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Topic of this talk

I Challenge: Protect distributed computation from channel noise

I Coding for interactive multiparty communication
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The model

I Parties P1, . . . ,Pn connected by m two-way communication
channels (arbitrary, static topology)

I Input to a computational problem split up as x = (x1, . . . , xn),
with Pi receiving xi
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I Synchronous messaging: Two bits per edge per round (one in
each direction)

I Adversary sees all, flips bits as she sees fit
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The model (3)

I Protocol: n-tuple of (possibly probabilistic) algorithms that the
parties use to decide what bits to transmit

I After T rounds, each party gives an output

I T is the round complexity of the protocol (known by all parties)



The model (4)

I Goal: Design compiler C : transforms protocol π into
simulation protocol π̃ = C (π) which tolerates a high error rate

Error rate =
Total number of bits flipped

Total number of bits transmitted

I Secondary goal: π̃ should have low round complexity
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Related work: Stochastic errors

I Variant model: Channels are independent BSCs with capacity
c > 0

I Rajagopalan and Schulman ’94: Every π can be compiled into
simulation π̃ with

I Round complexity O(T log(max degree + 1))
I Failure probability e−Ω(T )

I Still open: Optimal asymptotic round complexity?

I But see Alon et. al ’15, Braverman et. al ’16
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Related work: Aynchronous communication

I Variant model: One message in-flight at a time

I Jain, Kalai, Lewko ’15: In graphs where one party is connected
to all others, every “semi-adaptive” π can be compiled into
simulation π̃ with properties:

I Tolerates adversarial error rate Ω(1/n)
I Round complexity O(T )

I See also Lewko and Vitercik ’15
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Context: Elementary negative result

I Say simulation runs on G = (V ,E ) with edge connectivity k

I Cannot tolerate error rate k/|E |

I On some graphs, this is only O(1/n2)!

I Proof: Adversary attacks k edges to effectively disconnect
graph

Figure: “Concentrate all your fire on the nearest starship.”
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Our main result

I Theorem: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/n)
I Runs on subgraph G̃ = (V , Ẽ ) of original graph G = (V ,E )

I Round complexity O
(

m log n
n T

)
I Error rate within constant factor of optimal

I G̃ is sparse (O(n) edges)
I Round complexity within O(k log n) of optimal

I k = edge connectivity of G
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I Lemma 1: Every π can be compiled into simulation π̃ with
properties:

I Tolerates adversarial error rate Ω(1/m)
I Round complexity O(T )

I Proof: Make small tweaks to construction/analysis in
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Proof outline of main result

1. Use multicommodity flow methods to route
messages of π through cut sparsifier


No error
correction

2. Restore a few of the removed edges to
improve efficiency

3. Apply RS compiler to this new protocol

I Second sparse subnetwork has m̃ ∈ O(n) edges

I So final protocol tolerates error rate Ω(1/m̃) = Ω(1/n)
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Proof of main result: Step 1

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Special case of spectral sparsification theorem by de Carli Silva,
Harvey Sato ’15:

I Every connected, undirected G = (V ,E ) has a subgraph
G̃ = (V , Ẽ ) with O(n) edges s.t. for each U ⊆ V ,

10m

n

∣∣∣δ̃(U)
∣∣∣ ≥ |δ(U)|. (1)

I δ(U) is the set of edges in G crossing U
I δ̃(U) is the set of edges in G̃ crossing U

I Builds on Batson et. al ’09, Benczúr and Karger ’96
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Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)



Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)



Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E

I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)



Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)



Proof of main result: Step 1 (cont.)

1. Use multicommodity flow methods to route messages of π
through cut sparsifier

I Apply approximate multicommodity max-flow min-cut theorem
(Linial, London, Rabinovich ’95) + randomized rounding

I ⇒ There exists a set P0 of 2m simple paths through G such
that

I P0 contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P0 uses O(n) edges in total

I P0 has congestion at most O
(

m log m
n

)



Proof of main result: Step 2

2. Restore a few of the removed edges to improve efficiency

I Lemma 2: For any G = (V ,E ), there exists a set P of 2m
simple paths through G such that

I P contains two paths Pi ! Pj for each {Pi ,Pj} ∈ E
I P uses O(n) edges in total

I P has congestion at most O
(

m log m
n

)
I P has dilation (max length) at most m log m

n

I Proof: Start from P0 (last slide)
I Replace every path that is too long with a single edge from

start to finish

I Only adds O(n) edges
I Only increases congestion by 1
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