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Derandomization
?⇐⇒ PRG

I Theorem (Aydınlıoğlu, van Melkebeek ’12):

I Assume the following derandomization statement:

promise-AM ⊆
⋂
ε>0

i.o.-Σ2TIME(2nε)/nε

I Then there is a PRG that gives that same derandomization

I Theorem (Goldreich ’11):

I Assume that for every problem in promise-BPP, there is a
deterministic polytime algorithm that succeeds on all feasibly
generated inputs

I Then there is a PRG that gives that same derandomization
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Simplest version of main result

I Theorem (informally stated):

I Assume that for every derandomization result for logspace
algorithms, there is a PRG strong enough to (nearly) recover
derandomization by iterating over all seeds

I Then
BPL ⊆

⋂
α>0

DSPACE(log1+α n).

I Equivalence of PRGs and derandomization would itself give a
derandomization!
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When your PRG doesn’t output enough bits

I Given: Oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for log n space

I Goal: Simulate (log n)-space m-coin algorithm, m� m0

I Approach 1: Ignore oracle, use a PRG which outputs m bits

I E.g. INW ’94 (extractors): Seed length O(log n logm)

I Approach 2: Use Gen as building block in new PRG which
outputs m bits

I E.g. using techniques of INW: Seed length

s + O

(
(log n) · log

(
m

m0

))
I For m� m0, might as well have started from scratch!

I Approach 3: Use Gen as building block in simulator
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Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A

I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Randomness-efficient simulator

I Inputs:
I “Source code” of (log n)-space, m-coin algorithm A
I s-bit seed

I (Output of simulator) ∼ε (final configuration of A)

I A PRG induces a simulator

I Crucial bonus feature: PRG doesn’t see “source code”!



Saks-Zhou-Armoni transformation

I Theorem (implicit in Armoni ’98, builds on SZ ’99, some details suppressed):

I Given oracle Gen : {0, 1}s → {0, 1}m0 , a PRG for (log n)-space
algorithms

I Can construct simulator for (log n)-space m-coin algorithms
with seed length/space complexity

O

(
s + (log n) · logm

logm0

)

I Original application: Saks-Zhou theorem

I m0 = 2
√
log n, s = O(log n logm0) = O(log3/2 n) (INW)

I Pick m = n (max possible # coins)
I =⇒ simulator with seed length/space complexity

O(log3/2 n + log3/2 n) = O(log3/2 n)
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Stronger version of main result

Ordinary
pseudorandom

generator

Simulator

Targeted
pseudorandom

generator

Simulation
advice

generator

Theorem: Dashed arrow transformation exists if and only if⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)



Conclusion

I This material is based upon work supported by
I NSF GRFP Grant No. DGE-1610403
I NSF Grant No. NSF CCF-1423544

I Thanks for your attention!

I Any questions?


