Targeted Pseudorandom Generators, Simulation
Advice Generators, and Derandomizing Logspace

William M. Hoza! Chris Umans?

October 10, 2016
Dagstuhl Seminar 16411

YUniversity of Texas at Austin
2California Institute of Technology

Derandomization é PRG

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:

AM C

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:

AM C 2o

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:

AMC (] ZTIME(2™)

e>0

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C (] L, TIME(2™)

e>0

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C (] i.0.-Z, TIME(2™)

e>0

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C (7] i.0.-X, TIME(2™)/

e>0

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C (7] i.0.-X, TIME(2™)/

e>0

» Then there is a PRG that gives that same derandomization

» Theorem (Goldreich '11):

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:
promise-AM C (7] i.0.-X, TIME(2™)/
e>0
» Then there is a PRG that gives that same derandomization
» Theorem (Goldreich '11):

» Assume that VI € promise-BPP, Yk € N, 3 deterministic
polytime algorithm A for I s.t. any probabilistic n*-time

algorithm has only an n=* chance of generating an instance on
which A fails

Derandomization <:?> PRG

» Theorem (Aydinloglu, van Melkebeek '12):
» Assume the following derandomization statement:
promise-AM C (7] i.0.-X, TIME(2™)/
e>0

» Then there is a PRG that gives that same derandomization

» Theorem (Goldreich '11):

» Assume that VI € promise-BPP, Yk € N, 3 deterministic
polytime algorithm A for I s.t. any probabilistic n*-time
algorithm has only an n=* chance of generating an instance on
which A fails

» Then there is a PRG that gives that same derandomization

L vs. BPL

» Best PRG against logspace (Nisan '92): Seed length

O(log? n)

L vs. BPL

» Best PRG against logspace (Nisan '92): Seed length
O(log? n)
» Best derandomization (Saks, Zhou '98):

BPL C DSPACE(log®/? n)

Main result, simplified version

» Theorem (informally stated):

Main result, simplified version

» Theorem (informally stated):

» Assume that for every derandomization of logspace, there exists
a PRG strong enough to (nearly) recover derandomization

Main result, simplified version

» Theorem (informally stated):

» Assume that for every derandomization of logspace, there exists
a PRG strong enough to (nearly) recover derandomization
» Then
BPL C (1) DSPACE(log"** n).

a>0

Main result, simplified version

» Theorem (informally stated):

» Assume that for every derandomization of logspace, there exists
a PRG strong enough to (nearly) recover derandomization
» Then
BPL C (1) DSPACE(log"** n).

a>0

» Equivalence of PRGs and derandomization would itself give a
derandomization!

How to interpret our result

DA

How to interpret our result

DA

How to interpret our result

DA

Outline

v Simplified statement of main result
» Proof sketch of main result
» Saks-Zhou theorem, revisited
» Proof sketch of Saks-Zhou-Armoni theorem

» Stronger version of main result

» Targeted PRGs
» Simulation advice generators

When your PRG doesn’t output enough bits

When your PRG doesn't output enough bits

» Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

When your PRG doesn't output enough bits

» Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

» Goal: Simulate (log n)-space m-coin algorithm, m > mg

When your PRG doesn't output enough bits

» Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space
» Goal: Simulate (log n)-space m-coin algorithm, m > mg
» Approach 1: Ignore oracle, use a PRG which outputs m bits

When your PRG doesn't output enough bits

» Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space
» Goal: Simulate (log n)-space m-coin algorithm, m > mg
» Approach 1: Ignore oracle, use a PRG which outputs m bits

» E.g. INW '94 (extractors): Seed length O(log nlog m)

When your PRG doesn't output enough bits

v

Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

Goal: Simulate (log n)-space m-coin algorithm, m > mg

v

v

Approach 1: Ignore oracle, use a PRG which outputs m bits
» E.g. INW '94 (extractors): Seed length O(log nlog m)

Approach 2: Use Gen as building block in new PRG which
outputs m bits

v

When your PRG doesn't output enough bits

v

Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

Goal: Simulate (log n)-space m-coin algorithm, m > mg

v

v

Approach 1: Ignore oracle, use a PRG which outputs m bits
» E.g. INW '94 (extractors): Seed length O(log nlog m)

Approach 2: Use Gen as building block in new PRG which
outputs m bits

» E.g. using techniques of INW: Seed length

s+0 ((log n) - log (r’;;))

v

When your PRG doesn't output enough bits

v

Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

Goal: Simulate (log n)-space m-coin algorithm, m > mg

v

v

Approach 1: Ignore oracle, use a PRG which outputs m bits
» E.g. INW '94 (extractors): Seed length O(log nlog m)

Approach 2: Use Gen as building block in new PRG which
outputs m bits

» E.g. using techniques of INW: Seed length

s+0 ((log n) - log (r’;;))

» For m > mg, might as well have started from scratch!

v

When your PRG doesn't output enough bits

v

Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

Goal: Simulate (log n)-space m-coin algorithm, m > mg

v

v

Approach 1: Ignore oracle, use a PRG which outputs m bits
» E.g. INW '94 (extractors): Seed length O(log nlog m)

Approach 2: Use Gen as building block in new PRG which
outputs m bits
» E.g. using techniques of INW: Seed length

s+0 ((log n) - log (r’;;))

» For m > mg, might as well have started from scratch!

v

v

Approach 3: Use Gen as building block in m-step “simulator”

Randomness-efficient simulators for automata

» Nonuniform model of log n space: n-state automaton

Randomness-efficient simulators for automata

» Nonuniform model of log n space: n-state automaton
» QM(q;y) = final state if Q starts in state g, reads y € {0,1}™

Randomness-efficient simulators for automata

» Nonuniform model of log n space: n-state automaton
» QM(q;y) = final state if Q starts in state g, reads y € {0,1}™

» Simulator for automata: algorithm Sim(Q, g, x) such that

Sim(Q, g, Us) ~ Q"(q; Un)

PRGs for automata

» Gen(x) is a PRG for automata iff
Sim(Q, g,x) = Q™(q; Gen(x))

is a simulator for automata

PRGs for automata

» Gen(x) is a PRG for automata iff
Sim(Q, g,x) = Q™(q; Gen(x))

is a simulator for automata

» Crucial feature: Gen doesn't see “source code” (Q,q)!

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}°* — {0,1}"™, a PRG for n-state
automata

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}°* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

0 s+ (og) 121)

log mg

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}°* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

0 s+ (og) 121)

log mg

» Example 1: Saks-Zhou theorem

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}°* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

0 s+ (og) 121)

log mg

» Example 1: Saks-Zhou theorem
> my =2V°%€7 s — O(log nlog my) = O(log®? n) (INW)

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}°* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

0 s+ (og) 121)

log mg

» Example 1: Saks-Zhou theorem
> my =2V°%€7 s — O(log nlog my) = O(log®? n) (INW)
» Pick m = n (max # coins of (log n)-space algorithm)

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}°* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

0 s+ (og) 121)

log mg

» Example 1: Saks-Zhou theorem
> my =2V°%€7 s — O(log nlog my) = O(log®? n) (INW)
» Pick m = n (max # coins of (log n)-space algorithm)
» Obtain simulator with seed length/space complexity

O(log*'? n + log®? n) = O(log™'? n)

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

o) <s+ (log n) - l"’g’")

og my

» Example 2: Some wishful thinking

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

o) <s+ (log n) - l"’gm)

og my

» Example 2: Some wishful thinking

0.7 .
> mo=2°¢"" 5= 0(log"! n) (no such construction known)

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

o) <s+ (log n) - l"’g’")

og my

» Example 2: Some wishful thinking

0.7 .
» mo=2°¢"" 5= 0(log"! n) (no such construction known)
> Pick m = 2°8"°n

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '98, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}"™, a PRG for n-state
automata

» Can construct m-step simulator for n-state automata with seed
length /space complexity

o) <s+ (log n) - l"’g’">

og my

» Example 2: Some wishful thinking

> mo=2°8"" s = O(log™! n) (no such construction known)
> Pick m = 2lg”*n
» Obtain simulator with seed length/space complexity

O(Iogl'1 n+ Iogl'1 n) = O(Iogl'1 n)

Proof of main result

more simulation steps

>
>

pa3s Jo1oys

Proof of main result

@®Dream

pa3s Jo1oys

4
*BPL =L

more simulation steps

>
>

Proof of main result

®Dream
OPRG

more simulation steps

pass Ja1oys

Proof of main result

®Dream
OPRG

BPL C L2

pass Ja1oys

more simulation steps

Proof of main result

BPL C L2
©®Dream %
®PRG 3
n
3
o
Iogo(l) n
I;?tr;d'cr:n;_ more simulation steps *BPL =L
I | >

Proof of main result

BPL C L2
©®Dream %
®PRG 3
n
3
o
Iogo(l) n
I;?tr;d'cr:n;_ more simulation steps *BPL =L
I | >

Proof of main result

BPL C L2
©Dream ‘c’):’—
OPRG =
@Simulator o

3

o
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L?
ODream ‘c’):’—
O®PRG =
@Simulator "

g

BPL C L3/2
Iogo(l) n
r?nd.om more simulation steps *BPL =L
bits in L -

Proof of main result

BPL C L2
@®Dream %
®PRG y
@Simulator "

&

BPL C L3/2
Iogo(l) n

random *

L more simulation steps
bits in L ‘p

Proof of main result

BPL C L2
@®Dream %
®PRG y
@Simulator "

&

BPL C L3/2
Iogo(l) n

random *

L more simulation steps
bits in L ‘p

Proof of main result

BPL C L2
@®Dream %
OPRG o
@Simulator "
&
BPL C L3/2
BPL C L11
Iogo(l) n
random

L more simulation steps
bits in L ‘p

Outline

v Simplified statement of main result
v" Proof sketch of main result
V' Saks-Zhou theorem, revisited
» Proof sketch of Saks-Zhou-Armoni theorem
» Stronger version of main result

» Targeted PRGs
» Simulation advice generators

Randomness-efficient approximate powering

» Goal: approximate Qf’

Randomness-efficient approximate powering

» Goal: approximate Q"

» Easier goal: Use Gen to find automaton Pow(Qp) ~ Qp™

Randomness-efficient approximate powering

» Goal: approximate Q"
» Easier goal: Use Gen to find automaton Pow(Qp) ~ Qp™

» First attempt:

Pow(Qo)(q; ¥) = Q5 (q; Gen(y))

Randomness-efficient approximate powering

v

Goal: approximate Q'

v

Easier goal: Use Gen to find automaton Pow(Qo) ~ Q™

v

First attempt:

Pow(Qo)(q; ¥) = Q5 (q; Gen(y))

» But we want Pow(Qp) to only read O(log n) bits at a time

Randomness-efficient approximate powering

v

Goal: approximate Q'

v

Easier goal: Use Gen to find automaton Pow(Qo) ~ Q™

v

First attempt:

Pow(Qo)(q; ¥) = Q5 (q; Gen(y))

» But we want Pow(Qp) to only read O(log n) bits at a time

v

Randomized algorithm:

Pow(Qo, x)(q; y) = Q™ (g; Gen(Samp(x, y)))

Randomness-efficient approximate powering

» Goal: approximate Q"
» Easier goal: Use Gen to find automaton Pow(Qp) ~ Qp™
» First attempt:

Pow(Qo)(q; ¥) = Q5 (q; Gen(y))

» But we want Pow(Qp) to only read O(log n) bits at a time

» Randomized algorithm:

Pow(Qo, x)(q; y) = Q™ (g; Gen(Samp(x, y)))

» Can achieve |x| < O(s), |y| < O(log n)

Repeated approximate powering

» Goal: approximate QY

Repeated approximate powering

» Goal: approximate Qf’
» First attempt: For i =1 to log,, m:

Repeated approximate powering

» Goal: approximate QY
» First attempt: For i =1 to log,, m:
» Pick fresh randomness x;

Repeated approximate powering

» Goal: approximate Qf’
» First attempt: For i =1 to log,, m:

» Pick fresh randomness x;
» Let Qi = Pow(Qi_1,x;)

Repeated approximate powering

» Goal: approximate QY

» First attempt: For i =1 to log,, m:
» Pick fresh randomness x;
» Let Q = POW(Q,',l,X,')

» Randomness complexity: O(s - 125

log mg

). Too much!

Repeated approximate powering

v

Goal: approximate Q'

v

First attempt: For i =1 to log,, m:
» Pick fresh randomness x;
» Let Qi = Pow(Qi_1,x;)

Randomness complexity: O(s - 12&™

log mg
Second attempt: Pick x once, reuse in each iteration

v

). Too much!

v

Repeated approximate powering

» Goal: approximate QY
» First attempt: For i =1 to log,, m:
» Pick fresh randomness x;
» Let Q; = Pow(Qi—1,x;)
» Randomness complexity: O(s - I';’gg,:;). Too much!
» Second attempt: Pick x once, reuse in each iteration

» Q; is stochastically dependent on x

Repeated approximate powering

» Goal: approximate QY
» First attempt: For i =1 to log,, m:
» Pick fresh randomness x;
» Let Q; = Pow(Qi—1,x;)
» Randomness complexity: O(s - I';’ggnr:)). Too much!
» Second attempt: Pick x once, reuse in each iteration

» Q; is stochastically dependent on x
» No guarantee that Pow will be accurate

Snap operation

» Solution: Break dependencies by rounding

Snap operation

» Solution: Break dependencies by rounding
» Snap(Q):

Snap operation

» Solution: Break dependencies by rounding

» Snap(Q):
1. Compute M = transition probability matrix of Q@

Snap operation

» Solution: Break dependencies by rounding

» Snap(Q):

1. Compute M = transition probability matrix of Q@
2. Randomly perturb, round each entry of M

Snap operation

» Solution: Break dependencies by rounding

» Snap(Q):
1. Compute M = transition probability matrix of Q@
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

Snap operation

» Solution: Break dependencies by rounding

» Snap(Q):

1. Compute M = transition probability matrix of Q@
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

» Key feature:

Q ~ Q' = w.h.p. over r,Snap(Q, r) = Snap(Q', r)

Snap operation

» Solution: Break dependencies by rounding
» Snap(Q):
1. Compute M = transition probability matrix of Q@
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

» Key feature:

Q ~ Q' = w.h.p. over r,Snap(Q, r) = Snap(Q', r)

/ | | |
Q o 1 N

Snap operation

» Solution: Break dependencies by rounding
» Snap(Q):
1. Compute M = transition probability matrix of Q@
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

» Key feature:

Q ~ Q' = w.h.p. over r,Snap(Q, r) = Snap(Q', r)

/ | | |
Q 1® 1 N

Snap operation

» Solution: Break dependencies by rounding
» Snap(Q):
1. Compute M = transition probability matrix of Q@

2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

» Key feature:

Q ~ Q' = w.h.p. over r,Snap(Q, r) = Snap(Q', r)

/ | | |
Q x L N

SZA transformation

» To approximate Q)":

SZA transformation

» To approximate Q)":
1. Pick x randomly

SZA transformation

» To approximate Q)":
1. Pick x randomly
2. For i =1 to log,, m, set @ = Snap(Pow(Q;_1,x))

SZA transformation

» To approximate Q)":
1. Pick x randomly
2. For i =1 to log,, m, set @ = Snap(Pow(Q;_1,x))

» Correctness proof sketch:

SZA transformation

» To approximate Q)":
1. Pick x randomly
2. For i =1 to log,, m, set @ = Snap(Pow(Q;_1,x))
» Correctness proof sketch:
> Define Q; by wishful thinking: Qo = Qo, Q; = Snap(Q™,)

SZA transformation

» To approximate Q)":
1. Pick x randomly
2. For i =1 to log,, m, set @ = Snap(Pow(Q;_1,x))
» Correctness proof sketch:
» Define @,- by wishful thinking: ao = Qo, (3,- = Snap(Al.mjl)
» W.h.p., for all j, Pow(@,,x) ~ (3,’"0 (union bound)

SZA transformation

» To approximate Q)":
1. Pick x randomly
2. For i =1 to log,, m, set @ = Snap(Pow(Q;_1,x))
» Correctness proof sketch:
» Define @,- by wishful thinking: ao = Qo, (3,- = Snap(Al.mjl)
» W.h.p., for all j, Pow(@,,x) ~ (3,’"0 (union bound)
> W.h.p., Snap(Pow(Q;, x)) = Snap(@i'"") = Qi1

SZA transformation

» To approximate Q)":
1. Pick x randomly
2. For i =1 to log,, m, set @ = Snap(Pow(Q;_1,x))
» Correctness proof sketch:
» Define @,- by wishful thinking: ao = Qo, (3,- = Snap(Al.mjl)
» W.h.p., for all j, Pow(@,,x) ~ (3,’"0 (union bound)
> W.h.p., Snap(Pow(Q;, x)) = Snap(@i'"") = Qip1
» W.h.p., by induction, dreams come true: Q; = @,- for all i

SZA transformation

» To approximate Q)":
1. Pick x randomly
2. For i =1 to log,, m, set @ = Snap(Pow(Q;_1,x))
» Correctness proof sketch:
» Define @,- by wishful thinking: ao = Qo, (3,- = Snap(Al.mjl)
» W.h.p., for all j, Pow(@,,x) ~ (3,’"0 (union bound)
> W.h.p., Snap(Pow(Q;, x)) = Snap(@i'"") = Qip1
» W.h.p., by induction, dreams come true: Q; = @,- for all i

» Implement using recursion

Outline

v Simplified statement of main result
v" Proof sketch of main result
V' Saks-Zhou theorem, revisited
v Proof sketch of Saks-Zhou-Armoni theorem

» Stronger version of main result

» Targeted PRGs
» Simulation advice generators

Stronger version of main result

> Two key features distinguish PRG from simulator

Stronger version of main result

> Two key features distinguish PRG from simulator
» Input: no access to “source code” (Q,q)

Stronger version of main result

> Two key features distinguish PRG from simulator

» Input: no access to “source code” (Q,q)
» Output: long string for automaton to read vs. state

Stronger version of main result

> Two key features distinguish PRG from simulator

» Input: no access to “source code” (Q,q)
» Output: long string for automaton to read vs. state

» Claim: First feature is the one that matters for us

Targeted PRGs

» Targeted PRG: Algorithm Gen(Q, g, x) such that
Sim(Q, g,x) = Q"(q; Gen(Q, g,x))

is a simulator

Targeted PRGs

» Targeted PRG: Algorithm Gen(Q, g, x) such that
Sim(Q, g,x) = Q"(q; Gen(Q, g,x))

is a simulator
» Introduced by Goldreich '11 for BPP

Targeted PRGs

» Targeted PRG: Algorithm Gen(Q, g, x) such that
Sim(Q, g,x) = Q™(q; Gen(Q, g, x))

is a simulator
» Introduced by Goldreich '11 for BPP
» Ordinary PRG: Special case that Gen doesn't depend on (Q, q)

Simulation advice generators

» Simulation advice generator. Algorithm Gen(x) such that for
some deterministic logspace S,

Sim(Q, gq,x) = S(Q, g, Gen(x))

is a simulator

Simulation advice generators

» Simulation advice generator. Algorithm Gen(x) such that for
some deterministic logspace S,

Sim(Q, gq,x) = S(Q, g, Gen(x))

is a simulator
» Ordinary PRG: Special case that S(Q, q,y) = QY!(q; y)

Four kinds of derandomization

Simulator
Targeted Simulation
pseudorandom advice
generator generator
Ordinary
pseudorandom

generator

Main result (informally)

Simulator

/N

Targeted Simulation
pseudorandom ---------- » advice
generator generator

NS

Ordinary
pseudorandom
generator

Theorem: Dashed arrow transformation exists if and only if

ﬂ promise-BPSPACE(log!*® n) = m promise-DSPACE(log* ™ n)
a>0 a>0

Proof sketch

» SZA works on simulation advice generator without modification

Proof sketch

» SZA works on simulation advice generator without modification

Simulator

SZA

Simulation
Advice
Generator

Proof sketch

» SZA works on simulation advice generator without modification

Simulator

SZA
Slxcllﬂijltlon Targeted
vice PRG

Generator \/

Assumption

Proof sketch

» SZA works on simulation advice generator without modification

Simulator
S7A Method of
cond. prob.
Slxcllﬂé.ltlon Targeted
vice PRG

Generator \/

Assumption

Main result (in painful detail)

» Theorem: The following are equivalent:

Main result (in painful detail)

» Theorem: The following are equivalent:
1.

ﬂ promise-BPSPACE(log't® n) = ﬂ promise-DSPACE(log'** n)
a>0 a>0

Main result (in painful detail)

» Theorem: The following are equivalent:
1.

ﬂ promise-BPSPACE(log't® n) = ﬂ promise-DSPACE(log'** n)
a>0 a>0

2. For all €]0,1], for all suff. small & > n > 0, for all v > 0:

Main result (in painful detail)

» Theorem: The following are equivalent:
1.

ﬂ promise-BPSPACE(log't® n) = ﬂ promise-DSPACE(log'** n)
a>0 a>0

2. For all €]0,1], for all suff. small & > n > 0, for all v > 0:
> |If 3 efficient targeted PRG with parameters

s < O(log"™ n), log(1/e) =log"*"n, logm > log" n

Main result (in painful detail)

» Theorem: The following are equivalent:
1.

ﬂ promise-BPSPACE(log't® n) = ﬂ promise-DSPACE(log'** n)
a>0 a>0

2. For all €]0,1], for all suff. small & > n > 0, for all v > 0:
> |If 3 efficient targeted PRG with parameters

s < O(log"™ n), log(1/e) =log"*"n, logm > log" n
» Then 3 efficient simulation advice generator with parameters
s' < O(log"™ %7 n), log(1/e') = log""" 7 n,

logm’ > log" 7 n, loga < O(log™"*" n)

Main result (in painful detail)

» Theorem: The following are equivalent:
1.

ﬂ promise-BPSPACE(log't® n) = ﬂ promise-DSPACE(log'** n)
a>0 a>0

2. For all €]0,1], for all suff. small & > n > 0, for all v > 0:
> |If 3 efficient targeted PRG with parameters

s < O(log"™ n), log(1/e) =log"*"n, logm > log" n
» Then 3 efficient simulation advice generator with parameters
s' < O(log"™ %7 n), log(1/e') = log""" 7 n,

logm’ > log" 7 n, loga < O(log™"*" n)

» a’ = number of advice bits

Main result (in painful detail)

» Theorem: The following are equivalent:
1.

ﬂ promise-BPSPACE(log't® n) = ﬂ promise-DSPACE(log'** n)
a>0 a>0

2. For all €]0,1], for all suff. small & > n > 0, for all v > 0:
> |If 3 efficient targeted PRG with parameters

s < O(log"™ n), log(1/e) =log"*"n, logm > log" n
» Then 3 efficient simulation advice generator with parameters
s' < O(log"™ %7 n), log(1/e') = log""" 7 n,

logm’ > log" 7 n, loga < O(log™"*" n)

» a’ = number of advice bits

» “Efficient”: Space complexity < O(seed length)

Conclusion

» This material is based upon work supported by

» NSF GRFP Grant No. DGE-1610403
» NSF Grant No. NSF CCF-1423544

» Thanks for your attention!

~ Any questions?

	anm0:
	anm1:
	anm2:
	anm3:
	anm4:
	anm5:
	anm6:
	anm7:
	anm8:

