
The Adversarial Noise Threshold for Distributed
Protocols

William M. Hoza and Leonard J. Schulman
Caltech

January 10, 2016

Coding for interactive communication

I Classic coding theory: Alice sends a message to Bob

I Coding for interactive communication: Alice and Bob have a
conversation

I E.g. chess over the phone

I “What?”

Coding for interactive communication

I Classic coding theory: Alice sends a message to Bob

I Coding for interactive communication: Alice and Bob have a
conversation

I E.g. chess over the phone

I “What?”

Coding for interactive communication

I Classic coding theory: Alice sends a message to Bob

I Coding for interactive communication: Alice and Bob have a
conversation

I E.g. chess over the phone

I “What?”

Coding for interactive communication

I Classic coding theory: Alice sends a message to Bob

I Coding for interactive communication: Alice and Bob have a
conversation

I E.g. chess over the phone

I “What?”

Topic of this talk

I Challenge: Protect distributed computation from channel noise

I Coding for interactive multiparty communication

Outline

1. The model

2. Related work

3. Main result

4. Proof sketch

5. Directions for further research

6. Acknowledgements

The model

I Parties P1, . . . ,Pn connected by m two-way communication
channels (arbitrary, static topology)

I Input to a computational problem split up as x = (x1, . . . , xn),
with Pi receiving xi

The model (2)

1

0

1

0
1

1
0

0
0

1
0

1

0

1

1

1

0

0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1
0

1

0
1

1
0

0
0

1
0

1

0

1

1

1

0

0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1
0

1

0
1

1
0

0

0

1

0

1

0

1

1

1

0

0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1
0

1

0
1

1

0

0

0

1

0

1

0
1

1

1

0

0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1 0

1

0
1

1

0

0

0

1

0

1

0
1

1

1

0

0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1 0

1

0
1

1

0

0

0

1

0

1

0
1

1

1

0

0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1 0

1

0
1

1

0

0

0

1

0

1

01
1

1

0

0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1 0

1

0
1

1

0
0

0
1

0
1

01
1

1

0
0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1 0

1

0
1

1

0
0

0
1

0
1

01
1

1

0
0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1
0

1
0

1 1

0
0

0 1

0
1

0
1

1
1

0
0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1
0

1
0

1 1

0
0

0 1

0
1

0
1

1
1

0
0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1
0

1
0

11

0
0

0 1

0
1

0
1

1
1

0
0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

10

1
1

0
0

0
1

0
1

0

1 1
1

0
0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

10

1
1

0
0

0
1

0
1

0

1 1
1

0
0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

10

1
1

00

0

1

0 1

0

1 11

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

10

1

1

00

0

1

0 1

0

1 11

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

10

1

1

00

0

1

0 1

0

1 11

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

10

1

1

00

0

1

0 1

0

1 11

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

10

1

1

01

0

1

0 1

0

1 01

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

1
0

1

1

01

0

1

0 1

0

1 01

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

1
0

1

1

01

0

1

0 1

0

1 01

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

1
0

1

1

01

0

1

0 1

0

1 01

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (2)

1

0

1

0

1

1

01

0

1

0 1

0

1 01

0 0

I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit

The model (3)

I Protocol: n-tuple of (possibly probabilistic) algorithms that the
parties use to decide what bits to transmit

I After T rounds, each party gives an output

I T is the round complexity of the protocol (known by all parties)

The model (4)

I Goal: Design compiler C : transforms protocol π into
simulation protocol π̃ = C (π) which tolerates a high error rate

Error rate =
Total number of bits flipped

Total number of bits transmitted

I Secondary goal: π̃ should have low round complexity

The model (4)

I Goal: Design compiler C : transforms protocol π into
simulation protocol π̃ = C (π) which tolerates a high error rate

Error rate =
Total number of bits flipped

Total number of bits transmitted

I Secondary goal: π̃ should have low round complexity

Related work: Stochastic errors

I Variant model: Channels are independent BSCs with capacity
c > 0

I Rajagopalan and Schulman ’94: Every π can be compiled into
simulation π̃ with

I Round complexity O(T log(max degree + 1))
I Failure probability e−Ω(T)

I Still open: Optimal asymptotic round complexity?

I But see Alon et. al ’15, Braverman et. al ’16

I See also Gelles, Moitra, Sahai ’11, ’14

Related work: Stochastic errors

I Variant model: Channels are independent BSCs with capacity
c > 0

I Rajagopalan and Schulman ’94: Every π can be compiled into
simulation π̃ with

I Round complexity O(T log(max degree + 1))
I Failure probability e−Ω(T)

I Still open: Optimal asymptotic round complexity?

I But see Alon et. al ’15, Braverman et. al ’16

I See also Gelles, Moitra, Sahai ’11, ’14

Related work: Stochastic errors

I Variant model: Channels are independent BSCs with capacity
c > 0

I Rajagopalan and Schulman ’94: Every π can be compiled into
simulation π̃ with

I Round complexity O(T log(max degree + 1))

I Failure probability e−Ω(T)

I Still open: Optimal asymptotic round complexity?

I But see Alon et. al ’15, Braverman et. al ’16

I See also Gelles, Moitra, Sahai ’11, ’14

Related work: Stochastic errors

I Variant model: Channels are independent BSCs with capacity
c > 0

I Rajagopalan and Schulman ’94: Every π can be compiled into
simulation π̃ with

I Round complexity O(T log(max degree + 1))
I Failure probability e−Ω(T)

I Still open: Optimal asymptotic round complexity?

I But see Alon et. al ’15, Braverman et. al ’16

I See also Gelles, Moitra, Sahai ’11, ’14

Related work: Stochastic errors

I Variant model: Channels are independent BSCs with capacity
c > 0

I Rajagopalan and Schulman ’94: Every π can be compiled into
simulation π̃ with

I Round complexity O(T log(max degree + 1))
I Failure probability e−Ω(T)

I Still open: Optimal asymptotic round complexity?

I But see Alon et. al ’15, Braverman et. al ’16

I See also Gelles, Moitra, Sahai ’11, ’14

Related work: Stochastic errors

I Variant model: Channels are independent BSCs with capacity
c > 0

I Rajagopalan and Schulman ’94: Every π can be compiled into
simulation π̃ with

I Round complexity O(T log(max degree + 1))
I Failure probability e−Ω(T)

I Still open: Optimal asymptotic round complexity?
I But see Alon et. al ’15, Braverman et. al ’16

I See also Gelles, Moitra, Sahai ’11, ’14

Related work: Stochastic errors

I Variant model: Channels are independent BSCs with capacity
c > 0

I Rajagopalan and Schulman ’94: Every π can be compiled into
simulation π̃ with

I Round complexity O(T log(max degree + 1))
I Failure probability e−Ω(T)

I Still open: Optimal asymptotic round complexity?
I But see Alon et. al ’15, Braverman et. al ’16

I See also Gelles, Moitra, Sahai ’11, ’14

Related work: Aynchronous communication

I Variant model: One message in-flight at a time

I Jain, Kalai, Lewko ’15: In graphs where one party is connected
to all others, every “semi-adaptive” π can be compiled into
simulation π̃ with properties:

I Tolerates adversarial error rate Ω(1/n)
I Round complexity O(T)

I See also Lewko and Vitercik ’15

Related work: Aynchronous communication

I Variant model: One message in-flight at a time
I Jain, Kalai, Lewko ’15: In graphs where one party is connected

to all others, every “semi-adaptive” π can be compiled into
simulation π̃ with properties:

I Tolerates adversarial error rate Ω(1/n)
I Round complexity O(T)

I See also Lewko and Vitercik ’15

Related work: Aynchronous communication

I Variant model: One message in-flight at a time
I Jain, Kalai, Lewko ’15: In graphs where one party is connected

to all others, every “semi-adaptive” π can be compiled into
simulation π̃ with properties:

I Tolerates adversarial error rate Ω(1/n)

I Round complexity O(T)

I See also Lewko and Vitercik ’15

Related work: Aynchronous communication

I Variant model: One message in-flight at a time
I Jain, Kalai, Lewko ’15: In graphs where one party is connected

to all others, every “semi-adaptive” π can be compiled into
simulation π̃ with properties:

I Tolerates adversarial error rate Ω(1/n)
I Round complexity O(T)

I See also Lewko and Vitercik ’15

Related work: Aynchronous communication

I Variant model: One message in-flight at a time
I Jain, Kalai, Lewko ’15: In graphs where one party is connected

to all others, every “semi-adaptive” π can be compiled into
simulation π̃ with properties:

I Tolerates adversarial error rate Ω(1/n)
I Round complexity O(T)

I See also Lewko and Vitercik ’15

Context: Elementary negative result

I Say simulation runs on G = (V ,E) with edge connectivity k

I Cannot tolerate error rate k/|E |

I On some graphs, this is only O(1/n2)!

I Proof: Adversary attacks k edges to effectively disconnect
graph

Figure: “Concentrate all your fire on the nearest starship.”

Context: Elementary negative result

I Say simulation runs on G = (V ,E) with edge connectivity k
I Cannot tolerate error rate k/|E |

I On some graphs, this is only O(1/n2)!

I Proof: Adversary attacks k edges to effectively disconnect
graph

Figure: “Concentrate all your fire on the nearest starship.”

Context: Elementary negative result

I Say simulation runs on G = (V ,E) with edge connectivity k
I Cannot tolerate error rate k/|E |

I On some graphs, this is only O(1/n2)!

I Proof: Adversary attacks k edges to effectively disconnect
graph

Figure: “Concentrate all your fire on the nearest starship.”

Context: Elementary negative result

I Say simulation runs on G = (V ,E) with edge connectivity k
I Cannot tolerate error rate k/|E |

I On some graphs, this is only O(1/n2)!

I Proof: Adversary attacks k edges to effectively disconnect
graph

Figure: “Concentrate all your fire on the nearest starship.”

Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)
I Runs on subgraph G̃ = (V , Ẽ) of original graph G = (V ,E)

I Round complexity O
(

m log n
n T

)
I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)
I Round complexity within O(k log n) of optimal

I k = edge connectivity of G

Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)

I Runs on subgraph G̃ = (V , Ẽ) of original graph G = (V ,E)

I Round complexity O
(

m log n
n T

)
I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)
I Round complexity within O(k log n) of optimal

I k = edge connectivity of G

Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)
I Runs on subgraph G̃ = (V , Ẽ) of original graph G = (V ,E)

I Round complexity O
(

m log n
n T

)
I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)
I Round complexity within O(k log n) of optimal

I k = edge connectivity of G

Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)
I Runs on subgraph G̃ = (V , Ẽ) of original graph G = (V ,E)

I Round complexity O
(

m log n
n T

)

I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)
I Round complexity within O(k log n) of optimal

I k = edge connectivity of G

Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)
I Runs on subgraph G̃ = (V , Ẽ) of original graph G = (V ,E)

I Round complexity O
(

m log n
n T

)
I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)
I Round complexity within O(k log n) of optimal

I k = edge connectivity of G

Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)
I Runs on subgraph G̃ = (V , Ẽ) of original graph G = (V ,E)

I Round complexity O
(

m log n
n T

)
I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)

I Round complexity within O(k log n) of optimal

I k = edge connectivity of G

Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)
I Runs on subgraph G̃ = (V , Ẽ) of original graph G = (V ,E)

I Round complexity O
(

m log n
n T

)
I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)
I Round complexity within O(k log n) of optimal

I k = edge connectivity of G

Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)
I Runs on subgraph G̃ = (V , Ẽ) of original graph G = (V ,E)

I Round complexity O
(

m log n
n T

)
I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)
I Round complexity within O(k log n) of optimal

I k = edge connectivity of G

Coding-theoretic ingredient of main result

I Lemma 1: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/m)
I Round complexity O(T)

I Proof: Make small tweaks to construction/analysis in
Rajagopalan and Schulman ’94

I “RS compiler”

Coding-theoretic ingredient of main result

I Lemma 1: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/m)

I Round complexity O(T)

I Proof: Make small tweaks to construction/analysis in
Rajagopalan and Schulman ’94

I “RS compiler”

Coding-theoretic ingredient of main result

I Lemma 1: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/m)
I Round complexity O(T)

I Proof: Make small tweaks to construction/analysis in
Rajagopalan and Schulman ’94

I “RS compiler”

Coding-theoretic ingredient of main result

I Lemma 1: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/m)
I Round complexity O(T)

I Proof: Make small tweaks to construction/analysis in
Rajagopalan and Schulman ’94

I “RS compiler”

Coding-theoretic ingredient of main result

I Lemma 1: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/m)
I Round complexity O(T)

I Proof: Make small tweaks to construction/analysis in
Rajagopalan and Schulman ’94

I “RS compiler”

Proof outline of main result

1. Use multicommodity flow methods to route
messages of π through cut sparsifier


No error
correction

2. Restore a few of the removed edges to
improve efficiency

3. Apply RS compiler to this new protocol

I Second sparse subnetwork has m̃ ∈ O(n) edges

I So final protocol tolerates error rate Ω(1/m̃) = Ω(1/n)

Proof outline of main result

1. Use multicommodity flow methods to route
messages of π through cut sparsifier


No error
correction2. Restore a few of the removed edges to

improve efficiency

3. Apply RS compiler to this new protocol

I Second sparse subnetwork has m̃ ∈ O(n) edges

I So final protocol tolerates error rate Ω(1/m̃) = Ω(1/n)

Proof outline of main result

1. Use multicommodity flow methods to route
messages of π through cut sparsifier


No error
correction2. Restore a few of the removed edges to

improve efficiency

3. Apply RS compiler to this new protocol

I Second sparse subnetwork has m̃ ∈ O(n) edges

I So final protocol tolerates error rate Ω(1/m̃) = Ω(1/n)

Proof outline of main result

1. Use multicommodity flow methods to route
messages of π through cut sparsifier


No error
correction2. Restore a few of the removed edges to

improve efficiency

3. Apply RS compiler to this new protocol

I Second sparse subnetwork has m̃ ∈ O(n) edges

I So final protocol tolerates error rate Ω(1/m̃) = Ω(1/n)

Proof outline of main result

1. Use multicommodity flow methods to route
messages of π through cut sparsifier


No error
correction2. Restore a few of the removed edges to

improve efficiency

3. Apply RS compiler to this new protocol

I Second sparse subnetwork has m̃ ∈ O(n) edges

I So final protocol tolerates error rate Ω(1/m̃) = Ω(1/n)

Proof of main result: Step 1

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Special case of spectral sparsification theorem by de Carli Silva,
Harvey Sato ’15:

I Every connected, undirected G = (V ,E) has a subgraph
G̃ = (V , Ẽ) with O(n) edges s.t. for each U ⊆ V ,

10m

n

∣∣∣δ̃(U)
∣∣∣ ≥ |δ(U)|. (1)

I δ(U) is the set of edges in G crossing U
I δ̃(U) is the set of edges in G̃ crossing U

I Builds on Batson et. al ’09, Benczúr and Karger ’96

Proof of main result: Step 1

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Special case of spectral sparsification theorem by de Carli Silva,
Harvey Sato ’15:

I Every connected, undirected G = (V ,E) has a subgraph
G̃ = (V , Ẽ) with O(n) edges s.t. for each U ⊆ V ,

10m

n

∣∣∣δ̃(U)
∣∣∣ ≥ |δ(U)|. (1)

I δ(U) is the set of edges in G crossing U
I δ̃(U) is the set of edges in G̃ crossing U

I Builds on Batson et. al ’09, Benczúr and Karger ’96

Proof of main result: Step 1

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Special case of spectral sparsification theorem by de Carli Silva,
Harvey Sato ’15:

I Every connected, undirected G = (V ,E) has a subgraph
G̃ = (V , Ẽ) with O(n) edges s.t. for each U ⊆ V ,

10m

n

∣∣∣δ̃(U)
∣∣∣ ≥ |δ(U)|. (1)

I δ(U) is the set of edges in G crossing U
I δ̃(U) is the set of edges in G̃ crossing U

I Builds on Batson et. al ’09, Benczúr and Karger ’96

Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)

Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)

Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E

I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)

Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)

Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish

I Only adds O(n) edges
I Only increases congestion by 1

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E

I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish

I Only adds O(n) edges
I Only increases congestion by 1

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish

I Only adds O(n) edges
I Only increases congestion by 1

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)

I P has dilation (max length) at most m log m
n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish

I Only adds O(n) edges
I Only increases congestion by 1

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish

I Only adds O(n) edges
I Only increases congestion by 1

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)

I Replace every path that is too long with a single edge from
start to finish

I Only adds O(n) edges
I Only increases congestion by 1

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish

I Only adds O(n) edges
I Only increases congestion by 1

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish
I Only adds O(n) edges

I Only increases congestion by 1

Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish
I Only adds O(n) edges
I Only increases congestion by 1

Proof of main result: Step 3

3. Apply RS compiler to this new protocol

I Theorem (Leighton, Maggs, Rao ’94): For any set P of simple
paths, there is a schedule for sending one packet along each
path in P in a total of O(congestion + dilation) time steps.

I Proof of main result:

π
Sparsifying compiler7−→ π′

RS compiler7−→ π̃

I Each round of π is simulated by O(m log n
n) steps in π′ by using

the paths of Lemma 2

Proof of main result: Step 3

3. Apply RS compiler to this new protocol

I Theorem (Leighton, Maggs, Rao ’94): For any set P of simple
paths, there is a schedule for sending one packet along each
path in P in a total of O(congestion + dilation) time steps.

I Proof of main result:

π
Sparsifying compiler7−→ π′

RS compiler7−→ π̃

I Each round of π is simulated by O(m log n
n) steps in π′ by using

the paths of Lemma 2

Proof of main result: Step 3

3. Apply RS compiler to this new protocol

I Theorem (Leighton, Maggs, Rao ’94): For any set P of simple
paths, there is a schedule for sending one packet along each
path in P in a total of O(congestion + dilation) time steps.

I Proof of main result:

π
Sparsifying compiler7−→ π′

RS compiler7−→ π̃

I Each round of π is simulated by O(m log n
n) steps in π′ by using

the paths of Lemma 2

Directions for further research

I Computational efficiency?

I Open question: Can round complexity be improved by factor of
k log n?

I Directed graphs

I Optimal error rate is Θ(1
s), where s is the smallest number of

edges in any subgraph with same reachability relation
I Open question: How to avoid large round complexity blowup?

Directions for further research

I Computational efficiency?

I Open question: Can round complexity be improved by factor of
k log n?

I Directed graphs

I Optimal error rate is Θ(1
s), where s is the smallest number of

edges in any subgraph with same reachability relation
I Open question: How to avoid large round complexity blowup?

Directions for further research

I Computational efficiency?

I Open question: Can round complexity be improved by factor of
k log n?

I Directed graphs

I Optimal error rate is Θ(1
s), where s is the smallest number of

edges in any subgraph with same reachability relation
I Open question: How to avoid large round complexity blowup?

Directions for further research

I Computational efficiency?

I Open question: Can round complexity be improved by factor of
k log n?

I Directed graphs
I Optimal error rate is Θ(1

s), where s is the smallest number of
edges in any subgraph with same reachability relation

I Open question: How to avoid large round complexity blowup?

Directions for further research

I Computational efficiency?

I Open question: Can round complexity be improved by factor of
k log n?

I Directed graphs
I Optimal error rate is Θ(1

s), where s is the smallest number of
edges in any subgraph with same reachability relation

I Open question: How to avoid large round complexity blowup?

Acknowledgements

I Thanks, Caltech SURF program!

I Thanks, Nellie Bergen and Adrian Foster Tillotson!

I Thanks, Achievement Rewards for College Scientists
Foundation!

I Thanks, ACM!

I Thanks, SIAM!

I Thanks, listeners!

