TARGETED PSEUDORANDOM (GENERATORS, SIMULATION ADVICE
(GENERATORS, AND DERANDOMIZING LOGSPACE

William M. Hoza (UT Austin) and Chris Umans (Caltech)

Derandomization vs. Pseudorandom 1 T

Generators
e PRG = derandomization. What about the other way?”

e Best PRG for BPL: Nisan '92: Seed length O(log” n)
e Best derandomization: Saks, Zhou ’99: BPL C DSPACE (log*?n)

e Theorem (Main result, simplest version):

— Assume that for every derandomization result for logspace algorithms,
there is a PRG strong enough to (nearly) recover derandomization by
iterating over all seeds and taking a majority vote

—Then BPL C (| DSPACE(log' ™ n)

a>(

_

X\ Randomness-efficient simulators for
automata

e Nonuniform model of log n space: n-state automaton

*)" (q;y) * final state if () starts in state q, reads y € {0, 1}™

e Simulator: Algorithm Sim such that Sim(Q, ¢, Us) ~. Q™ (q; U,,)
— Generic derandomizer, good enough for L = BPL

e In contrast, a PRG doesn’t see “source code” (@), q) — bonus feature!

Proof of main result

BPL C L
@Dream ”.
®PRG %
@Simulator ;D
2V
v BPL C L
00 >0 >0 >0 >0 >0 >0 BPL C L'
log”!/ BPL — L
coins in L more simulated coins
>
e Scaling:

—Seed length is log" ¥ n, with 0 < y < 1
— # simulated coins is 21ng”, with 0 <z <1

=

Four kinds of derandomization

o Targeted PRG:
—Inputs: Automaton @), start state ¢, seed x € {0, 1}*
— Output: Bitstring y € {0, 1} that looks random to Q™ (q; -)
e Simulation advice generator:
—Input: Seed x € {0,1}*
—Output: Advice y € {0,1}% such that Q@™(q; U,,) can be simulated in logspace
given (), q, Yy
Simulator

/N

Simulation

Targeted
pseudorandom - > advice
generator generator

NS

Ordinary
pseudorandom
generator

e Assumption of main result: For every simulator, there is a PRG with r

similar parameters

: _

[Main tool: Saks-Zhou-Armoni 7

transformation

e What do you do when your PRG doesn’t output enough bits?
{0,1}° — {0,1}™, a PRG for n-state

e Assume oracle access to Gen
automata

e Could we use Gen as subroutine in new PRG?

—INW "94: To get m pseudorandom bits, use seed length

s+ 0 <1ogn - log <ﬁ>)
my

e Theorem (implicit in Armoni "98, builds on Saks, Zhou '99):

—Given oracle Gen, can construct m-step simulator for n-state au-
tomata with seed length/space complexity

O <5+ (logn) - logm>

log my

e Example: To recover Saks-Zhou theorem, let Gen be the INW generator
with my = 2V18" s = O(log*?n), m = n

Proof idea of SZA theorem

e O(s)-coin subroutine Pow: Given automaton @), produce automaton Pow((Q)) ~ Q)"
—Let Samp : {0, 1}9) x {0,1}90en) _ £0, 1}* be an averaging sampler

— For an automaton @, let Pow(Q, x) be the automaton defined by

Pow(Q, 7)(q;y) = Q""(q: Gen(Samp(z, y)))
— With high probability over x, Pow(Q, x) = Q™
— Note that Pow(Q, x) reads O(logn) bits at a time

e Could we just compute Pow(Pow(Pow(- - - (Pow(Q))---))) to approximate Q™7
—Total # coins O(s - ~=2™) . Too many

log my

e Therefore, reuse randomness of Pow in each iteration

— Difficulty: Pow(Q,x) is stochastically dependent on =z, so why should
Pow(Pow(Q,), z) have low failure probability?

e Key: to break stochastic dependencies, perturb and round automaton after each Pow

Q o

Q@ o

e With high probability, atter perturbing and rounding, arrive at automaton we would
have reached with exact powering

Main result, strong version

e Theorem: The following are equivalent:

1. For every targeted pseudorandom generator, there is a simulation advice generator
with similar parameters
2. ﬂ promise-BPSPACE(log' ™ n) = ﬂ promise-DSPACE(log' ™ n)
a>(>0
e Proof idea:

Simulator
Method of
Q7 A conditional
probabilities
SlmulathOH Targeted
Advice PRG
(Generator \—/
Assumption

This material is based upon work supported by NSF GRFP Grant No. DGE-1610403
and NSF Grant No. NSF CCF-1423544.

ETEX TikZposter

