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L vs. BPL

» Best PRG against logspace (Nisan '92): Seed length
O(log? n)
» Best derandomization (Saks, Zhou '99):

BPL C DSPACE(log®? n)
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Simplest version of main result

» Theorem (informally stated):

» Assume that for every derandomization result for logspace
algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

» Then

BPL C (1) DSPACE(log"** n).
a>0

» Equivalence of PRGs and derandomization would itself give a
derandomization!
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Approach 3: Use Gen as building block in simulator
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Randomness-efficient simulator

> Inputs:
» “Source code” of (log n)-space, m-coin algorithm A
> s-bit seed
> (Output of simulator) ~. (final configuration of A)
» A PRG induces a simulator
» Crucial bonus feature: PRG doesn’t see “source code”!
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Saks-Zhou-Armoni transformation

» Theorem (implicit in Armoni '98, builds on SZ '99, some details suppressed):

» Given oracle Gen : {0,1}* — {0,1}™, a PRG for (log n)-space

algorithms
» Can construct simulator for (log n)-space m-coin algorithms

with seed length/space complexity

0 s+ (og ) 121 )

log mg

» Original application: Saks-Zhou theorem
> mp =2V%87 s = O(log nlog my) = O(log>'? n) (INW)
» Pick m = n (max possible # coins)
» = simulator with seed length/space complexity

O(Iog3/2 n+ Iog3/2 n) = O(Iog3/2 n)
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Stronger version of main result

Simulator

/N

Targeted Simulation
pseudorandom ---------- »  advice
generator generator

NS

Ordinary
pseudorandom
generator

Theorem: Dashed arrow transformation exists if and only if

() promise-BPSPACE(log** n) = (") promise-DSPACE (log" " n)

a>0 a>0



Conclusion

» This material is based upon work supported by

» NSF GRFP Grant No. DGE-1610403
» NSF Grant No. NSF CCF-1423544

» Thanks for your attention!

~ Any questions?



