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Derandomization vs. Pseudorandom

Generators
•PRG =⇒ derandomization. What about the other way?

•Best PRG for BPL: Nisan ’92: Seed length O(log2 n)

•Best derandomization: Saks, Zhou ’99: BPL ⊆ DSPACE(log3/2 n)

•Theorem (Main result, simplest version):

– Assume that for every derandomization result for logspace algorithms,
there is a PRG strong enough to (nearly) recover derandomization by
iterating over all seeds and taking a majority vote

– Then BPL ⊆
⋂
α>0

DSPACE(log1+α n)

Randomness-efficient simulators for

automata
•Nonuniform model of log n space: n-state automaton

•Qm(q; y)
def
= final state if Q starts in state q, reads y ∈ {0, 1}m

• Simulator: Algorithm Sim such that Sim(Q, q, Us) ∼ε Qm(q;Um)

– Generic derandomizer, good enough for L = BPL

• In contrast, a PRG doesn’t see “source code” (Q, q) – bonus feature!

•Assumption of main result: For every simulator, there is a PRG with
similar parameters

Main tool: Saks-Zhou-Armoni

transformation
•What do you do when your PRG doesn’t output enough bits?

•Assume oracle access to Gen : {0, 1}s → {0, 1}m0, a PRG for n-state
automata

•Could we use Gen as subroutine in new PRG?

– INW ’94: To get m pseudorandom bits, use seed length

s + O

(
log n · log

(
m

m0

))
•Theorem (implicit in Armoni ’98, builds on Saks, Zhou ’99):

– Given oracle Gen, can construct m-step simulator for n-state au-
tomata with seed length/space complexity

O

(
s + (log n) · logm

logm0

)
•Example: To recover Saks-Zhou theorem, let Gen be the INW generator

with m0 = 2
√

log n, s = O(log3/2 n), m = n

Proof of main result
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• Scaling:

– Seed length is log1+y n, with 0 ≤ y ≤ 1

– # simulated coins is 2logx n, with 0 ≤ x ≤ 1

Proof idea of SZA theorem

•O(s)-coin subroutine Pow: Given automaton Q, produce automaton Pow(Q) ≈ Qm0

– Let Samp : {0, 1}O(s) × {0, 1}O(log n) → {0, 1}s be an averaging sampler

– For an automaton Q, let Pow(Q, x) be the automaton defined by

Pow(Q, x)(q; y) = Qm0(q;Gen(Samp(x, y)))

– With high probability over x, Pow(Q, x) ≈ Qm0

– Note that Pow(Q, x) reads O(log n) bits at a time

•Could we just compute Pow(Pow(Pow(· · · (Pow(Q)) · · · ))) to approximate Qm?

– Total # coins O(s · logm
logm0

). Too many

•Therefore, reuse randomness of Pow in each iteration

– Difficulty: Pow(Q, x) is stochastically dependent on x, so why should
Pow(Pow(Q, x), x) have low failure probability?

•Key: to break stochastic dependencies, perturb and round automaton after each Pow

Q

Q′

•With high probability, after perturbing and rounding, arrive at automaton we would
have reached with exact powering

Four kinds of derandomization
•Targeted PRG:

– Inputs: Automaton Q, start state q, seed x ∈ {0, 1}s

– Output: Bitstring y ∈ {0, 1}m that looks random to Qm(q; ·)
• Simulation advice generator:

– Input: Seed x ∈ {0, 1}s

– Output: Advice y ∈ {0, 1}a such that Qm(q;Um) can be simulated in logspace
given Q, q, y
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Main result, strong version

•Theorem: The following are equivalent:

1. For every targeted pseudorandom generator, there is a simulation advice generator
with similar parameters

2.
⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

•Proof idea:
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