Pseudorandom Generators vs. Derandomization for Logspace Algorithms

(Paper title: "Targeted Pseudorandom Generators, Simulation Advice Generators, and Derandomizing Logspace")

William M. $Hoza¹$ Chris Umans²

June 21, 2017 STOC

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 1 University of Texas at Austin ²California Institute of Technology

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \blacktriangleright Assume the following derandomization statement:

$AM \subseteq$

 \triangleright Then there is a PRG that gives that same derandomization

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \blacktriangleright Assume the following derandomization statement:

$AM \subseteq \qquad \qquad \mathbf{\Sigma_{2}}$

 \triangleright Then there is a PRG that gives that same derandomization

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \blacktriangleright Assume the following derandomization statement:

$$
\mathsf{AM} \subseteq \bigcap_{\varepsilon > 0} \qquad \mathsf{\Sigma_2TIME}(2^{n^{\varepsilon}})
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright Then there is a PRG that gives that same derandomization

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \blacktriangleright Assume the following derandomization statement:

$$
\text{promise-AM} \subseteq \bigcap_{\varepsilon > 0} \qquad \Sigma_2\text{TIME}(2^{n^{\varepsilon}})
$$

 \triangleright Then there is a PRG that gives that same derandomization

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \blacktriangleright Assume the following derandomization statement:

$$
\text{promise-AM} \subseteq \bigcap_{\varepsilon > 0} \text{i.o.-} \Sigma_2 \text{TIME}(2^{n^{\varepsilon}})
$$

 \triangleright Then there is a PRG that gives that same derandomization

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \blacktriangleright Assume the following derandomization statement:

$$
\text{promise-AM} \subseteq \bigcap_{\varepsilon > 0} \text{i.o.-} \Sigma_2 \text{TIME}(2^{n^{\varepsilon}})/n^{\varepsilon}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright Then there is a PRG that gives that same derandomization

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \blacktriangleright Assume the following derandomization statement:

$$
\text{promise-AM} \subseteq \bigcap_{\varepsilon > 0} \text{i.o.-} \Sigma_2 \text{TIME}(2^{n^{\varepsilon}})/n^{\varepsilon}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright Then there is a PRG that gives that same derandomization \blacktriangleright Theorem (Goldreich '11):

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \triangleright Assume the following derandomization statement:

$$
\text{promise-AM} \subseteq \bigcap_{\varepsilon > 0} \text{i.o.-} \Sigma_2 \text{TIME}(2^{n^{\varepsilon}})/n^{\varepsilon}
$$

- \triangleright Then there is a PRG that gives that same derandomization
- \blacktriangleright Theorem (Goldreich '11):
	- \triangleright Assume that for every problem in **promise-BPP**, there is a deterministic polytime algorithm that succeeds on all feasibly generated inputs

▶ Theorem (Aydınlıoğlu, van Melkebeek '12):

 \triangleright Assume the following derandomization statement:

$$
\text{promise-AM} \subseteq \bigcap_{\varepsilon > 0} \text{i.o.-} \Sigma_2 \text{TIME}(2^{n^{\varepsilon}})/n^{\varepsilon}
$$

- \triangleright Then there is a PRG that gives that same derandomization
- \blacktriangleright Theorem (Goldreich '11):
	- \triangleright Assume that for every problem in **promise-BPP**, there is a deterministic polytime algorithm that succeeds on all feasibly generated inputs
	- \triangleright Then there is a PRG that gives that same derandomization

L vs. BPL

KOXKOXKEXKEX E DAG

▶ Best PRG against logspace (Nisan '92): Seed length $O(log^2 n)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

L vs. BPL

- ▶ Best PRG against logspace (Nisan '92): Seed length $O(log^2 n)$
- Best derandomization (Saks, Zhou '99):

 $\mathsf{BPL} \subseteq \mathsf{DSPACE}(\log^{3/2} n)$

 \blacktriangleright Theorem (informally stated):

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

\blacktriangleright Theorem (informally stated):

 \triangleright Assume that for every derandomization result for logspace algorithms, there is a PRG strong enough to (nearly) recover derandomization by iterating over all seeds

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

\blacktriangleright Theorem (informally stated):

- \triangleright Assume that for every derandomization result for logspace algorithms, there is a PRG strong enough to (nearly) recover derandomization by iterating over all seeds
- \blacktriangleright Then

$$
\text{BPL} \subseteq \bigcap_{\alpha > 0} \text{DSPACE}(\log^{1+\alpha} n).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

\blacktriangleright Theorem (informally stated):

 \triangleright Assume that for every derandomization result for logspace algorithms, there is a PRG strong enough to (nearly) recover derandomization by iterating over all seeds

 \blacktriangleright Then

$$
\text{BPL} \subseteq \bigcap_{\alpha > 0} \text{DSPACE}(\log^{1+\alpha} n).
$$

KORK ERKER ADE YOUR

 \triangleright Equivalence of PRGs and derandomization would itself give a derandomization!

How to interpret our result

 $2Q$ ₹

How to interpret our result

 $2Q$ Þ ∍

How to interpret our result

 290 \equiv Þ

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

► Given: Oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for log *n* space

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

► Given: Oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for log *n* space

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Goal: Simulate (log n)-space m-coin algorithm, $m \gg m_0$

- ► Given: Oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for log *n* space
- Goal: Simulate (log n)-space m-coin algorithm, $m \gg m_0$
- \triangleright Approach 1: Ignore oracle, use a PRG which outputs m bits

- ► Given: Oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for log *n* space
- Goal: Simulate (log n)-space m-coin algorithm, $m \gg m_0$
- \triangleright Approach 1: Ignore oracle, use a PRG which outputs m bits

KORK ERKER ADE YOUR

E.g. INW '94 (extractors): Seed length $O(\log n \log m)$

- ► Given: Oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for log *n* space
- Goal: Simulate (log n)-space m-coin algorithm, $m \gg m_0$
- \triangleright Approach 1: Ignore oracle, use a PRG which outputs m bits
	- E.g. INW '94 (extractors): Seed length $O(\log n \log m)$
- \triangleright Approach 2: Use Gen as building block in new PRG which outputs m bits

KORK ERKER ADE YOUR

- ► Given: Oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for log *n* space
- Goal: Simulate (log n)-space m-coin algorithm, $m \gg m_0$
- \triangleright Approach 1: Ignore oracle, use a PRG which outputs m bits
	- E.g. INW '94 (extractors): Seed length $O(\log n \log m)$
- \triangleright Approach 2: Use Gen as building block in new PRG which outputs m bits
	- \triangleright E.g. using techniques of INW: Seed length

$$
s + O\left((\log n) \cdot \log\left(\frac{m}{m_0}\right)\right)
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- ► Given: Oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for log *n* space
- Goal: Simulate (log n)-space m-coin algorithm, $m \gg m_0$
- \triangleright Approach 1: Ignore oracle, use a PRG which outputs m bits
	- E.g. INW '94 (extractors): Seed length $O(\log n \log m)$
- \triangleright Approach 2: Use Gen as building block in new PRG which outputs m bits
	- \triangleright E.g. using techniques of INW: Seed length

$$
s + O\left((\log n) \cdot \log\left(\frac{m}{m_0}\right)\right)
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

For $m \gg m_0$, might as well have started from scratch!

- ► Given: Oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for log *n* space
- Goal: Simulate (log n)-space m-coin algorithm, $m \gg m_0$
- \triangleright Approach 1: Ignore oracle, use a PRG which outputs m bits
	- E.g. INW '94 (extractors): Seed length $O(\log n \log m)$
- \triangleright Approach 2: Use Gen as building block in new PRG which outputs m bits
	- \triangleright E.g. using techniques of INW: Seed length

$$
s + O\left((\log n) \cdot \log\left(\frac{m}{m_0}\right)\right)
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

For $m \gg m_0$, might as well have started from scratch!

 \triangleright Approach 3: Use Gen as building block in simulator

イロト イ御 トイミト イミト ニミー りんぴ

- \blacktriangleright Inputs:
	- \blacktriangleright "Source code" of (log n)-space, m-coin algorithm A

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

- \blacktriangleright Inputs:
	- \blacktriangleright "Source code" of (log n)-space, m-coin algorithm A

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright s-bit seed

- \blacktriangleright Inputs:
	- \blacktriangleright "Source code" of (log n)-space, m-coin algorithm A

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright s-bit seed
- ► (Output of simulator) \sim_{ε} (final configuration of A)

- \blacktriangleright Inputs:
	- \blacktriangleright "Source code" of (log n)-space, m-coin algorithm A

KORKA SERKER ORA

- \blacktriangleright s-bit seed
- ► (Output of simulator) \sim_{ε} (final configuration of A)
- \triangleright A PRG induces a simulator

- \blacktriangleright Inputs:
	- \blacktriangleright "Source code" of (log n)-space, m-coin algorithm A
	- \blacktriangleright s-bit seed
- ► (Output of simulator) \sim_{ε} (final configuration of A)
- \triangleright A PRG induces a simulator
- ► Crucial bonus feature: PRG doesn't see "source code"!

KORKA SERKER ORA
Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

- **Theorem** (implicit in Armoni '98, builds on SZ '99, some details suppressed):
	- ► Given oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for (log n)-space algorithms

- **Theorem** (implicit in Armoni '98, builds on SZ '99, some details suppressed):
	- ► Given oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for (log n)-space algorithms
	- ► Can construct simulator for (log n)-space m -coin algorithms with seed length/space complexity

$$
O\left(s + (\log n) \cdot \frac{\log m}{\log m_0}\right)
$$

KORKAR KERKER E VOOR

- **Theorem** (implicit in Armoni '98, builds on SZ '99, some details suppressed):
	- ► Given oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for (log n)-space algorithms
	- ► Can construct simulator for (log n)-space m -coin algorithms with seed length/space complexity

$$
O\left(s + (\log n) \cdot \frac{\log m}{\log m_0}\right)
$$

KORKAR KERKER E VOOR

 \triangleright Original application: Saks-Zhou theorem

- **Theorem** (implicit in Armoni '98, builds on SZ '99, some details suppressed):
	- ► Given oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for (log n)-space algorithms
	- ► Can construct simulator for (log n)-space m -coin algorithms with seed length/space complexity

$$
O\left(s + (\log n) \cdot \frac{\log m}{\log m_0}\right)
$$

KORKAR KERKER E VOOR

▶ Original application: Saks-Zhou theorem

$$
m_0 = 2^{\sqrt{\log n}}, s = O(\log n \log m_0) = O(\log^{3/2} n) \text{ (INV)}
$$

- **Theorem** (implicit in Armoni '98, builds on SZ '99, some details suppressed):
	- ► Given oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for (log n)-space algorithms
	- ► Can construct simulator for (log n)-space m -coin algorithms with seed length/space complexity

$$
O\left(s + (\log n) \cdot \frac{\log m}{\log m_0}\right)
$$

KORKAR KERKER E VOOR

▶ Original application: Saks-Zhou theorem

$$
m_0 = 2^{\sqrt{\log n}}, s = O(\log n \log m_0) = O(\log^{3/2} n) \text{ (INV)}
$$

Pick $m = n$ (max possible # coins)

- **Theorem** (implicit in Armoni '98, builds on SZ '99, some details suppressed):
	- ► Given oracle Gen : $\{0,1\}^s \rightarrow \{0,1\}^{m_0}$, a PRG for (log n)-space algorithms
	- ► Can construct simulator for (log n)-space m -coin algorithms with seed length/space complexity

$$
O\left(s + (\log n) \cdot \frac{\log m}{\log m_0}\right)
$$

▶ Original application: Saks-Zhou theorem

$$
m_0 = 2^{\sqrt{\log n}}, s = O(\log n \log m_0) = O(\log^{3/2} n) \text{ (INV)}
$$

- Pick $m = n$ (max possible # coins)
- \rightarrow \Rightarrow simulator with seed length/space complexity

$$
O(\log^{3/2} n + \log^{3/2} n) = O(\log^{3/2} n)
$$

KORKAR KERKER E VOOR

Stronger version of main result

Theorem: Dashed arrow transformation exists if and only if

$$
\\
\nα>0 \text{ promise-BPSPACE} (\log^{1+\alpha} n) = \bigcap_{\alpha>0} \text{ promise-DSPACE} (\log^{1+\alpha} n)
$$

Conclusion

 \triangleright This material is based upon work supported by

KORKA SERKER ORA

- \triangleright NSF GRFP Grant No. DGF-1610403
- \triangleright NSF Grant No. NSF CCF-1423544
- \blacktriangleright Thanks for your attention!
- **Any questions?**