
Simple Optimal Hitting Sets for Small-Success RL

William M. Hoza1 David Zuckerman2

The University of Texas at Austin

September 24, 2018
Dagstuhl Seminar 18391

1
Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin

2
Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investigator Award (#409864)



Randomized log-space complexity classes

I Let L be a language

I L ∈ BPL if there is a randomized log-space algorithm A that
always halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 2/3

x 6∈ L =⇒ Pr[A(x) accepts] ≤ 1/3.

I L ∈ RL if there is a randomized log-space algorithm A that always
halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 1/2

x 6∈ L =⇒ Pr[A(x) accepts] = 0.



Randomized log-space complexity classes

I Let L be a language

I L ∈ BPL if there is a randomized log-space algorithm A that
always halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 2/3

x 6∈ L =⇒ Pr[A(x) accepts] ≤ 1/3.

I L ∈ RL if there is a randomized log-space algorithm A that always
halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 1/2

x 6∈ L =⇒ Pr[A(x) accepts] = 0.



Randomized log-space complexity classes

I Let L be a language

I L ∈ BPL if there is a randomized log-space algorithm A that
always halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 2/3

x 6∈ L =⇒ Pr[A(x) accepts] ≤ 1/3.

I L ∈ RL if there is a randomized log-space algorithm A that always
halts such that

x ∈ L =⇒ Pr[A(x) accepts] ≥ 1/2

x 6∈ L =⇒ Pr[A(x) accepts] = 0.



The power of randomness for small-space algorithms

I L ⊆ RL ⊆ BPL

I Conjecture:



The power of randomness for small-space algorithms

I L ⊆ RL ⊆ BPL

I Conjecture: L = RL = BPL



The power of randomness for small-space algorithms

I L ⊆ RL ⊆ BPL

I Conjecture: L = RL = BPL



The power of randomness for small-space algorithms

I L ⊆ RL ⊆ BPL

I Conjecture: L = RL = BPL



Read-once branching programs

start acc

n + 1 layers

width n

I Computes function f : {0, 1}n → {0, 1}



Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

I Computes function f : {0, 1}n → {0, 1}



Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x =

I Computes function f : {0, 1}n → {0, 1}



Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1

I Computes function f : {0, 1}n → {0, 1}



Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0

I Computes function f : {0, 1}n → {0, 1}



Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0 0

I Computes function f : {0, 1}n → {0, 1}



Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0 0 1

I Computes function f : {0, 1}n → {0, 1}



Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0 0 1 1

I Computes function f : {0, 1}n → {0, 1}



Read-once branching programs

start acc

n + 1 layers

width n

0

1

0

1

1

0 0

1

0

1

0
1

x = 1 0 0 1 1

I Computes function f : {0, 1}n → {0, 1}



Fooling / Hitting ROBPs

s bits Gen n bits
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Suitable for

derandomizing
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I Nonconstructive: PRG with seed length O(log n + log(1/ε))
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I Let f be a width-n, length-n ROBP

I Assume Pr[accept] = ε� 1/n3

I Lemma: There is a vertex u so that

Pr[reach u] ≥ 1

2n3
and Pr[accept | reach u] ≥ εn.
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Proof of lemma (∃u,Pr[u] ≥ 1
2n3 ∧ Pr[acc | u] ≥ εn)

I Say u is a milestone if Pr[accept | reach u] ∈ [εn, 2εn]

I Claim: Every accepting path passes through a milestone

I Proof: Probability of acceptance at most doubles in each step

3% chance of accept

0% chance of accept

6% chance of accept

0

1

I ε = Pr[accept] ≤
∑

u milestone

Pr[reach u and accept]

≤
∑

u milestone

Pr[reach u] · 2εn

I # milestones ≤ n2, so for some milestone u, Pr[reach u] ≥ 1
2n3
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Hitters (equivalent to dispersers)

I Assume query access to unknown E ⊆ {0, 1}m with density(E ) ≥ θ

I Theorem (BGG ’93): Algorithm that outputs some z ∈ E with
probability 1− δ

I # queries: O(θ−1 · log(1/δ))

I # random bits: O(m + log(1/δ))

{0, 1}O(m) {0, 1}m
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Our HSG in symbols

I For numbers n1, . . . , nt with n1 + · · ·+ nt = n:
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I |x | = O(log2 n), |yi | = O(log n), t = log(1/ε)
log n
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Proof of correctness of our HSG (continued)

I Define Ei ⊆ {0, 1}m by

Ei = {z | start at ui−1, read NisGen(z) =⇒ reach ui}

I Pr[reach ui | reach ui−1] ≥ 1
2n3

=⇒ density(Ei ) >
1

4n3

I Hitter property: Prx [∃y ,Hit(x , y) ∈ Ei ] > 1− 1
t

I Union bound: There is one x so that for all i ,

∃yi ,Hit(x , yi ) ∈ Ei .

I f (Gen(x , y1, . . . , yt , n1, . . . , nt)) = 1
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∃yi ,Hit(x , yi ) ∈ Ei .

I f (Gen(x , y1, . . . , yt , n1, . . . , nt)) = 1



Application: Derandomizing small-success RL

I Suppose language L can be decided by a randomized log-space
algorithm A that always halts with

x ∈ L =⇒ Pr[A(x) accepts] ≥ ε = ε(n)

x 6∈ L =⇒ Pr[A(x) accepts] = 0.

I ε = 1
2 =⇒ L ∈ RL.

Saks, Zhou ’95: RL ⊆ DSPACE(log3/2 n)

I In general, Saks and Zhou showed

L ∈ DSPACE(log3/2 n +
√

log n log(1/ε))

I Theorem:

L ∈ DSPACE(log3/2 n + log n log log(1/ε))
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Derandomization algorithm for small-success RL

start acc

u

v

I Saks, Zhou ’95: Can distinguish in O(log3/2 n) space between

Pr[reach v | reach u] = 0 vs. Pr[reach v | reach u] ≥ 1

2n3

I In second case, add red edge (u, v)
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Derandomization algorithm for small-success RL (2)

I Use Savitch’s algorithm to check for path of length t = log(1/ε)
log n

from start to acc using red edges

I If x ∈ L, such a path exists by structural lemma

I If x 6∈ L, no path exists
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Restricted case: Derandomizing low-randomness RL

I How many random bits can be derandomized in O(log n) space?

I (log n)-space algorithm that uses r random bits =⇒ ROBP with
width n and length r

I Ajtai, Komlós, Szemerédi ’87: HSG with seed length O(log n) for

r ≤ O

(
log2 n

log log n

)
, ε =

1

poly(n)

I Nisan, Zuckerman ’93: PRG with seed length O(log n) for

r ≤ polylog n, ε =
1

2log
0.99 n

I Theorem: HSG with seed length O(log(n/ε)) for r ≤ polylog n
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Optimal HSG for r ≤ polylog n

I The generator: Same as main construction but with the
Nisan-Zuckerman PRG in place of Nisan’s PRG

I Analysis difficulty: Vertex u from structural lemma merely satisfies

Pr[reach u] ≥ 1

2nr2
.

I Nizan-Zuckerman PRG has too much error

I Solution: Better structural lemma!
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Better structural lemma

I Let f be a length-r ROBP of any width

I Assume Pr[accept] = ε� 1/r2

I Lemma: There is a subset U of some layer so that

Pr[reach U] ≥ 1

2r2
and ∀u ∈ U, Pr[accept | reach u] ≥ εr .

I Proof: Similar to the proof of the original structural lemma

I (Error of NZ generator) � 1
2r2

= 1
polylog n
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Application: Randomness vs. nondeterminism

I RL ⊆ NL

I Theorem: For any r = r(n)

and any constant c ,

(RL with r coins) ⊆

(
NL with

r

logc n
nondeterministic bits

)

≥



Application: Randomness vs. nondeterminism

I RL ⊆ NL

I Theorem: For any r = r(n)

and any constant c ,

(RL with r coins) ⊆

(
NL with

r

logc n
nondeterministic bits

)

≥



Application: Randomness vs. nondeterminism

I RL ⊆ NL

I Theorem: For any r = r(n) and any constant c ,

(RL with r coins) ⊆
(
NL with

r

logc n
nondeterministic bits

)

≥



Application: Randomness vs. nondeterminism

I RL ⊆ NL

I Theorem: For any r = r(n) and any constant c ,

(RL with r coins) ⊆
(
NL with

r

logc n
nondeterministic bits

)

≥



Simulating r coins with r/ logc n nondeterministic bits

O(log n)

Nondeterministic

Gen Gen Gen

logc+1 n

Pseudorandom

ε <
1

2r
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Simulating r coins with r/ logc n nondeterministic bits (2)

I Proof that this works: Suppose Pr[accept] = α

I Let L be the layer reached after logc+1 n steps

I Define U = {u ∈ L : Pr[accept | reach u] ≥ α− ε}

I Then α = Pr[accept]

=
∑
u∈U

Pr[u] · Pr[acc | u] +
∑

u∈L\U

Pr[u] · Pr[acc | u]

≤ Pr[U] + (α− ε)

Pr[U] ≥ ε.

I So some seed x leads to U. Induct
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General theorem: Reduction to 1/ poly error case

I Assume efficient PRG for ROBPs with seed length m and error 1
r2

I Theorem: For every ε > 0, there’s an efficient HSG for ROBPs
with seed length

O(m + log(nr/ε))
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The case polylog n� r � n

I Theorem: HSG for width-n, length-r ROBPs with seed length

O

(
log(nr) log r

max{1, log log n − log log r}
+ log(1/ε)

)
I Proof: Plug in PRG of [Armoni ’98]



Open questions

I Conjecture: For any r = r(n), for any constant c ,

(BPL with r coins) =

(
BPL with

r

logc n
coins

)

I True for r ≤ 2log0.99 n by Nisan-Zuckerman

I ACR ’96: Explicit HSG for circuits =⇒ P = BPP. Similar
theorem for BPL?

I Thanks! Questions?
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