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» Classic coding theory: Alice sends a message to Bob
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» Coding for interactive communication: Alice and Bob have a
conversation

0o 0o
» E.g. chess over the phone

> “What?"



Topic of this talk

» Challenge: Protect distributed computation from channel noise

» Coding for interactive multiparty communication
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» Parties Py, ..., P, connected by m two-way communication
channels (arbitrary, static topology)

» Input to a computational problem split up as x = (xi, ..., Xxp),
with P; receiving x;
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The model (3)

» Protocol: n-tuple of (possibly probabilistic) algorithms that the
parties use to decide what bits to transmit

» After T rounds, each party gives an output

» T is the round complexity of the protocol (known by all parties)



The model (4)

» Goal: Design compiler C: transforms protocol 7 into
simulation protocol 7 = C(7) which tolerates a high error rate
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The model (4)

» Goal: Design compiler C: transforms protocol 7 into
simulation protocol 7 = C(7) which tolerates a high error rate

Total number of bits flipped
Error rate =

Total number of bits transmitted

» Secondary goal: 7 should have low round complexity
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Variant model: Channels are independent BSCs with capacity
c>0

Rajagopalan and Schulman '94: Every 7w can be compiled into
simulation 7 with

» Round complexity O(T log(max degree + 1))
» Failure probability e=(T)
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Still open: Optimal asymptotic round complexity?
» But see Alon et. al '15, Braverman et. al '16

See also Gelles, Moitra, Sahai '11, '14

v



Related work: Aynchronous communication

» Variant model: One message in-flight at a time



Related work: Aynchronous communication

» Variant model: One message in-flight at a time

» Jain, Kalai, Lewko '15: In graphs where one party is connected
to all others, every “semi-adaptive” 7w can be compiled into
simulation 7 with properties:



Related work: Aynchronous communication

» Variant model: One message in-flight at a time

» Jain, Kalai, Lewko '15: In graphs where one party is connected
to all others, every “semi-adaptive” 7w can be compiled into
simulation 7 with properties:

» Tolerates adversarial error rate Q(1/n)



Related work: Aynchronous communication

» Variant model: One message in-flight at a time
» Jain, Kalai, Lewko '15: In graphs where one party is connected
to all others, every “semi-adaptive” 7w can be compiled into
simulation 7 with properties:
» Tolerates adversarial error rate Q(1/n)
» Round complexity O(T)



Related work: Aynchronous communication

» Variant model: One message in-flight at a time

» Jain, Kalai, Lewko '15: In graphs where one party is connected
to all others, every “semi-adaptive” 7w can be compiled into
simulation 7 with properties:

» Tolerates adversarial error rate Q(1/n)
» Round complexity O(T)

> See also Lewko and Vitercik '15
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Context: Elementary negative result

» Say simulation runs on G = (V/, E) with edge connectivity k
» Cannot tolerate error rate k/|E|
» On some graphs, this is only O(1/n?)!
> Proof: Adversary attacks k edges to effectively disconnect
graph

Figure: “Concentrate all your fire on the nearest starship.”
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Our main result
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Theorem: Every m can be compiled into simulation 7 with
properties:

» Tolerates adversarial error rate Q(1/n)
» Runs on subgraph G = (V, E) of original graph G = (V, E)
» Round complexity O (% T)

v

Error rate within constant factor of optimal

G is sparse (O(n) edges)

Round complexity within O(k log n) of optimal
» k = edge connectivity of G

v

v
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Coding-theoretic ingredient of main result

» Lemma 1: Every 7 can be compiled into simulation 7 with
properties:
» Tolerates adversarial error rate Q(1/m)
» Round complexity O(T)
» Proof: Make small tweaks to construction/analysis in
Rajagopalan and Schulman '94

» “RS compiler”



Proof outline of main result

1. Use multicommodity flow methods to route
messages of w through cut sparsifier No error

correction



Proof outline of main result

1. Use multicommodity flow methods to route
messages of w through cut sparsifier No error

2. Restore a few of the removed edges to correction
improve efficiency



Proof outline of main result

1. Use multicommodity flow methods to route
messages of w through cut sparsifier No error

2. Restore a few of the removed edges to correction
improve efficiency

3. Apply RS compiler to this new protocol



Proof outline of main result

1. Use multicommodity flow methods to route
messages of w through cut sparsifier No error

2. Restore a few of the removed edges to correction
improve efficiency

3. Apply RS compiler to this new protocol

» Second sparse subnetwork has m € O(n) edges



Proof outline of main result

1. Use multicommodity flow methods to route
messages of w through cut sparsifier No error

2. Restore a few of the removed edges to correction
improve efficiency

3. Apply RS compiler to this new protocol

» Second sparse subnetwork has m € O(n) edges
» So final protocol tolerates error rate Q(1/m) = Q(1/n)
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Proof of main result: Step 1

1. Use multicommodity flow methods to route messages of m
through cut sparsifier

» Special case of spectral sparsification theorem by de Carli Silva,
Harvey Sato '15:

» Every connected, undirected G = (V/, E) has a subgraph
G = (V, E) with O(n) edges s.t. for each U C V,

10m
n

B(W)| = 18(W)l. o

» O(U) is the set of edges in G crossing U
» 6(U) is the set of edges in G crossing U

» Builds on Batson et. al '09, Benczir and Karger '96
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1. Use multicommodity flow methods to route messages of m
through cut sparsifier

> Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich '95) + randomized rounding
» = There exists a set Py of 2m simple paths through G such
that
» Py contains two paths P; «~ P; for each {P;, P;} € E
» Py uses O(n) edges in total
» Py has congestion at most O (Lﬂgm)
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2. Restore a few of the removed edges to improve efficiency

» Lemma 2: For any G = (V, E), there exists a set P of 2m
simple paths through G such that
» P contains two paths P; «~ P; for each {P;, P;} € E
» P uses O(n) edges in total
» P has congestion at most O (@)

» P has dilation (max length) at most %ng’"

» Proof: Start from Py (last slide)

» Replace every path that is too long with a single edge from
start to finish
» Only adds O(n) edges
» Only increases congestion by 1
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Proof of main result: Step 3

3. Apply RS compiler to this new protocol

» Theorem (Leighton, Maggs, Rao '94): For any set P of simple
paths, there is a schedule for sending one packet along each
path in P in a total of O(congestion + dilation) time steps.

» Proof of main result:

Sparsifying compiler RS compiler
— T T

n

» Each round of 7 is simulated by O(™%) steps in 7’ by using
the paths of Lemma 2 O
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Directions for further research

» Computational efficiency?

» Open question: Can round complexity be improved by factor of
klog n?

» Directed graphs

» Optimal error rate is 9(%) where s is the smallest number of
edges in any subgraph with same reachability relation
» Open question: How to avoid large round complexity blowup?
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