
Targeted Pseudorandom Generators, Simulation
Advice Generators, and Derandomizing Logspace

William M. Hoza1 Chris Umans2

October 10, 2016
Dagstuhl Seminar 16411

1University of Texas at Austin
2California Institute of Technology

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):

I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):
I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic

polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):
I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic

polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization

L vs. BPL

I Best PRG against logspace (Nisan ’92): Seed length

O(log2 n)

I Best derandomization (Saks, Zhou ’98):

BPL ⊆ DSPACE(log3/2 n)

L vs. BPL

I Best PRG against logspace (Nisan ’92): Seed length

O(log2 n)

I Best derandomization (Saks, Zhou ’98):

BPL ⊆ DSPACE(log3/2 n)

Main result, simplified version

I Theorem (informally stated):

I Assume that for every derandomization of logspace, there exists
a PRG strong enough to (nearly) recover derandomization

I Then
BPL ⊆

⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!

Main result, simplified version

I Theorem (informally stated):
I Assume that for every derandomization of logspace, there exists

a PRG strong enough to (nearly) recover derandomization

I Then
BPL ⊆

⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!

Main result, simplified version

I Theorem (informally stated):
I Assume that for every derandomization of logspace, there exists

a PRG strong enough to (nearly) recover derandomization
I Then

BPL ⊆
⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!

Main result, simplified version

I Theorem (informally stated):
I Assume that for every derandomization of logspace, there exists

a PRG strong enough to (nearly) recover derandomization
I Then

BPL ⊆
⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!

How to interpret our result

How to interpret our result

Constructing
a PRG from
derandomiza-
tion is hard!

How to interpret our result

Constructing
a PRG from
derandomiza-
tion is hard!

Promising
approach to
derandom-
izing BPL!

Outline

X Simplified statement of main result
I Proof sketch of main result

I Saks-Zhou theorem, revisited

I Proof sketch of Saks-Zhou-Armoni theorem
I Stronger version of main result

I Targeted PRGs
I Simulation advice generators

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))

I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”

Randomness-efficient simulators for automata

I Nonuniform model of log n space: n-state automaton

I Qm(q; y) = final state if Q starts in state q, reads y ∈ {0, 1}m

I Simulator for automata: algorithm Sim(Q, q, x) such that

Sim(Q, q,Us) ∼ε Qm(q;Um)

Randomness-efficient simulators for automata

I Nonuniform model of log n space: n-state automaton

I Qm(q; y) = final state if Q starts in state q, reads y ∈ {0, 1}m

I Simulator for automata: algorithm Sim(Q, q, x) such that

Sim(Q, q,Us) ∼ε Qm(q;Um)

Randomness-efficient simulators for automata

I Nonuniform model of log n space: n-state automaton

I Qm(q; y) = final state if Q starts in state q, reads y ∈ {0, 1}m

I Simulator for automata: algorithm Sim(Q, q, x) such that

Sim(Q, q,Us) ∼ε Qm(q;Um)

PRGs for automata

I Gen(x) is a PRG for automata iff

Sim(Q, q, x) = Qm(q; Gen(x))

is a simulator for automata

I Crucial feature: Gen doesn’t see “source code” (Q, q)!

PRGs for automata

I Gen(x) is a PRG for automata iff

Sim(Q, q, x) = Qm(q; Gen(x))

is a simulator for automata

I Crucial feature: Gen doesn’t see “source code” (Q, q)!

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log3/2 n)

I Pick m = n
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log3/2 n)

I Pick m = n
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log3/2 n)

I Pick m = n
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max # coins of (log n)-space algorithm)
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max # coins of (log n)-space algorithm)
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max # coins of (log n)-space algorithm)

I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max # coins of (log n)-space algorithm)
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 2: Some wishful thinking

I m0 = 2log0.7 n, s = O(log1.1 n) (no such construction known)
I Pick m = 2log0.8 n

I Obtain simulator with seed length/space complexity

O(log1.1 n + log1.1 n) = O(log1.1 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 2: Some wishful thinking
I m0 = 2log0.7 n, s = O(log1.1 n) (no such construction known)

I Pick m = 2log0.8 n

I Obtain simulator with seed length/space complexity

O(log1.1 n + log1.1 n) = O(log1.1 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 2: Some wishful thinking
I m0 = 2log0.7 n, s = O(log1.1 n) (no such construction known)
I Pick m = 2log0.8 n

I Obtain simulator with seed length/space complexity

O(log1.1 n + log1.1 n) = O(log1.1 n)

Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 2: Some wishful thinking
I m0 = 2log0.7 n, s = O(log1.1 n) (no such construction known)
I Pick m = 2log0.8 n

I Obtain simulator with seed length/space complexity

O(log1.1 n + log1.1 n) = O(log1.1 n)

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E

E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E

E E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E

E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E

E E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E

E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E

E E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E

E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E

E E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E

E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E

E E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E

E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E

E E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E

E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E

E BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E

BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E

BPL ⊆ L1.1

Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1

Outline

X Simplified statement of main result

X Proof sketch of main result

X Saks-Zhou theorem, revisited

I Proof sketch of Saks-Zhou-Armoni theorem
I Stronger version of main result

I Targeted PRGs
I Simulation advice generators

Randomness-efficient approximate powering

I Goal: approximate Qm
0

I Easier goal: Use Gen to find automaton Pow(Q0) ≈ Qm0
0

I First attempt:

Pow(Q0)(q; y) = Qm0
0 (q; Gen(y))

I But we want Pow(Q0) to only read O(log n) bits at a time

I Randomized algorithm:

Pow(Q0, x)(q; y) = Qm0
0 (q; Gen(Samp(x , y)))

I Can achieve |x | ≤ O(s), |y | ≤ O(log n)

Randomness-efficient approximate powering

I Goal: approximate Qm
0

I Easier goal: Use Gen to find automaton Pow(Q0) ≈ Qm0
0

I First attempt:

Pow(Q0)(q; y) = Qm0
0 (q; Gen(y))

I But we want Pow(Q0) to only read O(log n) bits at a time

I Randomized algorithm:

Pow(Q0, x)(q; y) = Qm0
0 (q; Gen(Samp(x , y)))

I Can achieve |x | ≤ O(s), |y | ≤ O(log n)

Randomness-efficient approximate powering

I Goal: approximate Qm
0

I Easier goal: Use Gen to find automaton Pow(Q0) ≈ Qm0
0

I First attempt:

Pow(Q0)(q; y) = Qm0
0 (q; Gen(y))

I But we want Pow(Q0) to only read O(log n) bits at a time

I Randomized algorithm:

Pow(Q0, x)(q; y) = Qm0
0 (q; Gen(Samp(x , y)))

I Can achieve |x | ≤ O(s), |y | ≤ O(log n)

Randomness-efficient approximate powering

I Goal: approximate Qm
0

I Easier goal: Use Gen to find automaton Pow(Q0) ≈ Qm0
0

I First attempt:

Pow(Q0)(q; y) = Qm0
0 (q; Gen(y))

I But we want Pow(Q0) to only read O(log n) bits at a time

I Randomized algorithm:

Pow(Q0, x)(q; y) = Qm0
0 (q; Gen(Samp(x , y)))

I Can achieve |x | ≤ O(s), |y | ≤ O(log n)

Randomness-efficient approximate powering

I Goal: approximate Qm
0

I Easier goal: Use Gen to find automaton Pow(Q0) ≈ Qm0
0

I First attempt:

Pow(Q0)(q; y) = Qm0
0 (q; Gen(y))

I But we want Pow(Q0) to only read O(log n) bits at a time

I Randomized algorithm:

Pow(Q0, x)(q; y) = Qm0
0 (q; Gen(Samp(x , y)))

I Can achieve |x | ≤ O(s), |y | ≤ O(log n)

Randomness-efficient approximate powering

I Goal: approximate Qm
0

I Easier goal: Use Gen to find automaton Pow(Q0) ≈ Qm0
0

I First attempt:

Pow(Q0)(q; y) = Qm0
0 (q; Gen(y))

I But we want Pow(Q0) to only read O(log n) bits at a time

I Randomized algorithm:

Pow(Q0, x)(q; y) = Qm0
0 (q; Gen(Samp(x , y)))

I Can achieve |x | ≤ O(s), |y | ≤ O(log n)

Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi
I Let Qi = Pow(Qi−1, xi)

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration

I Qi is stochastically dependent on x
I No guarantee that Pow will be accurate

Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi
I Let Qi = Pow(Qi−1, xi)

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration

I Qi is stochastically dependent on x
I No guarantee that Pow will be accurate

Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi

I Let Qi = Pow(Qi−1, xi)

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration

I Qi is stochastically dependent on x
I No guarantee that Pow will be accurate

Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi
I Let Qi = Pow(Qi−1, xi)

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration

I Qi is stochastically dependent on x
I No guarantee that Pow will be accurate

Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi
I Let Qi = Pow(Qi−1, xi)

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration

I Qi is stochastically dependent on x
I No guarantee that Pow will be accurate

Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi
I Let Qi = Pow(Qi−1, xi)

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration

I Qi is stochastically dependent on x
I No guarantee that Pow will be accurate

Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi
I Let Qi = Pow(Qi−1, xi)

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration
I Qi is stochastically dependent on x

I No guarantee that Pow will be accurate

Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi
I Let Qi = Pow(Qi−1, xi)

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration
I Qi is stochastically dependent on x
I No guarantee that Pow will be accurate

Snap operation

I Solution: Break dependencies by rounding

I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

Snap operation

I Solution: Break dependencies by rounding
I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

Snap operation

I Solution: Break dependencies by rounding
I Snap(Q):

1. Compute M = transition probability matrix of Q

2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

Snap operation

I Solution: Break dependencies by rounding
I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M

3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

Snap operation

I Solution: Break dependencies by rounding
I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

Snap operation

I Solution: Break dependencies by rounding
I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

Snap operation

I Solution: Break dependencies by rounding
I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

Snap operation

I Solution: Break dependencies by rounding
I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

Snap operation

I Solution: Break dependencies by rounding
I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:

I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly

2. For i = 1 to logm0
m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:

I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:

I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:

I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:
I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:
I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)

I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:
I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:
I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:
I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion

Outline

X Simplified statement of main result

X Proof sketch of main result

X Saks-Zhou theorem, revisited

X Proof sketch of Saks-Zhou-Armoni theorem
I Stronger version of main result

I Targeted PRGs
I Simulation advice generators

Stronger version of main result

I Two key features distinguish PRG from simulator

I Input: no access to “source code” (Q, q)
I Output: long string for automaton to read vs. state

I Claim: First feature is the one that matters for us

Stronger version of main result

I Two key features distinguish PRG from simulator
I Input: no access to “source code” (Q, q)

I Output: long string for automaton to read vs. state

I Claim: First feature is the one that matters for us

Stronger version of main result

I Two key features distinguish PRG from simulator
I Input: no access to “source code” (Q, q)
I Output: long string for automaton to read vs. state

I Claim: First feature is the one that matters for us

Stronger version of main result

I Two key features distinguish PRG from simulator
I Input: no access to “source code” (Q, q)
I Output: long string for automaton to read vs. state

I Claim: First feature is the one that matters for us

Targeted PRGs

I Targeted PRG: Algorithm Gen(Q, q, x) such that

Sim(Q, q, x) = Qm(q; Gen(Q, q, x))

is a simulator

I Introduced by Goldreich ’11 for BPP

I Ordinary PRG: Special case that Gen doesn’t depend on (Q, q)

Targeted PRGs

I Targeted PRG: Algorithm Gen(Q, q, x) such that

Sim(Q, q, x) = Qm(q; Gen(Q, q, x))

is a simulator

I Introduced by Goldreich ’11 for BPP

I Ordinary PRG: Special case that Gen doesn’t depend on (Q, q)

Targeted PRGs

I Targeted PRG: Algorithm Gen(Q, q, x) such that

Sim(Q, q, x) = Qm(q; Gen(Q, q, x))

is a simulator

I Introduced by Goldreich ’11 for BPP

I Ordinary PRG: Special case that Gen doesn’t depend on (Q, q)

Simulation advice generators

I Simulation advice generator: Algorithm Gen(x) such that for
some deterministic logspace S,

Sim(Q, q, x) = S(Q, q,Gen(x))

is a simulator

I Ordinary PRG: Special case that S(Q, q, y) = Q |y |(q; y)

Simulation advice generators

I Simulation advice generator: Algorithm Gen(x) such that for
some deterministic logspace S,

Sim(Q, q, x) = S(Q, q,Gen(x))

is a simulator

I Ordinary PRG: Special case that S(Q, q, y) = Q |y |(q; y)

Four kinds of derandomization

Ordinary
pseudorandom

generator

Simulator

Targeted
pseudorandom

generator

Simulation
advice

generator

Main result (informally)

Ordinary
pseudorandom

generator

Simulator

Targeted
pseudorandom

generator

Simulation
advice

generator

Theorem: Dashed arrow transformation exists if and only if⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

Proof sketch

I SZA works on simulation advice generator without modification

Proof sketch

I SZA works on simulation advice generator without modification

Simulator

Simulation
Advice

Generator

SZA

Proof sketch

I SZA works on simulation advice generator without modification

Simulator

Simulation
Advice

Generator

SZA

Targeted
PRG

Assumption

Proof sketch

I SZA works on simulation advice generator without modification

Simulator

Simulation
Advice

Generator

SZA

Targeted
PRG

Assumption

Method of
cond. prob.

Main result (in painful detail)

I Theorem: The following are equivalent:

1. ⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

2. For all µ ∈ [0, 1], for all suff. small σ > η > 0, for all γ > 0:

I If ∃ efficient targeted PRG with parameters

s ≤ O(log1+σ n), log(1/ε) = log1+η n, logm ≥ logµ n

I Then ∃ efficient simulation advice generator with parameters

s ′ ≤ O(log1+σ+γ n), log(1/ε′) = log1+η−γ n,

logm′ ≥ logµ−γ n, log a′ ≤ O(log1+η+γ n)

I a′ = number of advice bits

I “Efficient”: Space complexity ≤ O(seed length)

Main result (in painful detail)

I Theorem: The following are equivalent:

1. ⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

2. For all µ ∈ [0, 1], for all suff. small σ > η > 0, for all γ > 0:

I If ∃ efficient targeted PRG with parameters

s ≤ O(log1+σ n), log(1/ε) = log1+η n, logm ≥ logµ n

I Then ∃ efficient simulation advice generator with parameters

s ′ ≤ O(log1+σ+γ n), log(1/ε′) = log1+η−γ n,

logm′ ≥ logµ−γ n, log a′ ≤ O(log1+η+γ n)

I a′ = number of advice bits

I “Efficient”: Space complexity ≤ O(seed length)

Main result (in painful detail)

I Theorem: The following are equivalent:

1. ⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

2. For all µ ∈ [0, 1], for all suff. small σ > η > 0, for all γ > 0:

I If ∃ efficient targeted PRG with parameters

s ≤ O(log1+σ n), log(1/ε) = log1+η n, logm ≥ logµ n

I Then ∃ efficient simulation advice generator with parameters

s ′ ≤ O(log1+σ+γ n), log(1/ε′) = log1+η−γ n,

logm′ ≥ logµ−γ n, log a′ ≤ O(log1+η+γ n)

I a′ = number of advice bits

I “Efficient”: Space complexity ≤ O(seed length)

Main result (in painful detail)

I Theorem: The following are equivalent:

1. ⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

2. For all µ ∈ [0, 1], for all suff. small σ > η > 0, for all γ > 0:
I If ∃ efficient targeted PRG with parameters

s ≤ O(log1+σ n), log(1/ε) = log1+η n, logm ≥ logµ n

I Then ∃ efficient simulation advice generator with parameters

s ′ ≤ O(log1+σ+γ n), log(1/ε′) = log1+η−γ n,

logm′ ≥ logµ−γ n, log a′ ≤ O(log1+η+γ n)

I a′ = number of advice bits

I “Efficient”: Space complexity ≤ O(seed length)

Main result (in painful detail)

I Theorem: The following are equivalent:

1. ⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

2. For all µ ∈ [0, 1], for all suff. small σ > η > 0, for all γ > 0:
I If ∃ efficient targeted PRG with parameters

s ≤ O(log1+σ n), log(1/ε) = log1+η n, logm ≥ logµ n

I Then ∃ efficient simulation advice generator with parameters

s ′ ≤ O(log1+σ+γ n), log(1/ε′) = log1+η−γ n,

logm′ ≥ logµ−γ n, log a′ ≤ O(log1+η+γ n)

I a′ = number of advice bits

I “Efficient”: Space complexity ≤ O(seed length)

Main result (in painful detail)

I Theorem: The following are equivalent:

1. ⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

2. For all µ ∈ [0, 1], for all suff. small σ > η > 0, for all γ > 0:
I If ∃ efficient targeted PRG with parameters

s ≤ O(log1+σ n), log(1/ε) = log1+η n, logm ≥ logµ n

I Then ∃ efficient simulation advice generator with parameters

s ′ ≤ O(log1+σ+γ n), log(1/ε′) = log1+η−γ n,

logm′ ≥ logµ−γ n, log a′ ≤ O(log1+η+γ n)

I a′ = number of advice bits

I “Efficient”: Space complexity ≤ O(seed length)

Main result (in painful detail)

I Theorem: The following are equivalent:

1. ⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

2. For all µ ∈ [0, 1], for all suff. small σ > η > 0, for all γ > 0:
I If ∃ efficient targeted PRG with parameters

s ≤ O(log1+σ n), log(1/ε) = log1+η n, logm ≥ logµ n

I Then ∃ efficient simulation advice generator with parameters

s ′ ≤ O(log1+σ+γ n), log(1/ε′) = log1+η−γ n,

logm′ ≥ logµ−γ n, log a′ ≤ O(log1+η+γ n)

I a′ = number of advice bits

I “Efficient”: Space complexity ≤ O(seed length)

Conclusion

I This material is based upon work supported by
I NSF GRFP Grant No. DGE-1610403
I NSF Grant No. NSF CCF-1423544

I Thanks for your attention!

I Any questions?

	anm0:
	anm1:
	anm2:
	anm3:
	anm4:
	anm5:
	anm6:
	anm7:
	anm8:

