

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. © 2020 Society for Industrial and Applied Mathematics
Vol. 49, No. 4, pp. 811--820

SIMPLE OPTIMAL HITTING SETS FOR SMALL-SUCCESS RL\ast

WILLIAM M. HOZA\dagger AND DAVID ZUCKERMAN\dagger

Abstract. We give a simple explicit hitting set generator for read-once branching programs
of width w and length r with known variable order and acceptance probability at least \varepsilon . When
r = w, our generator has seed length O(log2 r + log(1/\varepsilon)). When r = polylog w, our generator has
optimal seed length O(logw + log(1/\varepsilon)). For intermediate values of r, our generator's seed length
smoothly interpolates between these two extremes. Our generator's seed length improves on recent
work by Braverman, Cohen, and Garg [SIAM J. Comput., (2020), doi:10.1137/18M1197734]. In
addition, our generator and its analysis are dramatically simpler than the work by Braverman et al.
When \varepsilon is small, our generator's seed length improves on all the classic generators for space-bounded
computation [N. Nisan, Combinatorica, 12 (1992), pp. 449--461; R. Impagliazzo, N. Nisan, and A.
Wigderson, in Proceedings of the 26th Annual ACM Symposium on Theory of Computing, ACM,
1994, pp. 356--364; N. Nisan and D. Zuckerman, J. Comput. System Sci., 52 (1996), pp. 43--52].
However, all of these other works construct more general objects than we do. As a corollary of
our construction, we show that every RL algorithm that uses r random bits can be simulated by
an NL algorithm that uses only O(r/ logc n) nondeterministic bits, where c is an arbitrarily large
constant. Finally, we show that any RL algorithm with small success probability \varepsilon can be simulated
deterministically in space O(log3/2 n + logn log log(1/\varepsilon)). This space bound improves on work by
Saks and Zhou [J. Comput. System Sci., 58 (1999), pp. 376--403], who gave an algorithm for the

more general ``two-sided"" problem that runs in space O(log3/2 n+
\surd
logn log(1/\varepsilon)).

Key words. pseudorandom, derandomization, hitting sets, space complexity, branching
programs

AMS subject classifications. 68Q87, 68Q10, 68Q15

DOI. 10.1137/19M1268707

1. Introduction.

1.1. The power of randomness for space-bounded algorithms. A funda-
mental goal of complexity theory is to understand the extent to which randomness is
useful for computation. After decades of research, it is widely conjectured that ran-
domized decision algorithms can always be made deterministic with only a polynomial
factor slowdown (P = BPP) and only a constant factor space blowup (L = BPL).
In this paper, we focus on derandomizing RL, the class of languages decidable by
randomized log-space algorithms with one-sided error.

After an n-bit input to a randomized log-space algorithm has been fixed, the
behavior of the algorithm is described by a read-once branching program (ROBP). An
ROBP of width w and length r is a layered digraph with r + 1 layers and w vertices
per layer. Each vertex not in the last layer has two outgoing edges to the next layer,
labeled 0 and 1. The program P starts at a designated start vertex in the first layer,
reads an r-bit string from left to right in the natural way, and either accepts or rejects

\ast Received by the editors June 17, 2019; accepted for publication (in revised form) June 15,
2020; published electronically July 30, 2020. A preliminary version of this paper appeared in the
Proceedings of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science.

https://doi.org/10.1137/19M1268707
Funding: The first author was supported by the NSF GRFP under grant DGE-1610403 and

by a Harrington Fellowship from UT Austin. The second author was supported by NSF grant
CCF-1526952, NSF grant CCF-1705028, and a Simons Investigator Award (409864).

\dagger Department of Computer Science, University of Texas at Austin, Austin, TX 78751 (whoza@
utexas.edu, diz@cs.utexas.edu).

811

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M1268707
mailto:whoza@utexas.edu
mailto:whoza@utexas.edu
mailto:diz@cs.utexas.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

812 WILLIAM M. HOZA AND DAVID ZUCKERMAN

depending on what vertex it arrives at in the final layer. This defines a function
P : \{ 0, 1\} r \rightarrow \{ 0, 1\} .

A natural approach to derandomizing BPL is to design an efficient pseudo-
random generator (PRG). An \varepsilon -PRG for width-w, length-r ROBPs is a function
\sansG \sanse \sansn : \{ 0, 1\} s \rightarrow \{ 0, 1\} r such that for any such ROBP P ,1

(1.1) | Pr[P (Ur) = 1] - Pr[P (\sansG \sanse \sansn (Us)) = 1]| \leq \varepsilon .

A hitting set generator (HSG) is a relaxation of a PRG, still suitable for derandomizing
RL, where (1.1) is replaced with

(1.2) Pr[P (Ur) = 1] \geq \varepsilon =\Rightarrow \exists x, P (\sansG \sanse \sansn (x)) = 1.

1.2. Previous generators. We will describe only some of the myriad generators
that researchers have developed for ROBPs [2, 4, 18, 15, 22, 19, 3, 16, 24, 13, 6, 11,
17, 7]. Perhaps the most famous generator is Nisan's PRG [18], which has seed length

(1.3) O(log(wr/\varepsilon) log r).

Better generators are known when r \ll w, which corresponds to derandomizing
algorithms that only make a few coin tosses. For r \leq O(log2 w/ log logw) and
\varepsilon \geq 1/poly(w), Ajtai, Koml\'os, and Szemer\'edi gave an HSG with optimal seed length

O(logw) [2].2 For r \leq polylogw and \varepsilon \geq 2 - log1 - \Omega (1) w, Nisan and Zuckerman gave a
PRG with optimal seed length O(logw) [19]. Armoni [3] showed how to interpolate
between Nisan's generator [18] and the Nisan--Zuckerman generator [19]. By improv-
ing an extractor in Armoni's construction, Kane, Nelson, and Woodruff [16] showed
that for r \geq logw, Armoni's PRG can be implemented to have seed length

(1.4) O

\biggl(
log(wr/\varepsilon) log r

max\{ 1, log logw - log log(r/\varepsilon)\}

\biggr)
.

Uniform randomized algorithms that always halt give rise to ROBPs satisfying w \geq r,
because the algorithm must halt within w steps to avoid repeating a configuration.
However, the ROBP model is still interesting even when w \ll r. For the case w = 2,
Saks and Zuckerman gave a PRG with optimal seed length O(log(r/\varepsilon)) [22, 6]. For
w = 3, \v S\'{\i}ma and \v Z\'ak gave a 0.961-HSG with seed length O(log r) [24]; Gopalan et al.

gave an HSG with seed length \widetilde O(log(r/\varepsilon)) [13]; and Meka, Reingold, and Tal recently

gave a PRG with seed length \widetilde O(log r log(1/\varepsilon)) [17].
When r = w, Armoni's PRG is no better than Nisan's. Indeed, for the quarter

century after Nisan announced his generator [18], there was no improvement whatso-
ever for the case r = w. In an exciting recent development, Braverman, Cohen, and
Garg [7] gave an HSG (in fact, a somewhat more general object) with seed length

(1.5) \widetilde O(log(wr) log r + log(1/\varepsilon)).

Equation (1.5) improves on all prior generators when, e.g., r = w and \varepsilon = r - log r.
Unfortunately, as Braverman, Cohen, and Garg recognize in their 58-page paper, their
construction is ``fairly involved"" and their analysis ``requires a significant amount of
work"" [7].

1Un is the uniform distribution on \{ 0, 1\} n.
2Ajtai et al.'s generator [2] was not entirely subsumed by any subsequent papers until this one!

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIMPLE OPTIMAL HITTING SETS FOR SMALL-SUCCESS RL 813

1.3. Our results.

1.3.1. A new HSG. In this paper, we explicitly construct a new HSG for
ROBPs with seed length

(1.6) O

\biggl(
log(wr) log r

max\{ 1, log logw - log log r\}
+ log(1/\varepsilon)

\biggr)
.

This seed length improves on all the classic generators [2, 4, 18, 15, 19, 3] and the
recent generator by Braverman, Cohen, and Garg [7]. Our generator's seed length has
optimal dependence on \varepsilon ; this is the improvement over (1.4). When r \leq polylogw, our
generator has optimal seed length O(logw + log(1/\varepsilon)). This solves a problem raised
by Reingold, who asked for a generator with seed length O(logw) when r \leq polylogw
and \varepsilon = 1/w [20, slide 10]. Our generator is just as interesting when r is large; for
example, when r = w, our generator is the first with seed length O(log2 r) for sub-
polynomial values of \varepsilon such as \varepsilon = r - log r. Our construction and analysis are very
simple.

One respect in which the generator by Braverman, Cohen, and Garg [7] is superior
to ours is that their construction gives a pseudorandom pseudodistribution (PRPD).
The notion of a PRPD, introduced by Braverman, Cohen, and Garg [7], is intermediate
between an HSG and a PRG and is suitable for derandomizingBPL. Our construction
does not give a PRPD.

1.3.2. Randomness vs. nondeterminism. An HSG can be thought of as
stretching a short nondeterministic seed to a long pseudorandom string. Using our
HSG, we show that every RL algorithm that uses r random bits can be simulated
by an NL algorithm that uses only O(r/ logc n) nondeterministic bits, where c is an
arbitrarily large constant. In other words, for log-space algorithms, nondeterministic
bits are worth at least polylog(n) random bits apiece.

For comparison, the work of Ajtai, Koml\'os, and Szemer\'edi [2] implies a simulation
with

(1.7) O

\biggl(
r

log n/ log log n

\biggr)
nondeterministic bits. The work of Nisan and Zuckerman [19] implies the incompa-

rable statement that for r \leq 2log
1 - \Omega (1) n, every RL algorithm that uses r random bits

can be simulated by an RL algorithm that uses only O(r/ logc n) random bits.

1.3.3. Derandomizing small-success algorithms. The standard definition
of RL requires that given an input in the language, the algorithm should accept with
probability at least 1/2. We can more generally consider algorithms that merely accept
with probability at least \varepsilon . A special case of Saks and Zhou's work [21] shows that such

languages can be decided deterministically in space O(log3/2 n+
\surd
log n log(1/\varepsilon)). Us-

ing the same technique we use to analyze our HSG, we give a deterministic algorithm
for such languages that runs in space O(log3/2 n + log n log log(1/\varepsilon)). For example,

the Saks--Zhou algorithm only runs in space O(log3/2 n) if \varepsilon \geq 1/poly(n), whereas our

algorithm runs in space O(log3/2 n) even when \varepsilon = 2 - 2\Theta (
\surd

log n)

. In the extreme limit
\varepsilon = 2 - poly(n), our algorithm recovers Savitch's theorem NL \subseteq DSPACE(log2 n)
[23]; indeed, our algorithm relies on Savitch's algorithm [23].

1.4. Techniques. Our results are based on an elementary structural lemma for
ROBPs (Lemma 2.1). Roughly, the lemma says that from any vertex v, there's at

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

814 WILLIAM M. HOZA AND DAVID ZUCKERMAN

least a 1/ poly(r) chance of reaching a set \Lambda (v) of vertices such that reaching \Lambda (v)
represents making a lot of progress toward eventually accepting. The interesting case
is \varepsilon \ll 1/ poly(r).

Based on this lemma, we show how to convert any (1/poly(r))-PRG for ROBPs
into an \varepsilon -HSG. To explain our construction, for simplicity, consider w = r and \varepsilon =
r - log r. Our HSG uses a ``hitter,"" a randomized algorithm that produces a list of
poly(r) seeds to the given PRG. Our HSG selects O(log r) seeds from this list and
outputs the concatenation of the corresponding pseudorandom strings. This works,
because if the hitter does its job and our HSG selects appropriate seeds, then the
first pseudorandom string leads from the start vertex, v0, to a vertex v1 \in \Lambda (v0).
The second pseudorandom string leads from v1 to some v2 \in \Lambda (v1). Then we go to
v3 \in \Lambda (v2), etc., and eventually accept.

Suppose we plug in Nisan's generator [18] as the (1/ poly(r))-PRG in this con-
struction. It has seed length O(log2 r), so a high-quality hitter only needs O(log2 r)
random bits to produce its list. Our HSG needs an additional O(log2 r) nondeter-
ministic bits to select O(log r) seeds from the list. Finally, our HSG needs another
O(log2 r) nondeterministic bits to guess the distances from v0 to \Lambda (v0), from v1 to
\Lambda (v1), etc. Thus, in total, our \varepsilon -HSG's seed length is only O(log2 r).

In general, if the given (1/ poly(r))-PRG has seed length m, our \varepsilon -HSG has seed
length O(m + log(wr/\varepsilon)). To get the best seed length, we plug in Armoni's PRG
[3, 16].

1.5. Subsequent work. After the appearance of the preliminary version of this
paper, Chattopadhyay and Liao [9] gave a new construction of a PRPD (hence also
an HSG) for ROBPs with seed length

O(log(wn) log n log log(wn) + log(1/\varepsilon)).

This improves on Braverman, Cohen, and Garg's work [7] and provides another HSG
with optimal dependence on \varepsilon .

Meanwhile, Ahmadinejad et al. [1] showed that it is possible to deterministically
estimate the acceptance probability of a randomized log-space algorithm to within \pm \varepsilon
in space O(log3/2 n+log n log log(1/\varepsilon)). This generalizes our result on derandomizing
small-success RL.

Finally, in the preliminary version of this paper, we asked whether an explicit
optimal HSG for ROBPs would imply L = BPL. Cheng and the first author subse-
quently answered this question in the affirmative [10].

2. Our generator.

2.1. Construction. A (\theta , \delta)-hitter [12] is a function

(2.1) \sansH \sansi \sanst : \{ 0, 1\} \ell \times \{ 0, 1\} d \rightarrow \{ 0, 1\} m

such that for any set E \subseteq \{ 0, 1\} m,

(2.2) Pr[Um \in E] \geq \theta =\Rightarrow Pr
x
[\exists y,\sansH \sansi \sanst (x, y) \in E] \geq 1 - \delta .

(This is equivalent to the notion of a disperser.) Our \varepsilon -HSG for width-w, length-r
ROBPs is built from two ingredients:

\bullet A (1
r2)-PRG for width-w, length-r ROBPs \sansB \sansa \sanss \sanse \sansG \sanse \sansn : \{ 0, 1\} m \rightarrow \{ 0, 1\} r.

\bullet A (1
r2 ,

1
2wr)-hitter \sansH \sansi \sanst : \{ 0, 1\}

\ell \times \{ 0, 1\} d \rightarrow \{ 0, 1\} m.

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIMPLE OPTIMAL HITTING SETS FOR SMALL-SUCCESS RL 815

A seed to our generator consists of a string x \in \{ 0, 1\} \ell , a positive integer t \in
\{ 1, 2, . . . ,

\Bigl\lceil
log(1/\varepsilon)
log(r/4)

\Bigr\rceil
+1\} , positive integers r1, . . . , rt with r1+ \cdot \cdot \cdot + rt = r, and strings

y1, . . . , yt \in \{ 0, 1\} d. The output of our generator is

(2.3) \sansG \sanse \sansn (x, t, r1, . . . , rt, y1, . . . , yt) =

\sansB \sansa \sanss \sanse \sansG \sanse \sansn (\sansH \sansi \sanst (x, y1))| r1 \circ \cdot \cdot \cdot \circ \sansB \sansa \sanss \sanse \sansG \sanse \sansn (\sansH \sansi \sanst (x, yt))| rt .

Here, \circ denotes string concatenation and z| ri denotes the truncation of z to the first
ri bits. Our construction draws inspiration from the Nisan--Zuckerman generator [19].

2.2. Correctness. Let P be a width-w, length-r ROBP with layers L0, . . . , Lr.
Suppose i \leq j. If u \in Li, v \in Lj , let p(u, v) be the probability of landing at v when
starting at u and reading Uj - i. If W \subseteq Li, V \subseteq Lj , let

(2.4) p(W,V) = min
u\in W

\sum
v\in V

p(u, v).

Let v\ast \in Lr be the accepting vertex of P , which we may assume is unique without loss
of generality. We now prove the structural lemma outlined in section 1.4. Our lemma
bears some resemblance to a lemma by Ajtai, Koml\'os, and Szemer\'edi [2, Lemma 1].

Lemma 2.1. Assume r > 4. Suppose v \in Li, i < r. There is a positive integer
h(v) and a set \Lambda (v) \subseteq Li+h(v) so that

1. p(v,\Lambda (v)) \geq 2
r2 and

2. \Lambda (v) = \{ v\ast \} or p(\Lambda (v), v\ast) \geq p(v, v\ast) \cdot (r/4).
Proof. Let \alpha = p(v, v\ast). If \alpha \geq 2/r, we can just let \Lambda (v) = \{ v\ast \} and h(v) = r - i,

so assume \alpha < 2/r. For j > i, define

(2.5) \Lambda j = \{ u \in Lj : \alpha \cdot (r/4) \leq p(u, v\ast) \leq \alpha \cdot (r/2)\} .

Say that \Lambda j is unlikely if p(v,\Lambda j) <
2
r2 . Consider starting at v and reading uniform

randomness. If \Lambda j is unlikely, then the probability of passing through \Lambda j and then
ultimately accepting is given by

(2.6)
\sum
u\in \Lambda j

p(v, u) \cdot p(u, v\ast) \leq p(v,\Lambda j) \cdot \alpha \cdot (r/2) < \alpha

r
.

There are at most r unlikely sets \Lambda j . Therefore, by the union bound, the probability
of passing through some unlikely \Lambda j and then ultimately accepting is strictly less than
\alpha . So there is some path v = ui, ui+1, . . . , ur = v\ast that does not pass through any
unlikely \Lambda j .

Since uj+1 is an outneighbor of uj ,

p(uj , v\ast) \geq p(uj , uj+1) \cdot p(uj+1, v\ast) \geq p(uj+1, v\ast)/2.(2.7)

So as j runs from i to r, the quantity p(uj , v\ast) goes from \alpha to 1, and it at most
doubles in each step. Therefore, there must be some j > i such that

(2.8) \alpha \cdot (r/4) \leq p(uj , v\ast) \leq \alpha \cdot (r/2)

(recall \alpha < 2/r and r > 4.) It follows that uj \in \Lambda j , so \Lambda j is not unlikely. Let
\Lambda (v) = \Lambda j and h(v) = j - i.

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

816 WILLIAM M. HOZA AND DAVID ZUCKERMAN

Claim 2.2 (correctness of \sansG \sanse \sansn). Let v0 be the start vertex of P . Assume r > 4
and p(v0, v\ast) \geq \varepsilon . Then there is some seed (x, t, r1, . . . , rt, y1, . . . , yt) so that P accepts
\sansG \sanse \sansn (x, t, r1, . . . , rt, y1, . . . , yt).

Proof. For a vertex v not in the last layer, define Ev to be the set of all z \in \{ 0, 1\} m
such that starting at v and reading \sansB \sansa \sanss \sanse \sansG \sanse \sansn (z)| h(v) reaches \Lambda (v). Since p(v,\Lambda (v)) \geq
2
r2 and \sansB \sansa \sanss \sanse \sansG \sanse \sansn has error 1

r2 , Pr[Um \in Ev] \geq 1
r2 . Therefore, by the hitting condition,

(2.9) Pr
x
[\exists y,\sansH \sansi \sanst (x, y) \in Ev] \geq 1 - 1

2wr
.

There are fewer than 2wr vertices, so by the union bound, there is some x\ast so that
for every v, there is a string yv with \sansH \sansi \sanst (x\ast , yv) \in Ev.

We now inductively define strings y1, y2, . . . , numbers r1, r2, . . . , and vertices
v1, v2, . . . so that for every i, vi = v\ast or p(vi, v\ast) \geq \varepsilon \cdot (r/4)i. We start with the start
vertex, v0. Let yi+1 = yvi , ri+1 = h(vi), and vi+1 = the vertex reached when starting
at vi and reading \sansB \sansa \sanss \sanse \sansG \sanse \sansn (\sansH \sansi \sanst (x\ast , yi+1))| ri+1

. That way, vi+1 \in \Lambda (vi), so indeed,
vi+1 = v\ast or p(vi+1, v\ast) \geq p(vi, v\ast) \cdot (r/4). Since probabilities cannot exceed 1, the
induction must terminate at i = t with vt = v\ast and \varepsilon \cdot (r/4)t - 1 \leq 1. This implies that

t \leq log(1/\varepsilon)
log(r/4) + 1. By construction, P accepts \sansG \sanse \sansn (x\ast , t, r1, . . . , rt, y1, . . . , yt).

2.3. Seed length. In this section, we plug in explicit constructions for \sansB \sansa \sanss \sanse \sansG \sanse \sansn
and \sansH \sansi \sanst to prove our main result.

Theorem 2.3 (main result). For every w, r, \varepsilon with r \geq logw, there is an \varepsilon -HSG
\sansG \sanse \sansn : \{ 0, 1\} s \rightarrow \{ 0, 1\} r for width-w, length-r ROBPs, computable in space O(s), with

(2.10) s \leq O

\biggl(
log(wr) log r

max\{ 1, log logw - log log r\}
+ log(1/\varepsilon)

\biggr)
.

Proof. For any m, \theta , \delta , Bellare, Goldreich, and Goldwasser constructed a (\theta , \delta)-
hitter \sansH \sansi \sanst : \{ 0, 1\} \ell \times \{ 0, 1\} d \rightarrow \{ 0, 1\} m with \ell \leq O(m+log(1/\delta)) and d \leq O(log(1/\theta)+
log log(1/\delta)), easily computable in space O(m + log(1/\delta) + log(1/\theta)) [5]. With the
specified parameters \theta = 1

r2 , \delta = 1
2wr , these lengths become \ell \leq O(m+ log(wr)) and

d \leq O(log r). Therefore, the seed length of our generator is bounded by

s \leq \ell \underbrace{} \underbrace{}
for x

+O(log log(1/\varepsilon))\underbrace{} \underbrace{}
for t

+O(log(1/\varepsilon))\underbrace{} \underbrace{}
for r1,...,rt

+O

\biggl(
d log(1/\varepsilon)

log r

\biggr)
\underbrace{} \underbrace{}

for y1,...,yt

(2.11)

\leq O (m+ log(wr/\varepsilon)) .(2.12)

Recall that m is the seed length of \sansB \sansa \sanss \sanse \sansG \sanse \sansn . We take \sansB \sansa \sanss \sanse \sansG \sanse \sansn to be Armoni's gener-
ator [3] as optimized by Kane, Nelson, and Woodruff [16, Theorem A.16]. Since we
can tolerate error 1/r2 in \sansB \sansa \sanss \sanse \sansG \sanse \sansn , its seed length is

(2.13) m \leq O

\biggl(
log(wr) log r

max\{ 1, log logw - log log r\}

\biggr)
.

Armoni's generator is computable in space O(m), so \sansG \sanse \sansn is computable in space O(s).

3. Simulating \bfitr random bits with \bfitr / log\bfitc \bfitn nondeterministic bits. In
this section and the next, n denotes the length of the input to the space-bounded
algorithm under discussion.

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIMPLE OPTIMAL HITTING SETS FOR SMALL-SUCCESS RL 817

Definition 3.1. For a language L, an RL algorithm with success probability
\varepsilon = \varepsilon (n) is a randomized log-space algorithm A that always halts such that for every
x \in \{ 0, 1\} \ast ,

x \in L =\Rightarrow Pr[A(x) accepts] \geq \varepsilon ,(3.1)

x \not \in L =\Rightarrow Pr[A(x) accepts] = 0.(3.2)

An RL algorithm (with no success probability specified) is an RL algorithm with
success probability 1/ poly(n). An NL algorithm is a nondeterministic log-space al-
gorithm A that always halts such that x \in L if and only if there is some sequence of
nondeterministic choices causing A(x) to accept.

We now show as a corollary to Theorem 2.3 that for log-space algorithms, r
random bits can be simulated with r/polylog(n) nondeterministic bits.

Corollary 3.2. Suppose a language L can be decided by an RL algorithm that
uses at most r = r(n) random bits. Then for any constant c \in \BbbN , L can be decided by
an NL algorithm that uses O(r/ logc n) nondeterministic bits.

Proof. Let w = poly(n) be such that the behavior of the RL algorithm on an
n-bit input can be modeled as a width-w, length-r ROBP P with w \geq r. Let C
be such that the RL algorithm's success probability is at least 2n - C . Let \sansG \sanse \sansn :
\{ 0, 1\} O(logn) \rightarrow \{ 0, 1\} h be our \varepsilon -HSG with h = \lceil logc+1 n\rceil and \varepsilon = n - C/w. The NL
algorithm repeatedly guesses3 a seed x and feeds \sansG \sanse \sansn (x) to an ongoing simulation of
the RL algorithm.

The correctness of this algorithm follows inductively from the following claim.
Let L0, L1, . . . , Lr be the layers of P , and let v\ast \in Lr be the accept vertex. For any
vertex v \in Li, there is some seed x such that if u \in Li+h is the vertex reached from
v by reading \sansG \sanse \sansn (x), then

(3.3) p(u, v\ast) \geq p(v, v\ast) - \varepsilon .

Proof of this claim: Define

(3.4) W = \{ u \in Li+h : p(u, v\ast) \geq p(v, v\ast) - \varepsilon \} .

Then

p(v, v\ast) =
\sum
u\in W

p(v, u) \cdot p(u, v\ast) +
\sum

u\in Li+h\setminus W

p(v, u) \cdot p(u, v\ast)(3.5)

\leq p(v,W) + p(v, v\ast) - \varepsilon .(3.6)

Therefore, p(v,W) \geq \varepsilon , so the correctness of \sansG \sanse \sansn completes the proof.

4. Derandomizing small-success RL algorithms. Saks and Zhou famously
showed that BPL \subseteq DSPACE(log3/2 n) [21]. Suppose some language L merely has
an RL algorithm with small success probability \varepsilon . By amplification,

(4.1) L \in RSPACE(log(n/\varepsilon)),

3Actually, to handle the case r(n) < logc+1 n, the NL algorithm should first deterministically
check whether it is the case that for every x, after reading \sansG \sanse \sansn (x), the RL algorithm has halted. If
so, the NL algorithm should halt and accept/reject depending on whether there is some x such that
the RL algorithm accepts when reading \sansG \sanse \sansn (x).

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

818 WILLIAM M. HOZA AND DAVID ZUCKERMAN

so by the Saks--Zhou theorem, L \in DSPACE(log3/2(n/\varepsilon)). In fact, Saks and Zhou

showed L \in DSPACE(log3/2 n+
\surd
log n log(1/\varepsilon)) [21, Theorem 3.1].

We now show as a corollary of Lemma 2.1 that

(4.2) L \in DSPACE(log3/2 n+ log n log log(1/\varepsilon)),

an exponential improvement in terms of \varepsilon . Our derandomization smoothly interpo-
lates between the Saks--Zhou theorem [21] and Savitch's theorem [23]

(4.3) NL \subseteq DSPACE(log2 n).

Corollary 4.1. Suppose a language L admits an RL algorithm with success
probability \varepsilon = \varepsilon (n), where \lceil log(1/\varepsilon)\rceil can be constructed in space

(4.4) O(log3/2 n+ log n log log(1/\varepsilon)).

Then

(4.5) L \in DSPACE(log3/2 n+ log n log log(1/\varepsilon)).

Proof. Let w = poly(n) be such that the behavior of the RL algorithm on an
n-bit input can be modeled as a width-w, length-w ROBP P with start vertex v0
and accept vertex v\ast . By the results of Saks and Zhou [21], there is a deterministic

algorithm A that runs in space O(log3/2 n) that, given vertices u, v, will distinguish
between the cases p(u, v) = 0 and p(u, v) \geq 2

w3 . Define a digraph G, where the vertices
of G are the vertices of P , and we put an edge from u to v in G if A(u, v) = 1. To
deterministically decide L, use Savitch's algorithm [23] to check for the presence of a
path from v0 to v\ast through G of length at most \lceil log(1/\varepsilon)\rceil .

Now we prove the correctness of this algorithm. Obviously, if p(v0, v\ast) = 0, the
algorithm will reject, so assume p(v0, v\ast) \geq \varepsilon . For any vertex v, p(v,\Lambda (v)) \geq 2

w2 ,
so there is some u \in \Lambda (v) so that p(v, u) \geq 2

w3 . That vertex u satisfies p(u, v\ast) \geq
p(v, v\ast) \cdot (w/4) \geq 2p(v, v\ast). It follows inductively that there is a path through G from
v0 to v\ast of length at most \lceil log(1/\varepsilon)\rceil .

5. Directions for further research.
\bullet Is there an explicit PRG with the same seed length as our HSG? This would
imply BPL \subseteq DSPACE(log3/2 n/

\surd
log log n) [21, 3, 14], slightly improving

the best known derandomization of BPL [21].
\bullet A less ambitious goal is to construct a PRPD. As mentioned in section 1.3.1,
Braverman, Cohen, and Garg obtained an explicit PRPD with seed length\widetilde O(log(wr) log r+ log(1/\varepsilon)) [7]. An explicit PRPD with the same seed length
as our HSG would imply that every BPL algorithm using r random bits can
be simulated by a BPL algorithm using O(r/ logc n) random bits for any
constant c, improving Corollary 3.2.

\bullet Braverman et al. gave a PRG for regular ROBPs of width w = polylog(r)

with seed length \widetilde O(log r log(1/\varepsilon)) [8]. Is there an explicit HSG for regular

ROBPs of width polylog(r) with seed length \widetilde O(log r + log(1/\varepsilon))?

Acknowledgments. The first author thanks Sumegha Garg for explaining to
him the idea behind her work with Braverman and Cohen [7]. We discovered our
generator in the process of studying the generator by Braverman, Cohen, and Garg
[7]. We thank Amnon Ta-Shma for a helpful discussion.

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIMPLE OPTIMAL HITTING SETS FOR SMALL-SUCCESS RL 819

REFERENCES

[1] A. Ahmadinejad, J. Kelner, J. Murtagh, J. Peebles, A. Sidford, and S. Vadhan, High-
Precision Estimation of Random Walks in Small Space, preprint, arXiv:1912.04524[cs.CC],
2019, https://arxiv.org/abs/1912.04524.

[2] M. Ajtai, J. Koml\'os, and E. Szemer\'edi, Deterministic simulation in LOGSPACE, in Pro-
ceedings of the 19th Annual Symposium on Theory of Computing, ACM, 1987, pp. 132--140.

[3] R. Armoni, On the derandomization of space-bounded computations, in Proceedings of the 2nd
International Workshop on Randomization and Computation, Lecture Notes in Comput.
Sci. 1518, Springer, Berlin, 1998, pp. 47--59, https://doi.org/10.1007/3-540-49543-6 5.

[4] L. Babai, N. Nisan, and M. Szegedy, Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs, J. Comput. System Sci., 45 (1992), pp. 204--232, https:
//doi.org/10.1016/0022-0000(92)90047-M.

[5] M. Bellare, O. Goldreich, and S. Goldwasser, Randomness in interactive proofs, Comput.
Complexity, 3 (1993), pp. 319--354, https://doi.org/10.1007/BF01275487.

[6] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff, Pseudorandomness for width-2
branching programs, Theory Comput., 9 (2013), pp. 283--292, https://doi.org/10.4086/toc.
2013.v009a007.

[7] M. Braverman, G. Cohen, and S. Garg, Pseudorandom pseudo-distributions with near-
optimal error for read-once branching programs, SIAM J. Comput., (2020), https://doi.
org/10.1137/18M1197734.

[8] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff, Pseudorandom generators for regular
branching programs, SIAM J. Comput., 43 (2014), pp. 973--986, https://doi.org/10.1137/
120875673.

[9] E. Chattopadhyay and J.-J. Liao, Optimal error pseudodistributions for read-once branching
programs, in 35th Computational Complexity Conference (CCC 2020), LIPIcs. Leibniz
Int. Proc. Inform. 169, S. Saraf, ed., Schloss Dagstuhl--Leibniz-Zentrum f\"ur Informatik,
Dagstuhl, Germany, 2020, pp. 25:1--25:27, https://doi.org/10.4230/LIPIcs.CCC.2020.25.

[10] K. Cheng and W. M. Hoza, Hitting sets give two-sided derandomization of small space, in
35th Computational Complexity Conference (CCC 2020), LIPIcs. Leibniz Int. Proc. Inform.
169, S. Saraf, ed., Schloss Dagstuhl--Leibniz-Zentrum f\"ur Informatik, Dagstuhl, Germany,
2020, pp. 10:1--10:25, https://doi.org/10.4230/LIPIcs.CCC.2020.10.

[11] A. Ganor and R. Raz, Space pseudorandom generators by communication complexity lower
bounds, in Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2014), K. Jansen, J. D. P. Rolim, N. R. Deva-
nur, and C. Moore, eds., LIPIcs. Leibriz Int. Proc. Inform. 28, Dagstuhl, Germany, 2014,
pp. 692--703, https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.692.

[12] O. Goldreich, A sample of samplers: A computational perspective on sampling, in Studies
in Complexity and Cryptography, O. Goldreich, ed., Lecture Notes in Comput. Sci. 6650,
Springer, Heidelberg, 2011, pp. 302--332, https://doi.org/10.1007/978-3-642-22670-0 24.

[13] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. Vadhan, Better pseudorandom
generators from milder pseudorandom restrictions, in Proceedings of the 53rd Annual
Symposium on Foundations of Computer Science, IEEE, Los Alamitos, CA, 2012, pp.
120--129.

[14] W. M. Hoza and C. Umans, Targeted pseudorandom generators, simulation advice generators,
and derandomizing logspace, in Proceedings of the 49th Annual Symposium on Theory of
Computing, ACM, New York, 2017, pp. 629--640.

[15] R. Impagliazzo, N. Nisan, and A. Wigderson, Pseudorandomness for network algorithms, in
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, ACM, 1994,
pp. 356--364.

[16] D. M. Kane, J. Nelson, and D. P. Woodruff, Revisiting Norm Estimation in Data Streams,
preprint, arXiv:0811.3648[cs.DS], 2008, https://arxiv.org/abs/0811.3648.

[17] R. Meka, O. Reingold, and A. Tal, Pseudorandom generators for width-3 branching pro-
grams, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com-
puting, ACM, New York, 2019, pp. 626--637, https://doi.org/10.1145/3313276.3316319.

[18] N. Nisan, Pseudorandom generators for space-bounded computation, Combinatorica, 12 (1992),
pp. 449--461, https://doi.org/10.1007/BF01305237.

[19] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci., 52
(1996), pp. 43--52, https://doi.org/10.1006/jcss.1996.0004.

[20] O. Reingold, Randomness vs. Memory: Prospects and Barriers, Presented at ``Barriers
in Computational Complexity"" workshop, 2010, https://omereingold.files.wordpress.com/
2014/10/rlbarriers.pptx.

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://arxiv.org/abs/1912.04524
https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1007/BF01275487
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.1137/18M1197734
https://doi.org/10.1137/18M1197734
https://doi.org/10.1137/120875673
https://doi.org/10.1137/120875673
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.4230/LIPIcs.CCC.2020.10
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.692
https://doi.org/10.1007/978-3-642-22670-0_24
https://arxiv.org/abs/0811.3648
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/BF01305237
https://doi.org/10.1006/jcss.1996.0004
https://omereingold.files.wordpress.com/2014/10/rlbarriers.pptx
https://omereingold.files.wordpress.com/2014/10/rlbarriers.pptx

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

820 WILLIAM M. HOZA AND DAVID ZUCKERMAN

[21] M. Saks and S. Zhou, BPHSPACE(S) \subseteq DSPACE(S3/2), J. Comput. System Sci., 58 (1999),
pp. 376--403, https://doi.org/10.1006/jcss.1998.1616.

[22] M. Saks and D. Zuckerman, unpublished, 1995.
[23] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities,

J. Comput. System. Sci., 4 (1970), pp. 177--192, https://doi.org/10.1016/S0022-0000(70)
80006-X.

[24] J. \v S\'{\i}ma and S. \v Z\'ak, Almost k-wise independent sets establish hitting sets for width-3 1-
branching programs, in Computer science---Theory and Applications, Lecture Notes in
Comput. Sci. 6651, Springer, Heidelberg, 2011, pp. 120--133, https://doi.org/10.1007/
978-3-642-20712-9 10.

D
ow

nl
oa

de
d

08
/0

6/
20

 to
 1

28
.8

3.
21

4.
19

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1007/978-3-642-20712-9_10
https://doi.org/10.1007/978-3-642-20712-9_10

	Introduction
	The power of randomness for space-bounded algorithms
	Previous generators
	Our results
	A new HSG
	Randomness vs. nondeterminism
	Derandomizing small-success algorithms

	Techniques
	Subsequent work

	Our generator
	Construction
	Correctness
	Seed length

	Simulating r random bits with r/logc n nondeterministic bits
	Derandomizing small-success RL algorithms
	Directions for further research
	References

