
Fooling Near-Maximal Decision Trees

@ UChicago CS Theory Lunch

January 29, 2025

William M. Hoza

The University of Chicago

Pseudorandom generators

• A pseudorandom generator (PRG) is a function 𝐺: 0, 1 𝑠 → 0, 1 𝑛

• The PRG fools 𝑇: 0, 1 𝑛 → 0, 1 with error 𝜀 if

Pr 𝑇 𝑈𝑛 = 1 − Pr 𝑇 𝐺 𝑈𝑠 = 1 ≤ 𝜀

• Notation: 𝑈𝑛 = uniform distribution over 0, 1 𝑛

• Today’s talk: PRGs that fool decision trees

𝐺

Decision trees

• In each step, the tree may observe any one bit of

the input 𝑥 ∈ 0, 1 𝑛

• Eventually, the tree must halt and outputs a value

𝑇 𝑥 ∈ 0, 1

• Depth = maximum length of path from root to leaf

• Size = number of leaves

0

𝑥1

𝑥2 𝑥3

0 1

0 01 1

𝑥2

0 1

1

1 0

0

Example: Fooling depth-2 decision trees

• Claim: There exists a PRG 𝐺: 0, 1 2 → 0, 1 3 that

fools depth-2 decision trees with error 0

• Proof sketch: Let 𝐺 𝑎, 𝑏 = 𝑎, 𝑏, 𝑎 ⊕ 𝑏

• Those three bits are pairwise independent

0

𝑥1

𝑥2 𝑥3

0 1

0 01 1

1 1 0

𝐺

𝑥

Fooling depth-𝑘 decision trees

Theorem [Naor, Naor 1993] [Alon, Goldreich, Håstad, Peralta 1992] [Kushilevitz, Mansour 1993]:

∀𝑛, 𝑘, 𝜀, ∃ explicit PRG 𝐺: 0, 1 𝑠 → 0, 1 𝑛 that fools depth-𝑘 decision trees

with error 𝜀 and seed length 𝑠 = 2𝑘 + 𝑂 log 𝑘/𝜀 + log log 𝑛 .

Proof sketch:

• Use a 𝑘-wise 𝛾-biased generator where 𝛾 = 𝜀 ⋅ 2−𝑘

• Seed length is 2 ⋅ log 1/𝛾 + 𝑂 log 𝑘 + log log 𝑛

Theorem (this work): Let 𝛼 > 0 be an arbitrarily small constant.

∀𝑛, 𝑘, 𝜀, ∃ explicit PRG 𝐺: 0, 1 𝑠 → 0, 1 𝑛 that fools depth-𝑘 decision trees

with error 𝜀 and seed length 𝑠 = 1 + 𝛼 ⋅ 𝑘 + 𝑂 log 1/𝜀 + log log 𝑛 .

Fooling size-2𝑘 decision trees

Theorem [Naor, Naor 1993] [Alon, Goldreich, Håstad, Peralta 1992] [Kushilevitz, Mansour 1993]:

∀𝑛, 𝑘, 𝜀, ∃ explicit PRG 𝐺: 0, 1 𝑠 → 0, 1 𝑛 that fools size-2𝑘 decision trees

with error 𝜀 and seed length 𝑠 = 2𝑘 + 𝑂 log 𝑘/𝜀 + log log 𝑛 .

Theorem (this work): Let 𝛼 > 0 be an arbitrarily small constant.

∀𝑛, 𝑘, 𝜀, ∃ explicit PRG 𝐺: 0, 1 𝑠 → 0, 1 𝑛 that fools size-2𝑘 decision trees

with error 𝜀 and seed length 𝑠 = 1 + 𝛼 ⋅ 𝑘 + 𝑂 log 1/𝜀 + log log 𝑛 .

Why care about this factor of two?

• Answer 1: It’s a fundamental problem

• Answer 2: One can prove a lower bound of 1 ⋅ 𝑘

• Answer 3 (main): There is a connection with circuit complexity!

Circuits over the 𝑈2 basis

• Definition: A 𝑈2-circuit is a network of

AND/OR/NOT gates applied to Boolean variables

• Each AND/OR gate has only two incoming wires

• The size of the circuit is the total number of

AND/OR gates

• NOT gates are not counted
∧

𝑥1

∧ ∧

𝑥2 𝑥3

∨

∨

¬ ¬

𝑥4

∧ ∧

∨

• Theorem [Shannon 1949]: There exists a function ℎ: 0, 1 𝑛 → 0, 1 such that every

𝑈2-circuit computing ℎ has size Ω 2𝑛/𝑛

• What if we want an explicit hard function ℎ ∈ NP?

• Theorem [Schnorr 1974]: ∃ℎ ∈ NP such that every 𝑈2-circuit computing ℎ has size 3𝑛 − 𝑂 1

• Theorem [Zwick 1991]: ∃ℎ ∈ NP such that every 𝑈2-circuit computing ℎ has size 4𝑛 − 𝑂 1

• Theorem [Lachish and Raz 2001]: ∃ℎ ∈ NP such that every 𝑈2-circuit computing ℎ has size 4.5𝑛 − 𝑜 𝑛

• Theorem [Iwama and Morizumi 2002]: ∃ℎ ∈ NP such that every 𝑈2-circuit computing ℎ has size 5𝑛 − 𝑜 𝑛

Circuits are poorly understood

Our contribution: A PRG that fools 𝑈2-circuits

Theorem [Chen, Kabanets 2016]: If a function 𝑓: 0, 1 𝑛 → 0, 1 can be

computed by a 𝑈2-circuit of size 3 − 𝛼 ⋅ 𝑛, then it can also be computed by

a decision tree of size 2𝑘 where 𝑘 = 1 − Ω 𝛼2 ⋅ 𝑛.

Theorem (this work): ∀𝑛 ∈ ℕ, ∃ explicit PRG 𝐺: 0, 1 𝑠 → 0, 1 𝑛 that fools

𝑈2-circuits of size 2.99 ⋅ 𝑛 with error 2−Ω 𝑛 and seed length 1 − Ω 1 ⋅ 𝑛.

“It would be interesting to get pseudorandom generators for general boolean circuits” [Chen, Kabanets 2016]

• Our approach for fooling decision trees is based on a new kind of

“almost 𝑘-wise independence”

• Let’s start by reviewing exact 𝑘-wise independence

How we construct our new PRG

• Let 𝑋 be a distribution over 0, 1 𝑛

• Definition: 𝑋 is 𝑘-wise uniform if, for every set 𝑆 ⊆ 𝑛 with 𝑆 = 𝑘, the

subsequence 𝑋𝑆 is distributed uniformly over 0, 1 𝑘

• A 𝑘-wise uniform generator is a function 𝐺: 0, 1 𝑠 → 0, 1 𝑛 such that

𝐺 𝑈𝑠 is 𝑘-wise uniform

𝑘-wise uniform bits

• Proof sketch: (Assume WLOG that 𝑛 = 2𝑟 ⋅ 𝑟 for some 𝑟 ∈ ℕ)

• Use the seed to pick a random polynomial 𝑝: 𝔽 → 𝔽 of degree less than 𝑘, where 𝔽 = GF 2𝑟

• Output 𝑝 𝑥 for every 𝑥 ∈ 𝔽

• This works because of polynomial interpolation

A classic 𝑘-wise uniform generator

Theorem [Lancaster 1965, Joffe 1971, Joffe 1974, …]: ∀𝑛, 𝑘, ∃ explicit 𝑘-wise uniform

generator 𝐺: 0, 1 𝑠 → 0, 1 𝑛 with seed length 𝑠 = 𝑂 𝑘 ⋅ log 𝑛 .

• Any 𝑘-wise uniform generator fools depth-𝑘 decision trees with error 0

• Theorem (good news) [Cheng, Li 2021]: ∀𝑛, 𝑘, ∃ explicit 𝑘-wise uniform

generator 𝐺: 0, 1 𝑠 → 0, 1 𝑛 with seed length 𝑠 = 𝑂 𝑘 ⋅ log 𝑛/𝑘 .

• Theorem (bad news) [Karloff, Mansour 1997]: If 𝑘 ≥ 1/2 + Ω 1 ⋅ 𝑛, then

every 𝑘-wise uniform generator has seed length at least 𝑛 − 𝑂 1 .

The regime 𝑘 = Θ 𝑛

Almost 𝑘-wise uniformity

• Let 𝑋 be a distribution over 0, 1 𝑛

• Definition: 𝑋 is 𝜀-almost 𝑘-wise uniform if, for every function

𝑓: 0, 1 𝑛 → 0, 1 that depends on at most 𝑘 variables, we have

Pr 𝑓 𝑋 = 1 − Pr 𝑓 𝑈𝑛 = 1 ≤ 𝜀

• Equivalent: For every set 𝑆 ⊆ 𝑛 with 𝑆 = 𝑘, the subsequence 𝑋𝑆 is

uniform to within total variation distance 𝜀

• The good news: There are constructions of 𝜀-almost 𝑘-wise uniform

generators with seed length 𝑘 + 𝑂 log 𝑘/𝜀 + log log 𝑛

[Alon, Goldreich, Håstad, Peralta 1992]

• The bad news: The condition of being 𝜀-almost 𝑘-wise uniform is

weaker than that of fooling depth-𝑘 decision trees, because depth-𝑘

decision trees can be adaptive

Almost 𝑘-wise uniformity

Key new concept: 𝑘-wise probable uniformity

• Let 𝑋 be a distribution over 0, 1 𝑛

• Definition (new): 𝑋 is 𝑘-wise 𝜀-probably uniform if, for every function

𝑓: 0, 1 𝑛 → 0, 1 that depends on at most 𝑘 variables, we have

Pr 𝑓 𝑋 = 1 ≥ 1 − 𝜀 ⋅ Pr 𝑓 𝑈𝑛 = 1

• Equivalent: For every set 𝑆 ⊆ 𝑛 with 𝑆 = 𝑘, the subsequence 𝑋𝑆 has a

mixture distribution: sample from 𝑈𝑘 with probability 1 − 𝜀, and sample

from some other distribution with probability 𝜀 “Probably uniform”

• Today’s talk: A couple of elements of the construction

Main technical contribution

Theorem (this work): ∀𝑛, 𝑘, 𝜀, ∃ explicit 𝑘-wise 𝜀-probably uniform generator

𝐺: 0, 1 𝑠 → 0, 1 𝑛 with seed length

𝑠 = 𝑘 + 𝑂 𝑘2/3 ⋅ log1/3 𝑘/𝜀 + log 1/𝜀 + log log 𝑛 .

• Let ℋ be a family of hash functions ℎ: 0, 1 𝑠 → 0, 1 𝑛

• Definition: ℋ is pairwise uniform (aka “strongly universal”) if, for every pair

of distinct 𝑥1, 𝑥2 ∈ 0, 1 𝑠, when we sample ℎ ∼ ℋ, the pair ℎ 𝑥1 , ℎ 𝑥2

is distributed uniformly over 0, 1 2𝑛

• Fact: ∀𝑠, 𝑛, ∃ explicit pairwise uniform family ℋ such that sampling ℎ ∼ ℋ

costs 𝑂 𝑠 + 𝑛 truly random bits

Pairwise uniform hash functions

• Let ℋ be a pairwise uniform family of hash functions ℎ: 0, 1 𝑠 → 0, 1 𝑛

• Let 𝑓: 0, 1 𝑛 → 0, 1 and let 𝜇 = 𝔼 𝑓 𝑈𝑛

• Think of a single ℎ in ℋ as a PRG that we can use to try to fool 𝑓

• Lemma (standard): If we sample ℎ ∼ ℋ, then for any 𝜀 ∈ 0, 1 ,

Pr
ℎ

ℎ fools 𝑓 with error 𝜀 ⋅ 𝜇 ≥ 1 −
1

2𝑠 ⋅ 𝜀2 ⋅ 𝜇
.

A sampling lemma

• For each fixed 𝑥 ∈ 0, 1 𝑠, define a random variable 𝑍𝑥 = 𝑓 ℎ 𝑥

• Then 𝔼 𝑍𝑥 = 𝜇 and Var 𝑍𝑥 = 𝜇 ⋅ 1 − 𝜇 ≤ 𝜇

• Let 𝑍 = σ𝑥 𝑍𝑥

• Then 𝔼 𝑍 = 𝜇 ⋅ 2𝑠 and Var 𝑍 ≤ 𝜇 ⋅ 2𝑠 by pairwise independence

• Now apply Chebyshev’s inequality:

Pr
𝑍

2𝑠
− 𝜇 > 𝜀 ⋅ 𝜇 ≤

Var 𝑍

2𝑠 ⋅ 𝜀 ⋅ 𝜇 2
≤

1

2𝑠 ⋅ 𝜀2 ⋅ 𝜇
.

Proof of sampling lemma

• Our 𝑘-wise probably uniform generator involves sampling a hash

function ℎ ∼ ℋ and then using it several times (see paper for more)

• There is some “bad event” 𝐵 where Pr 𝐵 ≈ 𝜀

• This is okay: 𝔼 𝑓 𝑋 ≥ Pr ¬𝐵 ⋅ 𝔼 𝑓 𝑋 ¬𝐵 ≥ 1 − 𝜀 ⋅ 𝔼 𝑓

• Crucially, we do not claim 𝔼 𝑓 𝑋 ≤ 1 + 𝜀 ⋅ 𝔼 𝑓 !

We can tolerate “bad events”

• Claim: If 𝑋 is 𝑘-wise 𝜀-probably uniform, then 𝑋 fools depth-𝑘 decision trees

with error 𝜀

• Proof: Let 𝐴 be the set of accepting leaves in a depth-𝑘 decision tree 𝑇

• For each leaf 𝑢 ∈ 𝐴, let 𝑇𝑢 𝑥 indicate whether 𝑇 𝑥 reaches 𝑢

𝔼 𝑇 𝑋 = ෍

𝑢∈𝐴

𝔼 𝑇𝑢 𝑋 ≥ ෍

𝑢∈𝐴

1 − 𝜀 ⋅ 𝔼 𝑇𝑢 𝑈𝑛 ≥ 𝔼 𝑇 𝑈𝑛 − 𝜀

• 𝔼 𝑇 𝑋 ≤ 𝔼 𝑇 𝑈𝑛 + 𝜀, because 1 − 𝑇 is another depth-𝑘 decision tree

Fooling decision trees

• We construct PRGs fooling near-maximal decision trees and

𝑈2-circuits of size 2.99 ⋅ 𝑛

• The construction is based on a new kind of almost 𝑘-wise

independence, called 𝑘-wise probable uniformity

• Open problem: Find more applications of 𝑘-wise probable uniformity

• Thank you!

Conclusions

	Slide 1: Fooling Near-Maximal Decision Trees
	Slide 2: Pseudorandom generators
	Slide 3: Decision trees
	Slide 4: Example: Fooling depth-2 decision trees
	Slide 5: Fooling depth-k decision trees
	Slide 6: Fooling size-2 to the k decision trees
	Slide 7: Why care about this factor of two?
	Slide 8: Circuits over the cap U sub 2 basis
	Slide 9: Circuits are poorly understood
	Slide 10: Our contribution: A PRG that fools cap U sub 2-circuits
	Slide 11: How we construct our new PRG
	Slide 12: k-wise uniform bits
	Slide 13: A classic k-wise uniform generator
	Slide 14: The regime k equals cap theta open paren n , close paren
	Slide 15: Almost k-wise uniformity
	Slide 16: Almost k-wise uniformity
	Slide 17: Key new concept: k-wise probable uniformity
	Slide 18: Main technical contribution
	Slide 19: Pairwise uniform hash functions
	Slide 20: A sampling lemma
	Slide 21: Proof of sampling lemma
	Slide 22: We can tolerate “bad events”
	Slide 23: Fooling decision trees
	Slide 24: Conclusions

