
Pseudorandom Generators vs. Derandomization
for Logspace Algorithms

(Paper title: “Targeted Pseudorandom Generators, Simulation Advice
Generators, and Derandomizing Logspace”)

William M. Hoza1 Chris Umans2

June 21, 2017
STOC

1University of Texas at Austin
2California Institute of Technology



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):

I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):
I Assume that for every problem in promise-BPP, there is a

deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):
I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):
I Assume that for every problem in promise-BPP, there is a

deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization



L vs. BPL

I Best PRG against logspace (Nisan ’92): Seed length

O(log2 n)

I Best derandomization (Saks, Zhou ’99):

BPL ⊆ DSPACE(log3/2 n)



L vs. BPL

I Best PRG against logspace (Nisan ’92): Seed length

O(log2 n)

I Best derandomization (Saks, Zhou ’99):

BPL ⊆ DSPACE(log3/2 n)



L vs. BPL

I Best PRG against logspace (Nisan ’92): Seed length

O(log2 n)

I Best derandomization (Saks, Zhou ’99):

BPL ⊆ DSPACE(log3/2 n)



Simplest version of main result

I Theorem (informally stated):

I Assume that for every derandomization result for logspace
algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

I Then
BPL ⊆

⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!



Simplest version of main result

I Theorem (informally stated):
I Assume that for every derandomization result for logspace

algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

I Then
BPL ⊆

⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!



Simplest version of main result

I Theorem (informally stated):
I Assume that for every derandomization result for logspace

algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

I Then
BPL ⊆

⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!



Simplest version of main result

I Theorem (informally stated):
I Assume that for every derandomization result for logspace

algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

I Then
BPL ⊆

⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!



How to interpret our result



How to interpret our result

Constructing
a PRG from
derandomiza-
tion is hard!



How to interpret our result

Constructing
a PRG from
derandomiza-
tion is hard!

Promising
approach to
derandom-
izing BPL!



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))

I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits
I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator



Randomness-efficient simulator

I Inputs:

I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A

I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’99, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for (log n)-space
algorithms

I Can construct simulator for (log n)-space m-coin algorithms
with seed length/space complexity

O

(
s + (log n) · logm

logm0

)

I Original application: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max possible # coins)
I =⇒ simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’99, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for (log n)-space
algorithms

I Can construct simulator for (log n)-space m-coin algorithms
with seed length/space complexity

O

(
s + (log n) · logm

logm0

)

I Original application: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max possible # coins)
I =⇒ simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’99, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for (log n)-space
algorithms

I Can construct simulator for (log n)-space m-coin algorithms
with seed length/space complexity

O

(
s + (log n) · logm

logm0

)

I Original application: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max possible # coins)
I =⇒ simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’99, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for (log n)-space
algorithms

I Can construct simulator for (log n)-space m-coin algorithms
with seed length/space complexity

O

(
s + (log n) · logm

logm0

)

I Original application: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max possible # coins)
I =⇒ simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’99, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for (log n)-space
algorithms

I Can construct simulator for (log n)-space m-coin algorithms
with seed length/space complexity

O

(
s + (log n) · logm

logm0

)

I Original application: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max possible # coins)
I =⇒ simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’99, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for (log n)-space
algorithms

I Can construct simulator for (log n)-space m-coin algorithms
with seed length/space complexity

O

(
s + (log n) · logm

logm0

)

I Original application: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max possible # coins)

I =⇒ simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’99, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for (log n)-space
algorithms

I Can construct simulator for (log n)-space m-coin algorithms
with seed length/space complexity

O

(
s + (log n) · logm

logm0

)

I Original application: Saks-Zhou theorem
I m0 = 2

√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max possible # coins)
I =⇒ simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E

E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E

E E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E

E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E

E E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E

E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E

E E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E

E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E

E E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E

E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E

E E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E

E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E

E E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E

E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E

E BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E

BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E

BPL ⊆ L1.1



Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E BPL ⊆ L1.1



Stronger version of main result

Ordinary
pseudorandom

generator

Simulator

Targeted
pseudorandom

generator

Simulation
advice

generator

Theorem: Dashed arrow transformation exists if and only if⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)



Conclusion

I This material is based upon work supported by
I NSF GRFP Grant No. DGE-1610403
I NSF Grant No. NSF CCF-1423544

I Thanks for your attention!

I Any questions?


