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» Best PRG against logspace (Nisan '92): Seed length
O(log? n)
» Best derandomization (Saks, Zhou '98):

BPL C DSPACE(log®/? n)
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Main result, simplified version

» Theorem (informally stated):

» Assume that for every derandomization of logspace, there exists
a PRG strong enough to (nearly) recover derandomization
» Then
BPL C (1) DSPACE(log"** n).

a>0

» Equivalence of PRGs and derandomization would itself give a
derandomization!
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Approach 3: Use Gen as building block in m-step “simulator”
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Randomness-efficient simulators for automata

» Nonuniform model of log n space: n-state automaton
» QM(q;y) = final state if Q starts in state g, reads y € {0,1}™

» Simulator for automata: algorithm Sim(Q, g, x) such that

Sim(Q, g, Us) ~ Q"(q; Un)
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PRGs for automata

» Gen(x) is a PRG for automata iff
Sim(Q, g,x) = Q™(q; Gen(x))

is a simulator for automata

» Crucial feature: Gen doesn't see “source code” (Q,q)!
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Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

o) <s+ (log n) - l"’g’">

og my

» Example 2: Some wishful thinking

> mo=2°8"" s = O(log™! n) (no such construction known)
> Pick m = 2lg”*n
» Obtain simulator with seed length/space complexity

O(Iogl'1 n+ Iogl'1 n) = O(Iogl'1 n)



Proof of main result

more simulation steps

>
>

pa3s Jo1oys



Proof of main result

@®Dream

pa3s Jo1oys

4
*BPL =L

more simulation steps

>
>




Proof of main result

®Dream
OPRG

more simulation steps

pass Ja1oys



Proof of main result

®Dream
OPRG

BPL C L2

pass Ja1oys

more simulation steps




Proof of main result

BPL C L2
©®Dream %
®PRG 3
n
3
o
Iogo(l) n
I;?tr;d'cr:n;_ more simulation steps *BPL =L
I | >




Proof of main result

BPL C L2
©®Dream %
®PRG 3
n
3
o
Iogo(l) n
I;?tr;d'cr:n;_ more simulation steps *BPL =L
I | >




Proof of main result

BPL C L2
©Dream ‘c’):’—
OPRG =
@Simulator o

3

o
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -




Proof of main result

BPL C L2
@®Dream %
®PRG y
@Simulator "

&

BPL C L3/2
Iogo(l) n

random *

L more simulation steps
bits in L ‘p




Proof of main result

BPL C L2
@®Dream %
®PRG y
@Simulator "

&

BPL C L3/2
Iogo(l) n

random *

L more simulation steps
bits in L ‘p




Proof of main result

BPL C L2
@®Dream %
OPRG o
@Simulator "
&
BPL C L3/2
BPL C L11
Iogo(l) n
random

L more simulation steps
bits in L ‘p




Outline

v Simplified statement of main result
v" Proof sketch of main result
V' Saks-Zhou theorem, revisited
» Proof sketch of Saks-Zhou-Armoni theorem
» Stronger version of main result

» Targeted PRGs
» Simulation advice generators



Randomness-efficient approximate powering

» Goal: approximate Qf’



Randomness-efficient approximate powering

» Goal: approximate Q"

» Easier goal: Use Gen to find automaton Pow(Qp) ~ Qp™



Randomness-efficient approximate powering

» Goal: approximate Q"
» Easier goal: Use Gen to find automaton Pow(Qp) ~ Qp™

» First attempt:

Pow(Qo)(q; ¥) = Q5 (q; Gen(y))



Randomness-efficient approximate powering

v

Goal: approximate Q'

v

Easier goal: Use Gen to find automaton Pow(Qo) ~ Q™

v

First attempt:

Pow(Qo)(q; ¥) = Q5 (q; Gen(y))

» But we want Pow(Qp) to only read O(log n) bits at a time



Randomness-efficient approximate powering

v

Goal: approximate Q'

v

Easier goal: Use Gen to find automaton Pow(Qo) ~ Q™

v

First attempt:

Pow(Qo)(q; ¥) = Q5 (q; Gen(y))

» But we want Pow(Qp) to only read O(log n) bits at a time

v

Randomized algorithm:

Pow(Qo, x)(q; y) = Q™ (g; Gen(Samp(x, y)))



Randomness-efficient approximate powering

» Goal: approximate Q"
» Easier goal: Use Gen to find automaton Pow(Qp) ~ Qp™
» First attempt:

Pow(Qo)(q; ¥) = Q5 (q; Gen(y))

» But we want Pow(Qp) to only read O(log n) bits at a time

» Randomized algorithm:

Pow(Qo, x)(q; y) = Q™ (g; Gen(Samp(x, y)))

» Can achieve |x| < O(s), |y| < O(log n)
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Repeated approximate powering

» Goal: approximate QY
» First attempt: For i =1 to log,, m:
» Pick fresh randomness x;
» Let Q; = Pow(Qi—1,x;)
» Randomness complexity: O(s - I';’ggnr:)). Too much!
» Second attempt: Pick x once, reuse in each iteration

» Q; is stochastically dependent on x
» No guarantee that Pow will be accurate
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Snap operation

» Solution: Break dependencies by rounding
» Snap(Q):
1. Compute M = transition probability matrix of Q@

2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

» Key feature:

Q ~ Q' = w.h.p. over r,Snap(Q, r) = Snap(Q', r)

/ | | |
Q x L N
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SZA transformation

» To approximate Q)":
1. Pick x randomly
2. For i =1 to log,, m, set @ = Snap(Pow(Q;_1,x))
» Correctness proof sketch:
» Define @,- by wishful thinking: ao = Qo, (3,- = Snap( Al.mjl)
» W.h.p., for all j, Pow(@,,x) ~ (3,’"0 (union bound)
> W.h.p., Snap(Pow(Q;, x)) = Snap(@i'"") = Qip1
» W.h.p., by induction, dreams come true: Q; = @,- for all i

» Implement using recursion



Outline

v Simplified statement of main result
v" Proof sketch of main result
V' Saks-Zhou theorem, revisited
v Proof sketch of Saks-Zhou-Armoni theorem

» Stronger version of main result

» Targeted PRGs
» Simulation advice generators
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Stronger version of main result

> Two key features distinguish PRG from simulator

» Input: no access to “source code” (Q,q)
» Output: long string for automaton to read vs. state

» Claim: First feature is the one that matters for us
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Targeted PRGs

» Targeted PRG: Algorithm Gen(Q, g, x) such that
Sim(Q, g,x) = Q™(q; Gen(Q, g, x))

is a simulator
» Introduced by Goldreich '11 for BPP
» Ordinary PRG: Special case that Gen doesn't depend on (Q, q)
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» Simulation advice generator. Algorithm Gen(x) such that for
some deterministic logspace S,
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Simulation advice generators

» Simulation advice generator. Algorithm Gen(x) such that for
some deterministic logspace S,

Sim(Q, gq,x) = S(Q, g, Gen(x))

is a simulator
» Ordinary PRG: Special case that S(Q, q,y) = QY!(q; y)



Four kinds of derandomization

Simulator
Targeted Simulation
pseudorandom advice
generator generator
Ordinary
pseudorandom

generator



Main result (informally)

Simulator

/N

Targeted Simulation
pseudorandom ---------- »  advice
generator generator

NS

Ordinary
pseudorandom
generator

Theorem: Dashed arrow transformation exists if and only if

ﬂ promise-BPSPACE(log!*® n) = m promise-DSPACE(log* ™ n)
a>0 a>0
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Proof sketch

» SZA works on simulation advice generator without modification

Simulator
S7A Method of
cond. prob.
Slxcllﬂé.ltlon Targeted
vice PRG

Generator \/

Assumption
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Main result (in painful detail)

» Theorem: The following are equivalent:
1.

ﬂ promise-BPSPACE(log't® n) = ﬂ promise-DSPACE(log'** n)
a>0 a>0

2. For all € ]0,1], for all suff. small & > n > 0, for all v > 0:
> |If 3 efficient targeted PRG with parameters

s < O(log"™ n), log(1/e) =log"*"n, logm > log" n
» Then 3 efficient simulation advice generator with parameters
s' < O(log"™ %7 n), log(1/e') = log""" 7 n,

logm’ > log" 7 n, loga < O(log™"*" n)

» a’ = number of advice bits

» “Efficient”: Space complexity < O(seed length)



Conclusion

» This material is based upon work supported by

» NSF GRFP Grant No. DGE-1610403
» NSF Grant No. NSF CCF-1423544

» Thanks for your attention!

~ Any questions?
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