3e nfe =1

Idea of our HSG

» Use Nisan's generator for each individual hop u; — uj11

Idea of our HSG

» Use Nisan's generator for each individual hop u; — uj11

» Use a “hitter” to recycle the seed of Nisan's generator from one
hop to the next

Hitters (equivalent to dispersers)

> Assume query access to unknown E C {0,1}™ with density(E) > 6

Hitters (equivalent to dispersers)

> Assume query access to unknown E C {0,1}™ with density(E) > 6

» Theorem (BGG '93): Algorithm that outputs some z € E with
probability 1 — 9

Hitters (equivalent to dispersers)

> Assume query access to unknown E C {0,1}™ with density(E) > 6

» Theorem (BGG '93): Algorithm that outputs some z € E with
probability 1 — 9

> # queries: O(01 -log(1/9))

Hitters (equivalent to dispersers)

> Assume query access to unknown E C {0,1}™ with density(E) > 6

» Theorem (BGG '93): Algorithm that outputs some z € E with
probability 1 — 9

> # queries: O(01 -log(1/9))
> # random bits: O(m +log(1/9))

Hitters (equivalent to dispersers)

> Assume query access to unknown E C {0,1}™ with density(E) > 6

» Theorem (BGG '93): Algorithm that outputs some z € E with
probability 1 — 9

> # queries: O(01 -log(1/9))
> # random bits: O(m +log(1/9))

{0, 130(m {0,137

Hitters (equivalent to dispersers)

> Assume query access to unknown E C {0,1}™ with density(E) > 6

» Theorem (BGG '93): Algorithm that outputs some z € E with
probability 1 — 9

> # queries: O(01 -log(1/9))
> # random bits: O(m +log(1/9))

{0, 130(m {0,137

Hitters (equivalent to dispersers)

> Assume query access to unknown E C {0,1}™ with density(E) > 6

» Theorem (BGG '93): Algorithm that outputs some z € E with
probability 1 — ¢

> # queries: O(671 -log(1/0))
» # random bits: O(m + log(1/4))

{0, 130(m {0,137

Hitter as a function

left vertex label }—>

edge label '—»

Hit

—4 right vertex label

Hitter as a function

left vertex label }—>

edge label '—»

Hit

—4 right vertex label

» For any E with density(E) > 0,

Pr[3y,Hit(x,y) € E] >1—§

Our HSG

Our HSG

1

Y

Ee

m

t

“

Our HSG

Our HSG

’T‘—i Hit

’?‘_; Hit
\#ﬁ_

’T‘—i Hit

’T‘—i Hit

n ny n3 n¢

Our HSG

t

]T‘—i Hit NisGen
- Hit NisGen
e
\#ﬁ_
’T‘—i Hit NisGen
()/}_i Hit NisGen

n n» n3 ne

Our HSG

1

Hit

NisGen

2

Hit

NisGen

3

Hit

NisGen

< < NS <
Y A M \

t

Hit

NisGen

I

n n» n3 n¢

Our HSG

1

Hit

NisGen

2

Hit

NisGen

3

Hit

NisGen

< < NS <
Y A M \

t

Hit

NisGen

I

n n» n3 n¢

Our HSG

n
>
Hit NisGen /77
[
ny
>
Hit NisGen 1
2
X '— n3
>
Hit NisGen j
|3
ne
>
] Hit NisGen (/%77

t

Our HSG

1

Hit

2

Hit

3

Hit

< < NS <
Y A M \

t

Hit

n
>
. 7
NisGen ;;;;x%
ny
>
. N
NisGen g
n3
>
o
NisGen x;;;;j
,,,,,,
ne
>
o
NisGen /7]
Output = ’

Our HSG in symbols

» For numbers nq,...,n; with ny +---+ ny = n:

Gen(X, Y1, oy Yy My e evy Ne) =
NisGen(Hit(x, y1))|n, © - - - o NisGen(Hit(x, y¢))|n, € {0,1}"

Our HSG in symbols

» For numbers nq,...,n; with ny +---+ ny = n:

Gen(X, Y1, oy Yy My e evy Ne) =
NisGen(Hit(x, y1))|n, © - - - o NisGen(Hit(x, y¢))|n, € {0,1}"

» Here o = concatenation, |, = first r bits

Our HSG in symbols

» For numbers nq,...,n; with ny +---+ ny = n:

Gen(X, Y1, oy Yy My e evy Ne) =
NisGen(Hit(x, y1))|n, © - - - o NisGen(Hit(x, y¢))|n, € {0,1}"

» Here o = concatenation, |, = first r bits

> |x| = O(log? n), |yi| = O(log), t = 28UL5)

log n

Our HSG in symbols

» For numbers nq,...,n; with ny +---+ ny = n:

Gen(X, Y1, oy Yy My e evy Ne) =
NisGen(Hit(x, y1))|n, © - - - o NisGen(Hit(x, y¢))|n, € {0,1}"

» Here o = concatenation, |, = first r bits

> |x| = O(log? n), |yi| = O(log), t = 28UL5)

log n

> So seed length = O(log? n + log(1/¢))

Proof of correctness of our HSG

ug = start @

[]
[J
[J
[]
[]
[J
[J
[]
3

Pr[accept] =

acc

Proof of correctness of our HSG

e O o050 0 o 0 o o

([]
[]
[]
([]
([]
[
([]
([]
€

S
™

Pr[accept] =

acc

Proof of correctness of our HSG

n

e o o o
Prlaccept] = ¢ ne n’e

acc

Proof of correctness of our HSG

Lmo n2 \ n3 |

| i i \
Up=start @ @ e o o o
e o o o
°

Pr[accept] = ¢ ne n2e n3e

acc

Proof of correctness of our HSG

Pr[accept] =

Mmoo n3 | e
| | | | |
o o o ® acc = u;
° e o o
U

° °

° °

° °

° °

° °

° °

° ° °

€ ne n’e nie nte=1

Proof of correctness of our HSG (continued)

» Define E; C {0,1}™ by

Ei = {z | start at uj_1, read NisGen(z) = reach u;}

Proof of correctness of our HSG (continued)

» Define E; C {0,1}™ by

Ei = {z | start at uj_1, read NisGen(z) = reach u;}

1

> Prlreach u; | reach uj_1] > 513 = density(Ej) > 75

Proof of correctness of our HSG (continued)

» Define E; C {0,1}™ by

Ei = {z | start at uj_1, read NisGen(z) = reach u;}

1

> Prlreach u; | reach uj_1] > 513 = density(Ej) > 75

> Hitter property: Pry[Jy, Hit(x,y) € E;] >1— %

Proof of correctness of our HSG (continued)

» Define E; C {0,1}™ by

Ei = {z | start at uj_1, read NisGen(z) = reach u;}

1

> Prlreach u; | reach uj_1] > 513 = density(Ej) > 75

> Hitter property: Pry[Jy, Hit(x,y) € E;] >1— %

» Union bound: There is one x so that for all i,

Elyi? Hit(vai) € Ei-

Proof of correctness of our HSG (continued)

» Define E; C {0,1}™ by

Ei = {z | start at uj_1, read NisGen(z) = reach u;}

1

> Prlreach u; | reach uj_1] > 513 = density(Ej) > 75

> Hitter property: Pry[Jy, Hit(x,y) € E;] >1— %

» Union bound: There is one x so that for all i,
Elyi? Hit(vai) € Ei-

> f(Gen(x,y1,...,¥t,M,...,nt)) =1

Application: Derandomizing small-success RL

» Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x € L = Pr[A(x) accepts] > ¢ = &(n)
x ¢ L = Pr[A(x) accepts] = 0.

Application: Derandomizing small-success RL

» Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x € L = Pr[A(x) accepts] > ¢ = &(n)
x ¢ L = Pr[A(x) accepts] = 0.

»ec=1—= LeRL

Application: Derandomizing small-success RL

» Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x € L = Pr[A(x) accepts] > ¢ = &(n)
x ¢ L = Pr[A(x) accepts] = 0.

» ¢ =1 — L €RL. Saks, Zhou '95: RL C DSPACE(log®? n)

Application: Derandomizing small-success RL

» Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x € L = Pr[A(x) accepts] > ¢ = &(n)
x ¢ L = Pr[A(x) accepts] = 0.

» ¢ =1 — L €RL. Saks, Zhou '95: RL C DSPACE(log®? n)

» In general, Saks and Zhou showed

L € DSPACE(log®? n + /log nlog(1/¢))

Application: Derandomizing small-success RL

» Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x € L = Pr[A(x) accepts] > ¢ = &(n)
x ¢ L = Pr[A(x) accepts] = 0.

» ¢ =1 — L €RL. Saks, Zhou '95: RL C DSPACE(log®? n)

» In general, Saks and Zhou showed

L € DSPACE(log®? n + /log nlog(1/¢))

» Theorem:

L € DSPACE(log®? n + log n loglog(1/¢))

Derandomization algorithm for small-success RL

start @

acc

Derandomization algorithm for small-success RL

starte e e o o o o o o o o o
® 6 6 o6 o o o o o o o o
e o .u. e 6 o6 o o o o o
e 6 o6 o6 o o o o o o o o
e 6 6 o6 o o o o o o o o
e 6 o6 o o o o o .V. []
e 6 6 o6 o o o o o o o o

acc

Derandomization algorithm for small-success RL

starte © e e o ¢ 6 6 o © o @& o accC
e o o u. e 6 o6 o6 o o o o o
e 6 o6 o6 o o o o o o o o o
e 6 o6 o6 o o o o o o o o o
e 6 o6 o o o o o .V. e o o
e 6 6 o o o o o o o o o o
e 6 o6 o6 o o o o o o o o o

> Saks, Zhou '95: Can distinguish in O(log®/? n) space between

1
Prlreach v | reach u] =0 vs. Pr[reach v | reach u] > 53

Derandomization algorithm for small-success RL

starte © e e o ¢ 6 6 o © o @& o accC
e o o u. e 6 o6 o6 o o o o o
e 6 o6 o6 o o o o o o o o o
e 6 o6 o6 o o o o o o o o o
e 6 o6 o o o o o .V. e o o
e 6 6 o o o o o o o o o o
e 6 o6 o6 o o o o o o o o o

> Saks, Zhou '95: Can distinguish in O(log®/? n) space between

1
Prlreach v | reach u] =0 vs. Pr[reach v | reach u] > 53

» In second case, add red edge (u, v)

Derandomization algorithm for small-success RL

start @ [] acc

> Saks, Zhou '95: Can distinguish in O(log®/? n) space between

1
Prlreach v | reach u] =0 vs. Pr[reach v | reach u] > 53

» In second case, add red edge (u, v)

Derandomization algorithm for small-success RL

start [] acc

°

°

°

° °
° °
° °
o o °
> Saks, Zhou '95: Can distinguish in O(log®/? n) space between
Prlreach v | reach u] =0 vs. Pr[reach v | reach u] > %

» In second case, add red edge (u, v)

Derandomization algorithm for small-success RL (2)

log(1/¢)
log n

» Use Savitch's algorithm to check for path of length t =
from start to acc using red edges

Derandomization algorithm for small-success RL (2)

log(1/¢)
log n

» Use Savitch's algorithm to check for path of length t =
from start to acc using red edges

» If x € L, such a path exists by structural lemma

Derandomization algorithm for small-success RL (2)

log(1/¢)
log n

» Use Savitch's algorithm to check for path of length t =
from start to acc using red edges

» If x € L, such a path exists by structural lemma

» If x € L, no path exists

Restricted case: Derandomizing low-randomness RL

» How many random bits can be derandomized in O(log n) space?

Restricted case: Derandomizing low-randomness RL

» How many random bits can be derandomized in O(log n) space?

» (log n)-space algorithm that uses r random bits = ROBP with
width n and length r

Restricted case: Derandomizing low-randomness RL

» How many random bits can be derandomized in O(log n) space?

» (log n)-space algorithm that uses r random bits = ROBP with
width n and length r

> Ajtai, Komlds, Szemerédi '87: HSG with seed length O(log n) for

2
F<0 logn 7 . 1
log log n poly(n)

Restricted case: Derandomizing low-randomness RL

» How many random bits can be derandomized in O(log n) space?

» (log n)-space algorithm that uses r random bits = ROBP with
width n and length r

> Ajtai, Komlds, Szemerédi '87: HSG with seed length O(log n) for

2
F<0 logn 7 . 1
log log n poly(n)
» Nisan, Zuckerman '93: PRG with seed length O(log n) for
< polyl = !
r<polylogn, &= o

Restricted case: Derandomizing low-randomness RL

» How many random bits can be derandomized in O(log n) space?

» (log n)-space algorithm that uses r random bits = ROBP with
width n and length r

> Ajtai, Komlds, Szemerédi '87: HSG with seed length O(log n) for

2
F<0 logn 7 . 1
log log n poly(n)

» Nisan, Zuckerman '93: PRG with seed length O(log n) for

1

0.99

< =
r < polylog n, € Siog

» Theorem: HSG with seed length O(log(n/=)) for r < polylog n

Optimal HSG for r < polylog n

» The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan's PRG

Optimal HSG for r < polylog n

» The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan's PRG

» Analysis difficulty: Vertex u from structural lemma merely satisfies

1
P hu>——.
r[reach u] > Sr2

Optimal HSG for r < polylog n

» The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan's PRG

» Analysis difficulty: Vertex u from structural lemma merely satisfies

Pr[reach u] >

2nr?’

» Nizan-Zuckerman PRG has too much error

Optimal HSG for r < polylog n

» The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan's PRG

» Analysis difficulty: Vertex u from structural lemma merely satisfies

1
P hu>——.
r[reach u] > Sr2

» Nizan-Zuckerman PRG has too much error

» Solution: Better structural lemma!

Better structural lemma

» Let f be a length-r ROBP of any width

Better structural lemma

» Let f be a length-r ROBP of any width

» Assume Prl[accept] = ¢ < 1/r?

Better structural lemma

» Let f be a length-r ROBP of any width
» Assume Prl[accept] = ¢ < 1/r?

» Lemma: There is a subset U of some layer so that

1
Pr[reach U] > 52 and VYu € U, Pr[accept | reach u] > er.

Better structural lemma

» Let f be a length-r ROBP of any width
» Assume Prl[accept] = ¢ < 1/r?
» Lemma: There is a subset U of some layer so that
Pr[reach U] > 2—12 and VYu € U, Pr[accept | reach u] > er.

» Proof: Similar to the proof of the original structural lemma

Better structural lemma

» Let f be a length-r ROBP of any width
» Assume Prl[accept] = ¢ < 1/r?
» Lemma: There is a subset U of some layer so that
Pr[reach U] > 2—12 and VYu € U, Pr[accept | reach u] > er.

» Proof: Similar to the proof of the original structural lemma

» (Error of NZ generator) < % = m

Application: Randomness vs. nondeterminism

» RL C NL

Application: Randomness vs. nondeterminism

» RL C NL

» Theorem: For any r = r(n)

(RL with r coins) C

Application: Randomness vs. nondeterminism

» RL C NL

» Theorem: For any r = r(n) and any constant c,

(RL with r coins) C <NL with % nondeterministic bits)

ogn

Application: Randomness vs. nondeterminism
» RL C NL
» Theorem: For any r = r(n) and any constant c,

r

ogn

(RL with r coins) C (NL with |

nondeterministic bits)

Simulating r coins with r/log® n nondeterministic bits

Nondeterministic

Simulating r coins with r/log® n nondeterministic bits

Nondeterministic

Gen Gen Gen

Pseudorandom

Simulating r coins with r/log® n nondeterministic bits

1
Nondeterministic €< —
2r
O(log n)
>
Gen Gen Gen
Iogc+1 n

Pseudorandom

Simulating r coins with r/log® n nondeterministic bits (2)

» Proof that this works: Suppose Pr[accept] = «

Simulating r coins with r/log® n nondeterministic bits (2)

» Proof that this works: Suppose Pr[accept] = «

> Let L be the layer reached after logc*! n steps

Simulating r coins with r/log® n nondeterministic bits (2)

» Proof that this works: Suppose Pr[accept] = «
> Let L be the layer reached after logc*! n steps

» Define U = {u € L : Pr[accept | reach u] > o — ¢}

Simulating r coins with r/log® n nondeterministic bits (2)

» Proof that this works: Suppose Pr[accept] = «

> Let L be the layer reached after logc*! n steps

» Define U = {u € L : Pr[accept | reach u] > o — ¢}
» Then a = Pr[accept]

= Z Pr{u] - Prlacc | u] + Z Pr[u] - Prlacc | u]

uel uel\U

Simulating r coins with r/log® n nondeterministic bits (2)

» Proof that this works: Suppose Pr[accept] = «

> Let L be the layer reached after logc*! n steps

» Define U = {u € L : Pr[accept | reach u] > o — ¢}
» Then a = Pr[accept]

= Z Pr{u] - Prlacc | u] + Z Pr[u] - Prlacc | u]

uel uel\U
< PriU] + (a —¢)

Simulating r coins with r/log® n nondeterministic bits (2)

» Proof that this works: Suppose Pr[accept] = «

> Let L be the layer reached after logc*! n steps

» Define U = {u € L : Pr[accept | reach u] > o — ¢}
» Then a = Pr[accept]

= Z Pr{u] - Prlacc | u] + Z Pr[u] - Prlacc | u]
uel uel\U
< Pr[U] + (o —¢)
PriU] > e.

Simulating r coins with r/log® n nondeterministic bits (2)

Proof that this works: Suppose Pr[accept] = «
Let L be the layer reached after log€*! n steps

Define U = {u € L : Pr[accept | reach u] > o — ¢}

vV v v v

Then o = Pr[accept]
— Z Pr[u] - Prlacc | u] + Z Pr[u] - Pracc | u]
uel uel\U
< PrlU] + (e —¢)
PriU] > e.

» So some seed x leads to U. Induct O

General theorem: Reduction to 1/ poly error case

» Assume efficient PRG for ROBPs with seed length m and error 712

General theorem: Reduction to 1/ poly error case

» Assume efficient PRG for ROBPs with seed length m and error 712

» Theorem: For every € > 0, there's an efficient HSG for ROBPs
with seed length

O(m + log(nr/z))

The case polylogn < r < n

» Theorem: HSG for width-n, length-r ROBPs with seed length
0 < log(nr) log r

max{1, loglog n — loglog r}

+ log(1 /e))

» Proof: Plug in PRG of [Armoni '98]

Open questions

» Conjecture: For any r = r(n), for any constant c,

(BPL with r coins) = <BPL with rc coins)
log® n

Open questions

» Conjecture: For any r = r(n), for any constant c,

(BPL with r coins) = <BPL with rc coins)
log® n

> True for r < 2log”* n by Nisan-Zuckerman

Open questions

» Conjecture: For any r = r(n), for any constant c,

r
(BPL with r coins) = <BPL with — coins)
log® n
> True for r < 2log”* n by Nisan-Zuckerman

» ACR '96: Explicit HSG for circuits = P = BPP. Similar
theorem for BPL?

Open questions

» Conjecture: For any r = r(n), for any constant c,

(BPL with r coins) = <BPL with rc coins)
log® n

> True for r < 2log”* n by Nisan-Zuckerman

» ACR '96: Explicit HSG for circuits = P = BPP. Similar
theorem for BPL?

» Thanks! Questions?

	anm8:
	8.50:
	8.49:
	8.48:
	8.47:
	8.46:
	8.45:
	8.44:
	8.43:
	8.42:
	8.41:
	8.40:
	8.39:
	8.38:
	8.37:
	8.36:
	8.35:
	8.34:
	8.33:
	8.32:
	8.31:
	8.30:
	8.29:
	8.28:
	8.27:
	8.26:
	8.25:
	8.24:
	8.23:
	8.22:
	8.21:
	8.20:
	8.19:
	8.18:
	8.17:
	8.16:
	8.15:
	8.14:
	8.13:
	8.12:
	8.11:
	8.10:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.50:
	7.49:
	7.48:
	7.47:
	7.46:
	7.45:
	7.44:
	7.43:
	7.42:
	7.41:
	7.40:
	7.39:
	7.38:
	7.37:
	7.36:
	7.35:
	7.34:
	7.33:
	7.32:
	7.31:
	7.30:
	7.29:
	7.28:
	7.27:
	7.26:
	7.25:
	7.24:
	7.23:
	7.22:
	7.21:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.50:
	6.49:
	6.48:
	6.47:
	6.46:
	6.45:
	6.44:
	6.43:
	6.42:
	6.41:
	6.40:
	6.39:
	6.38:
	6.37:
	6.36:
	6.35:
	6.34:
	6.33:
	6.32:
	6.31:
	6.30:
	6.29:
	6.28:
	6.27:
	6.26:
	6.25:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.50:
	5.49:
	5.48:
	5.47:
	5.46:
	5.45:
	5.44:
	5.43:
	5.42:
	5.41:
	5.40:
	5.39:
	5.38:
	5.37:
	5.36:
	5.35:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

