
LATEX TikZposter

Targeted Pseudorandom Generators, Simulation Advice
Generators, and Derandomizing Logspace

William M. Hoza (UT Austin) and Chris Umans (Caltech)

Targeted Pseudorandom Generators, Simulation Advice
Generators, and Derandomizing Logspace

William M. Hoza (UT Austin) and Chris Umans (Caltech)

Derandomization vs. Pseudorandom

Generators
•PRG =⇒ derandomization. What about the other way?

•Best PRG for BPL: Nisan ’92: Seed length O(log2 n)

•Best derandomization: Saks, Zhou ’99: BPL ⊆ DSPACE(log3/2 n)

•Theorem (Main result, simplest version):

– Assume that for every derandomization result for logspace algorithms,
there is a PRG strong enough to (nearly) recover derandomization by
iterating over all seeds and taking a majority vote

– Then BPL ⊆
⋂
α>0

DSPACE(log1+α n)

Randomness-efficient simulators for

automata
•Nonuniform model of log n space: n-state automaton

•Qm(q; y)
def
= final state if Q starts in state q, reads y ∈ {0, 1}m

• Simulator: Algorithm Sim such that Sim(Q, q, Us) ∼ε Qm(q;Um)

– Generic derandomizer, good enough for L = BPL

• In contrast, a PRG doesn’t see “source code” (Q, q) – bonus feature!

•Assumption of main result: For every simulator, there is a PRG with
similar parameters

Main tool: Saks-Zhou-Armoni

transformation
•What do you do when your PRG doesn’t output enough bits?

•Assume oracle access to Gen : {0, 1}s → {0, 1}m0, a PRG for n-state
automata

•Could we use Gen as subroutine in new PRG?

– INW ’94: To get m pseudorandom bits, use seed length

s + O

(
log n · log

(
m

m0

))
•Theorem (implicit in Armoni ’98, builds on Saks, Zhou ’99):

– Given oracle Gen, can construct m-step simulator for n-state au-
tomata with seed length/space complexity

O

(
s + (log n) · logm

logm0

)
•Example: To recover Saks-Zhou theorem, let Gen be the INW generator

with m0 = 2
√

log n, s = O(log3/2 n), m = n

Proof of main result

more simulated coins

sh
orter

seed

BPL = L

Dream Nisan

INW

NZ

Armoni

PRG

BPL ⊆ L2

logO(1) n
coins in L

SZA

Simulator

BPL ⊆ L3/2

E E E E E E E E
BPL ⊆ L1.1

• Scaling:

– Seed length is log1+y n, with 0 ≤ y ≤ 1

– # simulated coins is 2logx n, with 0 ≤ x ≤ 1

Proof idea of SZA theorem

•O(s)-coin subroutine Pow: Given automaton Q, produce automaton Pow(Q) ≈ Qm0

– Let Samp : {0, 1}O(s) × {0, 1}O(log n) → {0, 1}s be an averaging sampler

– For an automaton Q, let Pow(Q, x) be the automaton defined by

Pow(Q, x)(q; y) = Qm0(q;Gen(Samp(x, y)))

– With high probability over x, Pow(Q, x) ≈ Qm0

– Note that Pow(Q, x) reads O(log n) bits at a time

•Could we just compute Pow(Pow(Pow(· · · (Pow(Q)) · · · ))) to approximate Qm?

– Total # coins O(s · logm
logm0

). Too many

•Therefore, reuse randomness of Pow in each iteration

– Difficulty: Pow(Q, x) is stochastically dependent on x, so why should
Pow(Pow(Q, x), x) have low failure probability?

•Key: to break stochastic dependencies, perturb and round automaton after each Pow

Q

Q′

•With high probability, after perturbing and rounding, arrive at automaton we would
have reached with exact powering

Four kinds of derandomization
•Targeted PRG:

– Inputs: Automaton Q, start state q, seed x ∈ {0, 1}s

– Output: Bitstring y ∈ {0, 1}m that looks random to Qm(q; ·)
• Simulation advice generator:

– Input: Seed x ∈ {0, 1}s

– Output: Advice y ∈ {0, 1}a such that Qm(q;Um) can be simulated in logspace
given Q, q, y

Ordinary
pseudorandom

generator

Simulator

Targeted
pseudorandom

generator

Simulation
advice

generator

Main result, strong version

•Theorem: The following are equivalent:

1. For every targeted pseudorandom generator, there is a simulation advice generator
with similar parameters

2.
⋂
α>0

promise-BPSPACE(log1+α n) =
⋂
α>0

promise-DSPACE(log1+α n)

•Proof idea:

Simulator

Simulation
Advice

Generator

SZA

Targeted
PRG

Assumption

Method of
conditional

probabilities

This material is based upon work supported by NSF GRFP Grant No. DGE-1610403
and NSF Grant No. NSF CCF-1423544.


