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Randomized log-space complexity classes

» Let L be a language

» | € BPL if there is a randomized log-space algorithm A that
always halts such that

x € L = Pr[A(x) accepts] >2/3
x ¢ L = Pr[A(x) accepts] < 1/3.

» [ € RL if there is a randomized log-space algorithm A that always
halts such that

x € L = Pr[A(x) accepts] > 1/2
x & L = Pr[A(x) accepts] = 0.
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» Computes function f : {0,1}" — {0,1}
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» Let f be a width-n, length-n ROBP
» Assume Prlaccept] = ¢ < 1/n?

» Lemma: There is a vertex u so that

1
Pr[reach u] > 5 and  Prfaccept | reach u] > en.
n
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Proof of lemma (Ju, Pr[u] > 55 A Prlacc | u] > en)

n3

» Say u is a milestone if Pr[accept | reach u] € [en, 2en]

» Claim: Every accepting path passes through a milestone

» Proof: Probability of acceptance at most doubles in each step

1 .,® 6% chance of accept
3% chance of accept <
0

® 0% chance of accept

» ¢ = Prfaccept] < Z Pr[reach u and accept]

u milestone

< Z Pr[reach u] - 2en

u milestone

» # milestones < n?, so for some milestone u, Pr[reach u] > ﬁ O
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Idea of our HSG

» Use Nisan's generator for each individual hop u; — uj11

» Use a “hitter” to recycle the seed of Nisan's generator from one
hop to the next
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Hitters (equivalent to dispersers)

> Assume query access to unknown E C {0,1}™ with density(E) > 6

» Theorem (BGG '93): Algorithm that outputs some z € E with
probability 1 — ¢

> # queries: O(671 -log(1/0))
» # random bits: O(m + log(1/4))

{0, 130(m {0,137
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Hitter as a function

left vertex label }—>

edge label '—»

Hit

—4 right vertex label

» For any E with density(E) > 0,

Pr[3y,Hit(x,y) € E] >1—§
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Our HSG in symbols

» For numbers nq,...,n; with ny +---+ ny = n:

Gen(X, Y1, oy Yy My e evy Ne) =
NisGen(Hit(x, y1))|n, © - - - o NisGen(Hit(x, y¢))|n, € {0,1}"

» Here o = concatenation, |, = first r bits

> |x| = O(log? n), |yi| = O(log ), t = 28UL5)

log n

> So seed length = O(log? n + log(1/¢))
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Proof of correctness of our HSG (continued)

» Define E; C {0,1}™ by

Ei = {z | start at uj_1, read NisGen(z) = reach u;}

1

> Prlreach u; | reach uj_1] > 513 = density(Ej) > 75

> Hitter property: Pry[Jy, Hit(x,y) € E;] >1— %

» Union bound: There is one x so that for all i,
Elyi? Hit(vai) € Ei-

> f(Gen(x,y1,...,¥t,M,...,nt)) =1
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Application: Derandomizing small-success RL

» Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x € L = Pr[A(x) accepts] > ¢ = &(n)
x ¢ L = Pr[A(x) accepts] = 0.

» ¢ =1 — L €RL. Saks, Zhou '95: RL C DSPACE(log®? n)

» In general, Saks and Zhou showed

L € DSPACE(log®? n + /log nlog(1/¢))

» Theorem:

L € DSPACE(log®? n + log n loglog(1/¢))
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log(1/¢)
log n

» Use Savitch's algorithm to check for path of length t =
from start to acc using red edges

» If x € L, such a path exists by structural lemma

» If x € L, no path exists
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Restricted case: Derandomizing low-randomness RL

» How many random bits can be derandomized in O(log n) space?

» (log n)-space algorithm that uses r random bits = ROBP with
width n and length r

> Ajtai, Komlds, Szemerédi '87: HSG with seed length O(log n) for

2
F<0 logn 7 . 1
log log n poly(n)

» Nisan, Zuckerman '93: PRG with seed length O(log n) for

1

0.99

< =
r < polylog n, € Siog

» Theorem: HSG with seed length O(log(n/=)) for r < polylog n
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Optimal HSG for r < polylog n

» The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan's PRG

» Analysis difficulty: Vertex u from structural lemma merely satisfies

1
P hu>——.
r[reach u] > Sr2

» Nizan-Zuckerman PRG has too much error

» Solution: Better structural lemma!
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Better structural lemma

» Let f be a length-r ROBP of any width
» Assume Prl[accept] = ¢ < 1/r?
» Lemma: There is a subset U of some layer so that
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Better structural lemma

» Let f be a length-r ROBP of any width
» Assume Prl[accept] = ¢ < 1/r?
» Lemma: There is a subset U of some layer so that
Pr[reach U] > 2—12 and VYu € U, Pr[accept | reach u] > er.

» Proof: Similar to the proof of the original structural lemma

» (Error of NZ generator) < % = m
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Application: Randomness vs. nondeterminism
» RL C NL
» Theorem: For any r = r(n) and any constant c,

r

ogn

(RL with r coins) C (NL with |

nondeterministic bits)
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Simulating r coins with r/log® n nondeterministic bits

1
Nondeterministic €< —
2r
O(log n)
>
Gen Gen Gen
Iogc+1 n

Pseudorandom
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» Proof that this works: Suppose Pr[accept] = «
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Simulating r coins with r/log® n nondeterministic bits (2)

» Proof that this works: Suppose Pr[accept] = «

> Let L be the layer reached after logc*! n steps

» Define U = {u € L : Pr[accept | reach u] > o — ¢}
» Then a = Pr[accept]

= Z Pr{u] - Prlacc | u] + Z Pr[u] - Prlacc | u]
uel uel\U
< Pr[U] + (o —¢)
PriU] > e.



Simulating r coins with r/log® n nondeterministic bits (2)

Proof that this works: Suppose Pr[accept] = «
Let L be the layer reached after log€*! n steps

Define U = {u € L : Pr[accept | reach u] > o — ¢}

vV v v v

Then o = Pr[accept]
— Z Pr[u] - Prlacc | u] + Z Pr[u] - Pracc | u]
uel uel\U
< PrlU] + (e —¢)
PriU] > e.

» So some seed x leads to U. Induct O
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General theorem: Reduction to 1/ poly error case

» Assume efficient PRG for ROBPs with seed length m and error 712

» Theorem: For every € > 0, there's an efficient HSG for ROBPs
with seed length

O(m + log(nr/z))



The case polylogn < r < n

» Theorem: HSG for width-n, length-r ROBPs with seed length
0 < log(nr) log r

max{1, loglog n — loglog r}

+ log(1 /e))

» Proof: Plug in PRG of [Armoni '98]
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Open questions

» Conjecture: For any r = r(n), for any constant c,

(BPL with r coins) = <BPL with rc coins)
log® n

> True for r < 2log”* n by Nisan-Zuckerman

» ACR '96: Explicit HSG for circuits = P = BPP. Similar
theorem for BPL?

» Thanks! Questions?
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