Simple Optimal Hitting Sets for Small-Success RL

William M. Hoza ${ }^{1}$ David Zuckerman ${ }^{2}$
The University of Texas at Austin

October 7
FOCS 2018

[^0]
Randomized log-space complexity classes

- Let L be a language

Randomized log-space complexity classes

- Let L be a language
- $L \in B P L$ if there is a randomized log-space algorithm A that always halts such that

$$
\begin{aligned}
& x \in L \Longrightarrow \operatorname{Pr}[A(x) \text { accepts }] \geq 2 / 3 \\
& x \notin L \Longrightarrow \operatorname{Pr}[A(x) \text { accepts }] \leq 1 / 3 .
\end{aligned}
$$

Randomized log-space complexity classes

- Let L be a language
- $L \in B P L$ if there is a randomized log-space algorithm A that always halts such that

$$
\begin{aligned}
& x \in L \Longrightarrow \operatorname{Pr}[A(x) \text { accepts }] \geq 2 / 3 \\
& x \notin L \Longrightarrow \operatorname{Pr}[A(x) \text { accepts }] \leq 1 / 3 .
\end{aligned}
$$

- $L \in \mathbf{R L}$ if there is a randomized \log-space algorithm A that always halts such that

$$
\begin{aligned}
& x \in L \Longrightarrow \operatorname{Pr}[A(x) \text { accepts }] \geq 1 / 2 \\
& x \notin L \Longrightarrow \operatorname{Pr}[A(x) \text { accepts }]=0
\end{aligned}
$$

The power of randomness for small-space algorithms

- $\mathbf{L} \subseteq \mathbf{R L} \subseteq \mathbf{B P L}$

The power of randomness for small-space algorithms

- $\mathbf{L} \subseteq \mathbf{R L} \subseteq \mathbf{B P L}$
- Conjecture: $\mathbf{L}=\mathbf{R L}=\mathrm{BPL}$

The power of randomness for small-space algorithms

- $\mathbf{L} \subseteq \mathbf{R L} \subseteq \mathbf{B P L}$
- Conjecture: $\mathbf{L}=\mathbf{R L}=\mathrm{BPL}$

The power of randomness for small-space algorithms

- $\mathbf{L} \subseteq \mathbf{R L} \subseteq \mathbf{B P L}$
- Conjecture: $\mathbf{L}=\mathrm{RL}=\mathrm{BPL}$

Read-once branching programs

$n+1$ layers

Read-once branching programs

$$
n+1 \text { layers }
$$

Read-once branching programs

$$
n+1 \text { layers }
$$

$$
x=
$$

Read-once branching programs

$$
n+1 \text { layers }
$$

$$
x=1
$$

Read-once branching programs

$$
n+1 \text { layers }
$$

$$
x=1 \quad 0
$$

Read-once branching programs

$$
n+1 \text { layers }
$$

Read-once branching programs

$$
n+1 \text { layers }
$$

Read-once branching programs

$$
n+1 \text { layers }
$$

Read-once branching programs

$$
n+1 \text { layers }
$$

- Computes function $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Fooling / Hitting ROBPs

Fooling / Hitting ROBPs

Pseudorandom generator: For every width-n ROBP,

$$
\left|\operatorname{Pr}_{x}[f(x)=1]-\operatorname{Pr}_{z}[f(\operatorname{Gen}(z))=1]\right| \leq \varepsilon
$$

Fooling / Hitting ROBPs

Pseudorandom generator: For every width-n ROBP,

$$
\left|\operatorname{Pr}_{x}[f(x)=1]-\operatorname{Pr}_{z}[f(\operatorname{Gen}(z))=1]\right| \leq \varepsilon
$$

Suitable for derandomizing BPL

Fooling / Hitting ROBPs

Suitable for derandomizing BPL

Hitting set generator: For every width-n ROBP,

$$
\operatorname{Pr}_{x}[f(x)=1] \geq \varepsilon \Longrightarrow \exists z, f(\operatorname{Gen}(z))=1
$$

Fooling / Hitting ROBPs

Pseudorandom generator: For every width-n ROBP,

$$
\left|\operatorname{Pr}_{x}[f(x)=1]-\operatorname{Pr}_{z}[f(\operatorname{Gen}(z))=1]\right| \leq \varepsilon
$$

Suitable for derandomizing BPL

Suitable for derandomizing RL

Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n+\log (1 / \varepsilon))$

Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n+\log (1 / \varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length

$$
2^{O(\sqrt{\log n})} \cdot \log (1 / \varepsilon)
$$

Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n+\log (1 / \varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length

$$
2^{O(\sqrt{\log n})} \cdot \log (1 / \varepsilon)
$$

- Nisan 1990: PRG with seed length

$$
O\left(\log ^{2} n+\log (1 / \varepsilon) \log n\right)
$$

Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n+\log (1 / \varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length

$$
2^{O(\sqrt{\log n})} \cdot \log (1 / \varepsilon)
$$

- Nisan 1990: PRG with seed length

$$
O\left(\log ^{2} n+\log (1 / \varepsilon) \log n\right)
$$

- Braverman, Cohen, Garg 2018: HSG with seed length

$$
\widetilde{O}\left(\log ^{2} n+\log (1 / \varepsilon)\right)
$$

Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n+\log (1 / \varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length

$$
2^{O(\sqrt{\log n})} \cdot \log (1 / \varepsilon)
$$

- Nisan 1990: PRG with seed length

$$
O\left(\log ^{2} n+\log (1 / \varepsilon) \log n\right)
$$

- Braverman, Cohen, Garg 2018: HSG with seed length

$$
\widetilde{O}\left(\log ^{2} n+\log (1 / \varepsilon)\right)
$$

- This work: HSG with seed length

$$
O\left(\log ^{2} n+\log (1 / \varepsilon)\right)
$$

Comparison with [BCG '18]

- Our construction and analysis are simple

Comparison with [BCG '18]

- Our construction and analysis are simple

This work
Hitting Set
Generator
Suitable for RL

Comparison with [BCG '18]

- Our construction and analysis are simple

Nisan '90	\Longrightarrow	This work Hitting Set Generator Generator
Suitable for BPL		
Suitable for RL		

Comparison with [BCG '18]

- Our construction and analysis are simple
Nisan '90

BCG '18
Pseudorandom Generator
Suitable for BPL

"Pseudorandom
Pseudodistribution"

Suitable for BPL \begin{tabular}{c}
This work

Hitting Set
Generator

| Suitable for RL |
| :---: |

\hline
\end{tabular}

Structural lemma for ROBPs

- Let f be a width- n, length- n ROBP

Structural lemma for ROBPs

- Let f be a width- n, length- n ROBP
- Assume $\operatorname{Pr}[$ accept $]=\varepsilon \ll 1 / n^{3}$

Structural lemma for ROBPs

- Let f be a width- n, length- n ROBP
- Assume $\operatorname{Pr}[$ accept $]=\varepsilon \ll 1 / n^{3}$
- Lemma: There is a vertex u so that
$\operatorname{Pr}[$ reach $u] \geq \frac{1}{2 n^{3}} \quad$ and $\quad \operatorname{Pr}[$ accept \mid reach $u] \geq \varepsilon n$.

$\operatorname{Proof~of~lemma~}\left(\exists u, \operatorname{Pr}[u] \geq \frac{1}{2 n^{\wedge}} \wedge \operatorname{Pr}[\operatorname{acc} \mid u] \geq \varepsilon n\right)$

- Say u is a milestone if $\operatorname{Pr}[$ accept \mid reach $u] \in[\varepsilon n, 2 \varepsilon n]$

$\operatorname{Proof~of~lemma~}\left(\exists u, \operatorname{Pr}[u] \geq \frac{1}{2 n^{\wedge}} \wedge \operatorname{Pr}[\operatorname{acc} \mid u] \geq \varepsilon n\right)$

- Say u is a milestone if $\operatorname{Pr}[$ accept \mid reach $u] \in[\varepsilon n, 2 \varepsilon n]$
- Claim: Every accepting path passes through a milestone

$\operatorname{Proof~of~lemma~}\left(\exists u, \operatorname{Pr}[u] \geq \frac{1}{2 n^{3}} \wedge \operatorname{Pr}[\operatorname{acc} \mid u] \geq \varepsilon n\right)$

- Say u is a milestone if $\operatorname{Pr}[$ accept \mid reach $u] \in[\varepsilon n, 2 \varepsilon n]$
- Claim: Every accepting path passes through a milestone
- Proof: Probability of acceptance at most doubles in each step

Proof of lemma $\left(\exists u, \operatorname{Pr}[u] \geq \frac{1}{2 n^{3}} \wedge \operatorname{Pr}[\operatorname{acc} \mid u] \geq \varepsilon n\right)$

- Say u is a milestone if $\operatorname{Pr}[$ accept \mid reach $u] \in[\varepsilon n, 2 \varepsilon n]$
- Claim: Every accepting path passes through a milestone
- Proof: Probability of acceptance at most doubles in each step

Proof of lemma $\left(\exists u, \operatorname{Pr}[u] \geq \frac{1}{2 n^{3}} \wedge \operatorname{Pr}[\operatorname{acc} \mid u] \geq \varepsilon n\right)$

- Say u is a milestone if $\operatorname{Pr}[$ accept \mid reach $u] \in[\varepsilon n, 2 \varepsilon n]$
- Claim: Every accepting path passes through a milestone
- Proof: Probability of acceptance at most doubles in each step

- $\varepsilon=\operatorname{Pr}[$ accept $] \leq \sum_{u \text { milestone }} \operatorname{Pr}[$ reach u and accept $]$

Proof of lemma $\left(\exists u, \operatorname{Pr}[u] \geq \frac{1}{2 n^{3}} \wedge \operatorname{Pr}[\operatorname{acc} \mid u] \geq \varepsilon n\right)$

- Say u is a milestone if $\operatorname{Pr}[$ accept \mid reach $u] \in[\varepsilon n, 2 \varepsilon n]$
- Claim: Every accepting path passes through a milestone
- Proof: Probability of acceptance at most doubles in each step

$$
3 \% \text { chance of accept } 0 \% \text { chance of accept }
$$

- $\varepsilon=\operatorname{Pr}[$ accept $] \leq \sum_{u \text { milestone }} \operatorname{Pr}[$ reach u and accept $]$

$$
\leq \sum_{u \text { milestone }} \operatorname{Pr}[\text { reach } u] \cdot 2 \varepsilon n
$$

Proof of lemma $\left(\exists u, \operatorname{Pr}[u] \geq \frac{1}{2 n^{3}} \wedge \operatorname{Pr}[\operatorname{acc} \mid u] \geq \varepsilon n\right)$

- Say u is a milestone if $\operatorname{Pr}[$ accept \mid reach $u] \in[\varepsilon n, 2 \varepsilon n]$
- Claim: Every accepting path passes through a milestone
- Proof: Probability of acceptance at most doubles in each step

$$
3 \% \text { chance of accept } 0 \% \text { chance of accept }
$$

- $\varepsilon=\operatorname{Pr}[$ accept $] \leq \sum_{u \text { milestone }} \operatorname{Pr}[$ reach u and accept $]$

$$
\leq \sum_{u \text { milestone }} \operatorname{Pr}[\text { reach } u] \cdot 2 \varepsilon n
$$

- \# milestones $\leq n^{2}$, so for some milestone $u, \operatorname{Pr}[$ reach $u] \geq \frac{1}{2 n^{3}}$

Iterating the structural lemma

$\operatorname{Pr}[$ accept $]=\varepsilon$

Iterating the structural lemma

Iterating the structural lemma

Iterating the structural lemma

Iterating the structural lemma

Idea of our HSG

- Use Nisan's generator for each individual hop $u_{i} \rightarrow u_{i+1}$

Idea of our HSG

- Use Nisan's generator for each individual hop $u_{i} \rightarrow u_{i+1}$
- Use a "hitter" to recycle the seed of Nisan's generator from one hop to the next

Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq\{0,1\}^{m}$ with density $(E) \geq \theta$

Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq\{0,1\}^{m}$ with density $(E) \geq \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability $1-\delta$

Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq\{0,1\}^{m}$ with density $(E) \geq \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability $1-\delta$
- \# queries: $O\left(\theta^{-1} \cdot \log (1 / \delta)\right)$

Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq\{0,1\}^{m}$ with density $(E) \geq \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability $1-\delta$
- \# queries: $O\left(\theta^{-1} \cdot \log (1 / \delta)\right)$
- \# random bits: $O(m+\log (1 / \delta))$

Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq\{0,1\}^{m}$ with density $(E) \geq \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability $1-\delta$
- \# queries: $O\left(\theta^{-1} \cdot \log (1 / \delta)\right)$
- \# random bits: $O(m+\log (1 / \delta))$

Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq\{0,1\}^{m}$ with density $(E) \geq \theta$
- Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability $1-\delta$
- \# queries: $O\left(\theta^{-1} \cdot \log (1 / \delta)\right)$
- \# random bits: $O(m+\log (1 / \delta))$

- For any E with density $(E) \geq \theta$,

$$
\underset{x}{\operatorname{Pr}}[\exists y, \operatorname{Hit}(x, y) \in E] \geq 1-\delta
$$

Our HSG
\square

Our HSG

Our HSG

\square
\square
y_{2}
y_{3}
y_{t}

Our HSG

Our HSG in symbols

- For numbers n_{1}, \ldots, n_{t} with $n_{1}+\cdots+n_{t}=n$:
$\operatorname{Gen}\left(x, y_{1}, \ldots, y_{t}, n_{1}, \ldots, n_{t}\right)=$
$\left.\left.\operatorname{NisGen}\left(\operatorname{Hit}\left(x, y_{1}\right)\right)\right|_{n_{1}} \circ \cdots \circ \operatorname{NisGen}\left(\operatorname{Hit}\left(x, y_{t}\right)\right)\right|_{n_{t}} \in\{0,1\}^{n}$

Our HSG in symbols

- For numbers n_{1}, \ldots, n_{t} with $n_{1}+\cdots+n_{t}=n$:

$\operatorname{Gen}\left(x, y_{1}, \ldots, y_{t}, n_{1}, \ldots, n_{t}\right)=$

$\left.\left.\operatorname{NisGen}\left(\operatorname{Hit}\left(x, y_{1}\right)\right)\right|_{n_{1}} \circ \cdots \circ \operatorname{NisGen}\left(\operatorname{Hit}\left(x, y_{t}\right)\right)\right|_{n_{t}} \in\{0,1\}^{n}$

- Here $\circ=$ concatenation, $\left.\right|_{r}=$ first r bits

Our HSG in symbols

- For numbers n_{1}, \ldots, n_{t} with $n_{1}+\cdots+n_{t}=n$:

$\operatorname{Gen}\left(x, y_{1}, \ldots, y_{t}, n_{1}, \ldots, n_{t}\right)=$

$\left.\left.\operatorname{NisGen}\left(\operatorname{Hit}\left(x, y_{1}\right)\right)\right|_{n_{1}} \circ \cdots \circ \operatorname{NisGen}\left(\operatorname{Hit}\left(x, y_{t}\right)\right)\right|_{n_{t}} \in\{0,1\}^{n}$

- Here $\circ=$ concatenation, $\left.\right|_{r}=$ first r bits
- $|x|=O\left(\log ^{2} n\right),\left|y_{i}\right|=O(\log n), t=\frac{\log (1 / \varepsilon)}{\log n}$

Our HSG in symbols

- For numbers n_{1}, \ldots, n_{t} with $n_{1}+\cdots+n_{t}=n$:

$\operatorname{Gen}\left(x, y_{1}, \ldots, y_{t}, n_{1}, \ldots, n_{t}\right)=$

$\left.\left.\operatorname{NisGen}\left(\operatorname{Hit}\left(x, y_{1}\right)\right)\right|_{n_{1}} \circ \cdots \circ \operatorname{NisGen}\left(\operatorname{Hit}\left(x, y_{t}\right)\right)\right|_{n_{t}} \in\{0,1\}^{n}$

- Here $\circ=$ concatenation, $\left.\right|_{r}=$ first r bits
- $|x|=O\left(\log ^{2} n\right),\left|y_{i}\right|=O(\log n), t=\frac{\log (1 / \varepsilon)}{\log n}$
- So seed length $=O\left(\log ^{2} n+\log (1 / \varepsilon)\right)$

Proof of correctness of our HSG

$\operatorname{Pr}[$ accept $]=\varepsilon$

Proof of correctness of our HSG

Proof of correctness of our HSG (continued)

- Define $E_{i} \subseteq\{0,1\}^{m}$ by

$$
E_{i}=\left\{z \mid \text { start at } u_{i-1}, \text { read } \operatorname{NisGen}(z) \Longrightarrow \text { reach } u_{i}\right\}
$$

Proof of correctness of our HSG (continued)

- Define $E_{i} \subseteq\{0,1\}^{m}$ by

$$
E_{i}=\left\{z \mid \text { start at } u_{i-1}, \text { read } \operatorname{NisGen}(z) \Longrightarrow \text { reach } u_{i}\right\}
$$

$-\operatorname{Pr}\left[\right.$ reach $u_{i} \mid$ reach $\left.u_{i-1}\right] \geq \frac{1}{2 n^{3}} \Longrightarrow \operatorname{density}\left(E_{i}\right)>\frac{1}{4 n^{3}}$

Proof of correctness of our HSG (continued)

- Define $E_{i} \subseteq\{0,1\}^{m}$ by

$$
E_{i}=\left\{z \mid \text { start at } u_{i-1}, \text { read } \operatorname{NisGen}(z) \Longrightarrow \text { reach } u_{i}\right\}
$$

- $\operatorname{Pr}\left[\right.$ reach $u_{i} \mid$ reach $\left.u_{i-1}\right] \geq \frac{1}{2 n^{3}} \Longrightarrow \operatorname{density}\left(E_{i}\right)>\frac{1}{4 n^{3}}$
- Hitter property: $\operatorname{Pr}_{x}\left[\exists y, \operatorname{Hit}(x, y) \in E_{i}\right]>1-\frac{1}{t}$

Proof of correctness of our HSG (continued)

- Define $E_{i} \subseteq\{0,1\}^{m}$ by

$$
E_{i}=\left\{z \mid \text { start at } u_{i-1}, \text { read } \operatorname{NisGen}(z) \Longrightarrow \text { reach } u_{i}\right\}
$$

- $\operatorname{Pr}\left[\right.$ reach $u_{i} \mid$ reach $\left.u_{i-1}\right] \geq \frac{1}{2 n^{3}} \Longrightarrow \operatorname{density}\left(E_{i}\right)>\frac{1}{4 n^{3}}$
- Hitter property: $\operatorname{Pr}_{x}\left[\exists y, \operatorname{Hit}(x, y) \in E_{i}\right]>1-\frac{1}{t}$
- Union bound: There is one x so that for all i,

$$
\exists y_{i}, \operatorname{Hit}\left(x, y_{i}\right) \in E_{i}
$$

Proof of correctness of our HSG (continued)

- Define $E_{i} \subseteq\{0,1\}^{m}$ by

$$
E_{i}=\left\{z \mid \text { start at } u_{i-1}, \text { read } \operatorname{NisGen}(z) \Longrightarrow \text { reach } u_{i}\right\}
$$

- $\operatorname{Pr}\left[\right.$ reach $u_{i} \mid$ reach $\left.u_{i-1}\right] \geq \frac{1}{2 n^{3}} \Longrightarrow \operatorname{density}\left(E_{i}\right)>\frac{1}{4 n^{3}}$
- Hitter property: $\operatorname{Pr}_{x}\left[\exists y, \operatorname{Hit}(x, y) \in E_{i}\right]>1-\frac{1}{t}$
- Union bound: There is one x so that for all i,

$$
\exists y_{i}, \operatorname{Hit}\left(x, y_{i}\right) \in E_{i}
$$

- $f\left(\operatorname{Gen}\left(x, y_{1}, \ldots, y_{t}, n_{1}, \ldots, n_{t}\right)\right)=1$

Additional results

- Theorem:
$(\varepsilon$-success $\mathbf{R L}) \subseteq \mathbf{D S P A C E}\left(\log ^{3 / 2} n+\log n \log \log (1 / \varepsilon)\right)$

Additional results

- Theorem:

$$
(\varepsilon \text {-success } \mathbf{R L}) \subseteq \text { DSPACE }\left(\log ^{3 / 2} n+\log n \log \log (1 / \varepsilon)\right)
$$

- Theorem: For ROBPs with width n and length polylog n, HSG with seed length $O(\log (n / \varepsilon))$

Additional results

- Theorem:

$$
(\varepsilon \text {-success RL }) \subseteq \text { DSPACE }\left(\log ^{3 / 2} n+\log n \log \log (1 / \varepsilon)\right)
$$

- Theorem: For ROBPs with width n and length polylog n, HSG with seed length $O(\log (n / \varepsilon))$
- Theorem: For any $r=r(n)$, for any constant c,
$(\mathbf{R L}$ with r coins $) \subseteq\left(\mathbf{N L}\right.$ with $\frac{r}{\log ^{c} n}$ nondeterministic bits $)$

Open questions

- Conjecture: For any $r=r(n)$, for any constant c,

$$
(\mathrm{BPL} \text { with } r \text { coins })=\left(\mathrm{BPL} \text { with } \frac{r}{\log ^{c} n} \text { coins }\right)
$$

Open questions

- Conjecture: For any $r=r(n)$, for any constant c,

$$
(\mathrm{BPL} \text { with } r \text { coins })=\left(\mathrm{BPL} \text { with } \frac{r}{\log ^{c} n} \text { coins }\right)
$$

- True for $r \leq 2^{\log ^{0.99} n}$ by Nisan-Zuckerman

Open questions

- Conjecture: For any $r=r(n)$, for any constant c,

$$
(\mathrm{BPL} \text { with } r \text { coins })=\left(\mathrm{BPL} \text { with } \frac{r}{\log ^{c} n} \text { coins }\right)
$$

- True for $r \leq 2^{\log ^{0.99} n}$ by Nisan-Zuckerman
- ACR '96: Explicit HSG for circuits $\Longrightarrow \mathbf{P}=\mathbf{B P P}$. Similar theorem for BPL?

Open questions

- Conjecture: For any $r=r(n)$, for any constant c,

$$
(\mathrm{BPL} \text { with } r \text { coins })=\left(\mathrm{BPL} \text { with } \frac{r}{\log ^{c} n} \text { coins }\right)
$$

- True for $r \leq 2^{\log ^{0.99} n}$ by Nisan-Zuckerman
- ACR '96: Explicit HSG for circuits $\Longrightarrow \mathbf{P}=\mathbf{B P P}$. Similar theorem for BPL?

- Thanks! Questions?

[^0]: ${ }^{1}$ Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin
 ${ }^{2}$ Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investigator Award (\#409864)

