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Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):

I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that ∀Π ∈ promise-BPP, ∀k ∈ N, ∃ deterministic
polytime algorithm A for Π s.t. any probabilistic nk -time
algorithm has only an n−k chance of generating an instance on
which A fails

I Then there is a PRG that gives that same derandomization
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I Assume that for every derandomization of logspace, there exists
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⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!
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Outline

X Simplified statement of main result
I Proof sketch of main result

I Saks-Zhou theorem, revisited

I Proof sketch of Saks-Zhou-Armoni theorem
I Stronger version of main result

I Targeted PRGs
I Simulation advice generators



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in m-step “simulator”
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Randomness-efficient simulators for automata

I Nonuniform model of log n space: n-state automaton

I Qm(q; y) = final state if Q starts in state q, reads y ∈ {0, 1}m

I Simulator for automata: algorithm Sim(Q, q, x) such that

Sim(Q, q,Us) ∼ε Qm(q;Um)
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Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log3/2 n)

I Pick m = n
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log3/2 n)

I Pick m = n
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log3/2 n)

I Pick m = n
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max # coins of (log n)-space algorithm)
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max # coins of (log n)-space algorithm)
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max # coins of (log n)-space algorithm)

I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 1: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max # coins of (log n)-space algorithm)
I Obtain simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 2: Some wishful thinking

I m0 = 2log0.7 n, s = O(log1.1 n) (no such construction known)
I Pick m = 2log0.8 n

I Obtain simulator with seed length/space complexity

O(log1.1 n + log1.1 n) = O(log1.1 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 2: Some wishful thinking
I m0 = 2log0.7 n, s = O(log1.1 n) (no such construction known)

I Pick m = 2log0.8 n

I Obtain simulator with seed length/space complexity

O(log1.1 n + log1.1 n) = O(log1.1 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 2: Some wishful thinking
I m0 = 2log0.7 n, s = O(log1.1 n) (no such construction known)
I Pick m = 2log0.8 n

I Obtain simulator with seed length/space complexity

O(log1.1 n + log1.1 n) = O(log1.1 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’98, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for n-state
automata

I Can construct m-step simulator for n-state automata with seed
length/space complexity

O

(
s + (log n) · logm

logm0

)

I Example 2: Some wishful thinking
I m0 = 2log0.7 n, s = O(log1.1 n) (no such construction known)
I Pick m = 2log0.8 n

I Obtain simulator with seed length/space complexity

O(log1.1 n + log1.1 n) = O(log1.1 n)



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E

E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E

E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E

E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E

E E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E

E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E

E E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E

E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E

E E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E

E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E

E E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E

E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E

E E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E

E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E

E BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E

BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E

BPL ⊆ L1.1



Proof of main result

more simulation steps

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
random
bits in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Outline

X Simplified statement of main result

X Proof sketch of main result

X Saks-Zhou theorem, revisited

I Proof sketch of Saks-Zhou-Armoni theorem
I Stronger version of main result

I Targeted PRGs
I Simulation advice generators



Randomness-efficient approximate powering

I Goal: approximate Qm
0

I Easier goal: Use Gen to find automaton Pow(Q0) ≈ Qm0
0

I First attempt:

Pow(Q0)(q; y) = Qm0
0 (q; Gen(y))

I But we want Pow(Q0) to only read O(log n) bits at a time

I Randomized algorithm:

Pow(Q0, x)(q; y) = Qm0
0 (q; Gen(Samp(x , y)))

I Can achieve |x | ≤ O(s), |y | ≤ O(log n)
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Repeated approximate powering

I Goal: approximate Qm
0

I First attempt: For i = 1 to logm0
m:

I Pick fresh randomness xi
I Let Qi = Pow(Qi−1, xi )

I Randomness complexity: O(s · logm
logm0

). Too much!

I Second attempt: Pick x once, reuse in each iteration

I Qi is stochastically dependent on x
I No guarantee that Pow will be accurate
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Snap operation

I Solution: Break dependencies by rounding

I Snap(Q):

1. Compute M = transition probability matrix of Q
2. Randomly perturb, round each entry of M
3. Return automaton with resulting transition probability matrix

I Key feature:

Q ≈ Q ′ =⇒ w.h.p. over r ,Snap(Q, r) = Snap(Q ′, r)
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SZA transformation

I To approximate Qm
0 :

1. Pick x randomly
2. For i = 1 to logm0

m, set Qi = Snap(Pow(Qi−1, x))

I Correctness proof sketch:

I Define Q̂i by wishful thinking: Q̂0 = Q0, Q̂i = Snap(Q̂m0

i−1)

I W.h.p., for all i , Pow(Q̂i , x) ≈ Q̂m0

i (union bound)
I W.h.p., Snap(Pow(Q̂i , x)) = Snap(Q̂m0

i ) = Q̂i+1

I W.h.p., by induction, dreams come true: Qi = Q̂i for all i

I Implement using recursion
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is a simulator
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I Ordinary PRG: Special case that Gen doesn’t depend on (Q, q)
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Main result (informally)

Ordinary
pseudorandom

generator

Simulator

Targeted
pseudorandom

generator

Simulation
advice

generator

Theorem: Dashed arrow transformation exists if and only if⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)
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I SZA works on simulation advice generator without modification
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Generator
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Main result (in painful detail)

I Theorem: The following are equivalent:

1. ⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

2. For all µ ∈ [0, 1], for all suff. small σ > η > 0, for all γ > 0:

I If ∃ efficient targeted PRG with parameters

s ≤ O(log1+σ n), log(1/ε) = log1+η n, logm ≥ logµ n

I Then ∃ efficient simulation advice generator with parameters

s ′ ≤ O(log1+σ+γ n), log(1/ε′) = log1+η−γ n,

logm′ ≥ logµ−γ n, log a′ ≤ O(log1+η+γ n)

I a′ = number of advice bits

I “Efficient”: Space complexity ≤ O(seed length)
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Conclusion

I This material is based upon work supported by
I NSF GRFP Grant No. DGE-1610403
I NSF Grant No. NSF CCF-1423544

I Thanks for your attention!

I Any questions?
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