Pseudorandom Generators vs. Derandomization
for Logspace Algorithms

(Paper title: “Targeted Pseudorandom Generators, Simulation Advice
Generators, and Derandomizing Logspace”)

William M. Hoza! Chris Umans?

June 21, 2017
STOC

YUniversity of Texas at Austin
2California Institute of Technology

Derandomization é PRG

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:

AM C

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:

AM C T,

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:

AMC (| ZTIME(2™)

e>0

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C ﬂ T, TIME(2™)

e>0

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C ﬂ i.0.-X, TIME(2")

e>0

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C ﬂ i.0-X,TIME(2")/n°

e>0

» Then there is a PRG that gives that same derandomization

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C ﬂ i.0-X,TIME(2")/n°

e>0

» Then there is a PRG that gives that same derandomization

» Theorem (Goldreich '11):

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:

promise-AM C ﬂ i.0-X,TIME(2")/n°

e>0
» Then there is a PRG that gives that same derandomization

» Theorem (Goldreich '11):

» Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

Derandomization <:?> PRG

» Theorem (Aydinlioglu, van Melkebeek '12):
» Assume the following derandomization statement:
promise-AM C ﬂ i.0.-X, TIME(2")/n°
e>0
» Then there is a PRG that gives that same derandomization

» Theorem (Goldreich '11):

» Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

» Then there is a PRG that gives that same derandomization

L vs. BPL

L vs. BPL

» Best PRG against logspace (Nisan '92): Seed length

O(log? n)

L vs. BPL

» Best PRG against logspace (Nisan '92): Seed length
O(log? n)
» Best derandomization (Saks, Zhou '99):

BPL C DSPACE(log®? n)

Simplest version of main result

» Theorem (informally stated):

Simplest version of main result

» Theorem (informally stated):
» Assume that for every derandomization result for logspace
algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

Simplest version of main result

» Theorem (informally stated):

» Assume that for every derandomization result for logspace
algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

» Then

BPL C (1) DSPACE(log"** n).
a>0

Simplest version of main result

» Theorem (informally stated):

» Assume that for every derandomization result for logspace
algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

» Then

BPL C (1) DSPACE(log"** n).
a>0

» Equivalence of PRGs and derandomization would itself give a
derandomization!

How to interpret our result

DA

How to interpret our result

DA

How to interpret our result

DA

When your PRG doesn’t output enough bits

When your PRG doesn't output enough bits

» Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

When your PRG doesn't output enough bits

» Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

» Goal: Simulate (log n)-space m-coin algorithm, m > mg

When your PRG doesn't output enough bits

» Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space
» Goal: Simulate (log n)-space m-coin algorithm, m > mg
» Approach 1: Ignore oracle, use a PRG which outputs m bits

When your PRG doesn't output enough bits

» Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space
» Goal: Simulate (log n)-space m-coin algorithm, m > mg
» Approach 1: Ignore oracle, use a PRG which outputs m bits

» E.g. INW '94 (extractors): Seed length O(log nlog m)

When your PRG doesn't output enough bits

v

Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

Goal: Simulate (log n)-space m-coin algorithm, m > mg

v

v

Approach 1: Ignore oracle, use a PRG which outputs m bits
» E.g. INW '94 (extractors): Seed length O(log nlog m)

Approach 2: Use Gen as building block in new PRG which
outputs m bits

v

When your PRG doesn't output enough bits

v

Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

Goal: Simulate (log n)-space m-coin algorithm, m > mg

v

v

Approach 1: Ignore oracle, use a PRG which outputs m bits
» E.g. INW '94 (extractors): Seed length O(log nlog m)

Approach 2: Use Gen as building block in new PRG which
outputs m bits

» E.g. using techniques of INW: Seed length

s+0 ((log n) - log (r’;;))

v

When your PRG doesn't output enough bits

v

Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

Goal: Simulate (log n)-space m-coin algorithm, m > mg

v

v

Approach 1: Ignore oracle, use a PRG which outputs m bits
» E.g. INW '94 (extractors): Seed length O(log nlog m)

Approach 2: Use Gen as building block in new PRG which
outputs m bits

» E.g. using techniques of INW: Seed length

s+0 ((log n) - log (r’;;))

» For m > mg, might as well have started from scratch!

v

When your PRG doesn't output enough bits

v

Given: Oracle Gen : {0,1}* — {0,1}"™, a PRG for log n space

Goal: Simulate (log n)-space m-coin algorithm, m > mg

v

v

Approach 1: Ignore oracle, use a PRG which outputs m bits
» E.g. INW '94 (extractors): Seed length O(log nlog m)

Approach 2: Use Gen as building block in new PRG which
outputs m bits
» E.g. using techniques of INW: Seed length

s+0 ((log n) - log (r’;;))

» For m > mg, might as well have started from scratch!

v

v

Approach 3: Use Gen as building block in simulator

Randomness-efficient simulator

> Inputs:

Randomness-efficient simulator

> Inputs:
» “Source code” of (log n)-space, m-coin algorithm A

Randomness-efficient simulator

> Inputs:

» “Source code” of (log n)-space, m-coin algorithm A
> s-bit seed

Randomness-efficient simulator

> Inputs:

» “Source code” of (log n)-space, m-coin algorithm A
> s-bit seed

> (Output of simulator) ~. (final configuration of A)

Randomness-efficient simulator

> Inputs:

» “Source code” of (log n)-space, m-coin algorithm A
> s-bit seed

> (Output of simulator) ~. (final configuration of A)

» A PRG induces a simulator

Randomness-efficient simulator

> Inputs:
» “Source code” of (log n)-space, m-coin algorithm A
> s-bit seed
> (Output of simulator) ~. (final configuration of A)
» A PRG induces a simulator
» Crucial bonus feature: PRG doesn’t see “source code”!

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}™, a PRG for (log n)-space
algorithms

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}™, a PRG for (log n)-space

algorithms
» Can construct simulator for (log n)-space m-coin algorithms

with seed length/space complexity

0 s+ (og) 121)

log mg

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}™, a PRG for (log n)-space

algorithms
» Can construct simulator for (log n)-space m-coin algorithms

with seed length/space complexity

0 s+ (og) 121)

log mg

» Original application: Saks-Zhou theorem

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}™, a PRG for (log n)-space

algorithms
» Can construct simulator for (log n)-space m-coin algorithms

with seed length/space complexity

0 s+ (og) 121)

log mg

» Original application: Saks-Zhou theorem
> mp =2V%87 s = O(log nlog my) = O(log>'? n) (INW)

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}™, a PRG for (log n)-space

algorithms
» Can construct simulator for (log n)-space m-coin algorithms

with seed length/space complexity

0 s+ (og) 121)

log mg

» Original application: Saks-Zhou theorem
> mp =2V%87 s = O(log nlog my) = O(log>'? n) (INW)
» Pick m = n (max possible # coins)

Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}™, a PRG for (log n)-space

algorithms
» Can construct simulator for (log n)-space m-coin algorithms

with seed length/space complexity

0 s+ (og) 121)

log mg

» Original application: Saks-Zhou theorem
> mp =2V%87 s = O(log nlog my) = O(log>'? n) (INW)
» Pick m = n (max possible # coins)
» = simulator with seed length/space complexity

O(Iog3/2 n+ Iog3/2 n) = O(Iog3/2 n)

Proof of main result

more simulated coins

>
>

pass Ja1oys

Proof of main result

@®Dream

pass Ja1oys

.
more simulated coins I’kBPL =1L

>
>

Proof of main result

@Dream
OPRG

pass Ja1oys

more simulated coins

Proof of main result

@Dream
OPRG

BPL C L?

pass Ja1oys

more simulated coins

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
o
g
log®® n *
coins in L more simulated coins BPL =L

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
o
g
log®® n *
coins in L more simulated coins BPL =L

Proof of main result

BPL C L?
©Dream 2:—
OPRG =
@Simulator é
g
log®® n *
coins in L more simulated coins BPL =L

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

u]
o)

I

i
it
N
»
?

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
2

BPL C L3/2
log®® *

coins in L more simulated coins BPL =L

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
D
g
BPL C L3/2
Iogo(l) n
coins in L more simulated coins BPL =L

Proof of main result

BPL C L2
@Dream 2:—
OPRG =
@Simulator »
D
g
BPL C L3/2
BPL C L1
Iogo(l) n
coins in L more simulated coins BPL =L

Stronger version of main result

Simulator

/N

Targeted Simulation
pseudorandom ---------- » advice
generator generator

NS

Ordinary
pseudorandom
generator

Theorem: Dashed arrow transformation exists if and only if

() promise-BPSPACE(log** n) = (") promise-DSPACE (log" " n)

a>0 a>0

Conclusion

» This material is based upon work supported by

» NSF GRFP Grant No. DGE-1610403
» NSF Grant No. NSF CCF-1423544

» Thanks for your attention!

~ Any questions?

