Targeted Pseudorandom Generators, Simulation Advice Generators, and Derandomizing Logspace

William M. Hoza (UT Austin) and Chris Umans (Caltech)

Derandomization vs. Pseudorandom Generators

- \bullet PRG \implies derandomization. What about the other way?
- Best PRG for **BPL**: Nisan '92: Seed length $O(\log^2 n)$
- Best derandomization: Saks, Zhou '99: $\mathbf{BPL} \subseteq \mathbf{DSPACE}(\log^{3/2} n)$
- **Theorem** (Main result, simplest version):
- -Assume that for every derandomization result for logspace algorithms, there is a PRG strong enough to (nearly) recover derandomization by iterating over all seeds and taking a majority vote
- -Then $\mathbf{BPL} \subseteq \bigcap_{\alpha > 0} \mathbf{DSPACE}(\log^{1+\alpha} n)$

Randomness-efficient simulators for automata

- ullet Nonuniform model of $\log n$ space: n-state automaton
- $Q^m(q;y) \stackrel{\text{def}}{=}$ final state if Q starts in state q, reads $y \in \{0,1\}^m$
- Simulator: Algorithm Sim such that $Sim(Q, q, U_s) \sim_{\epsilon} Q^m(q; U_m)$
- -Generic derandomizer, good enough for $\mathbf{L} = \mathbf{BPL}$
- In contrast, a PRG doesn't see "source code" (Q, q) bonus feature!
- Assumption of main result: For every simulator, there is a PRG with similar parameters

Main tool: Saks-Zhou-Armoni transformation

- What do you do when your PRG doesn't output enough bits?
- Assume oracle access to $Gen: \{0,1\}^s \to \{0,1\}^{m_0}$, a PRG for n-state automata
- Could we use **Gen** as subroutine in new PRG?
- -INW '94: To get m pseudorandom bits, use seed length

$$s + O\left(\log n \cdot \log\left(\frac{m}{m_0}\right)\right)$$

- **Theorem** (implicit in Armoni '98, builds on Saks, Zhou '99):
- -Given oracle Gen, can construct m-step simulator for n-state automata with seed length/space complexity

$$O\left(s + (\log n) \cdot \frac{\log m}{\log m_0}\right)$$

• Example: To recover Saks-Zhou theorem, let **Gen** be the INW generator with $m_0 = 2^{\sqrt{\log n}}$, $s = O(\log^{3/2} n)$, m = n

- Scaling:
- -Seed length is $\log^{1+y} n$, with $0 \le y \le 1$
- -# simulated coins is $2^{\log^x n}$, with $0 \le x \le 1$

Proof idea of SZA theorem

- O(s)-coin subroutine Pow: Given automaton Q, produce automaton $Pow(Q) \approx Q^{m_0}$
- -Let Samp: $\{0,1\}^{O(s)} \times \{0,1\}^{O(\log n)} \to \{0,1\}^s$ be an averaging sampler
- For an automaton Q, let $\mathsf{Pow}(Q,x)$ be the automaton defined by $\mathsf{Pow}(Q,x)(q;y) = Q^{m_0}(q;\mathsf{Gen}(\mathsf{Samp}(x,y)))$
- -With high probability over x, $Pow(Q, x) \approx Q^{m_0}$
- -Note that Pow(Q, x) reads $O(\log n)$ bits at a time
- Could we just compute $Pow(Pow(Pow(\cdots(Pow(Q))\cdots)))$ to approximate Q^m ?

 Total # coins $O(s \cdot \frac{\log m}{\log m_0})$. Too many
- Therefore, reuse randomness of Pow in each iteration

 Difficulty: Pow(Q, x) is stochastically dependent on x, so why should Pow(Pow(Q, x), x) have low failure probability?
- Key: to break stochastic dependencies, perturb and round automaton after each Pow

• With high probability, after perturbing and rounding, arrive at automaton we would have reached with exact powering

Four kinds of derandomization

- Targeted PRG:
- -Inputs: Automaton Q, start state q, seed $x \in \{0,1\}^s$
- -Output: Bitstring $y \in \{0,1\}^m$ that looks random to $Q^m(q;\cdot)$
- Simulation advice generator:
- -Input: Seed $x \in \{0, 1\}^s$
- -Output: Advice $y \in \{0,1\}^a$ such that $Q^m(q;U_m)$ can be simulated in logspace given Q,q,y

Main result, strong version

- **Theorem**: The following are equivalent:
- 1. For every targeted pseudorandom generator, there is a simulation advice generator with similar parameters
- 2. $\bigcap_{\alpha>0}$ promise-BPSPACE $(\log^{1+\alpha} n) = \bigcap_{\alpha>0}$ promise-DSPACE $(\log^{1+\alpha} n)$
- Proof idea:

This material is based upon work supported by NSF GRFP Grant No. DGE-1610403 and NSF Grant No. NSF CCF-1423544.