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Pseudorandom generators
* A pseudorandom generator (PRG) is a function G: {0,1}* — {0, 1}"

* The PRG fools T: {0, 1}"™ — {0, 1} with error ¢ if

Pr[T(U,) = 1] —Pr|T(GWU,)) =1]| <«

* Notation: U,, = uniform distribution over {0, 1}"

* Today’s talk: PRGs that fool decision trees



Decision trees

* In each step, the tree may observe any one bit of

the input x € {0, 1}"

* Eventually, the tree must halt and outputs a value

T(x) €{0,1}

* Depth = maximum length of path from root to leaf

e Size = number of leaves



Example: Fooling depth-2 decision trees

e Claim: There exists a PRG G:{0,1}* — {0, 1}° that

fools depth-2 decision trees with error O

* Proof sketch: Let G(a,b) = (a,b,a @ b)

* Those three bits are pairwise independent




Fooling depth-k decision trees

Theorem [Naor, Naor 1993] [Alon, Goldreich, Hastad, Peralta 1992] [Kushilevitz, Mansour 1993].
vn, k, &, 3 explicit PRG G: {0, 1} — {0, 1}" that fools depth-k decision trees

with error € and seed length s = 2k + O(log(k/¢) + loglogn).
e
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Theorem (this work): Let « > 0 be an arbitrarily small constant.
vn, k, €, 3 explicit PRG G: {0, 1} — {0, 1}" that fools depth-k decision trees
with error € and seed length s = (1 + «) - k + O(log(1/¢) + loglogn).

M




Fooling size-2" decision trees

Theorem [Naor, Naor 1993] [Alon, Goldreich, Hastad, Peralta 1992] [Kushilevitz, Mansour 1993].
vn, k, €, 3 explicit PRG G: {0, 1}° — {0, 1}" that fools size-2* decision trees

with error € and seed length s = 2k + O(log(k/¢) + loglogn).

Theorem (this work): Let @ > 0 be an arbitrarily small constant.
vn, k, £, 3 explicit PRG G: {0, 1}5 = {0, 1}™ that fools size-2" decision trees
with error € and seed length s = (1 + «) - k + O(log(1/¢) + loglogn).




Why care about this factor of two?

* Answer 1: It's a fundamental problem
* Answer 2: One can prove a lower bound of 1 - k

* Answer 3 (main): There is a connection with circuit complexity!



Circuits over the U, basis

* Definition: A U,-circuit is a network of

AND/OR/NOT gates applied to Boolean variables
 Each AND/OR gate has only two incoming wires

* The size of the circuit is the total number of

AND/OR gates

 NOT gates are not counted




Circuits are poorly understood

e Theorem [shannon 1949]: There exists a function h: {0, 1}"™ — {0, 1} such that every

U,-circuit computing h has size (.(2™/n)

* What if we want an explicit hard function 1 € NP?

* Theorem [schnorr 1974]: Jh € NP such that every U,-circuit computing h has size 3n — 0(1)
* Theorem [zwick 1991]: Jh € NP such that every U,-circuit computing h has size 4n — 0(1)
* Theorem [Lachish and Raz 2001]: Jh € NP such that every U,-circuit computing h has size 4.5n — o(n)

* Theorem [iwama and Morizumi 2002]: 3h € NP such that every U,-circuit computing h has size 51 — o(n)



Our contribution: A PRG that fools U,-circuits

Theorem (this work): Vn € N, 3 explicit PRG G:{0,1}°* — {0, 1}" that fools

U, -circuits of size 2.99 - n with error 272 and seed length (1 — Q(l)) ‘M.

Theorem [Chen, Kabanets 2016]: If a function f: {0, 1}" — {0, 1} can be

computed by a U,-circuit of size (3 — «) - n, then it can also be computed by

a decision tree of size 2% where k = (1 — Q(az)) - N.

“It would be interesting to get pseudorandom generators for general boolean circuits” [Chen, Kabanets 2016]



How we construct our new PRG

* Our approach for fooling decision trees is based on a new kind of

“almost k-wise independence”

e Let’s start by reviewing exact k-wise independence



k-wise uniform bits

* Let X be a distribution over {0, 1}"
* Definition: X is k-wise uniform if, for every set S € [n] with |S| = k, the
subsequence Xy is distributed uniformly over {0, 1}*

* A k-wise uniform generator is a function G: {0, 1} — {0, 1}" such that

G(U,) is k-wise uniform



A classic k-wise uniform generator

Theorem [Lancaster 1965, Joffe 1971, Joffe 1974, ..]: VN, k, 3 explicit k-wise uniform

generator G: {0,1}° — {0, 1}" with seed length s = O(k - logn).

* Proof sketch: (Assume WLOG thatn = 2" - r forsome r € N)
 Use the seed to pick a random polynomial p: F — [ of degree less than k, where [F = GF(2")
e Output p(x) foreveryx € F

* This works because of polynomial interpolation




The regime k = O(n)

* Any k-wise uniform generator fools depth-k decision trees with error O
* Theorem (good news) [cheng, Li2021]: V1, k, 3 explicit k-wise uniform

generator G:{0,1}° — {0, 1}™ with seed length s = O(k - log(n/k)).

* Theorem (bad news) [Karloff, Mansour 1997]: If k = (1/2 + Q(l)) - n, then

every k-wise uniform generator has seed length at least n — O(1).



Almost k-wise uniformity

* Let X be a distribution over {0, 1}"

* Definition: X is e-almost k-wise uniform if, for every function
f:10,1}" - {0, 1} that depends on at most k variables, we have
[Prlf(X) =1] = Pr[f(U,) =1]| < ¢

* Equivalent: For every set S € [n] with |S| = k, the subsequence X; is

uniform to within total variation distance ¢



Almost k-wise uniformity

* The good news: There are constructions of e-almost k-wise uniform

generators with seed length k + O(log(k/¢) + loglogn)

[Alon, Goldreich, Hastad, Peralta 1992]

* The bad news: The condition of being e-almost k-wise uniform is
weaker than that of fooling depth-k decision trees, because depth-k

decision trees can be adaptive



Key new concept: k-wise probable uniformity

* Let X be a distribution over {0, 1}"

 Definition (new): X is k-wise e-probably uniform if, for every function

f:10,1}" - {0, 1} that depends on at most k variables, we have
Prif(X) =1] = (1 —¢) - Pr[f(U,) = 1]
* Equivalent: For every set S € [n] with |S| = k, the subsequence X has a

mixture distribution: sample from U, with probability 1 — &, and sample

[e]

°0
from some other distribution with probability ¢



Main technical contribution

Theorem (this work): Vn, k, €, 3 explicit k-wise e-probably uniform generator

G:{0,1}° - {0, 1}™ with seed length
s =k + 0(k?/3 -log'/3(k/e) + log(1/¢) + loglogn).

* Today’s talk: A couple of elements of the construction




Pairwise uniform hash functions \\.\_.\\\\

—J

* Let H be a family of hash functions h: {0, 1} — {0, 1}"

 Definition: HH is pairwise uniform (aka “strongly universal”) if, for every pair

of distinct xy, x, € {0,1}°, when we sample h ~ 3, the pair (h(x;), h(x;))

is distributed uniformly over {0, 1}%"

* Fact: Vs, n, 3 explicit pairwise uniform family H such that sampling h ~ H

costs O(s + n) truly random bits



. e e T e e
A sampling lemma e RN RN

* Let H be a pairwise uniform family of hash functions h: {0,1}°* — {0, 1}"
e Let f:{0,1}"* - {0,1} and let u = E|[f(U,)]
* Think of a single h in H as a PRG that we can use to try to fool f

* Lemma (standard): If we sample h ~ H, then for any € € (0, 1),

1
. 1= 1
I;lr[h fools f witherrore - u] > 1 e




Proof of sampling lemma ReWeRoRoRoRoR.
* For each fixed x € {0, 1}*, define a random variable Z, = f(h(x))
ThenE[Z,]=pandVar[Z,]=pu-(1—pn) <u
cletZ =), 7Z,

* Then E[Z] = u - 2% and Var|Z] < u - 2° by pairwise independence

* Now apply Chebyshev’s inequality:

] Var[Z] 1
< <
(25 . £ - M) ZS . £4 l’l



We can tolerate “bad events”

e Our k-wise probably uniform generator involves sampling a hash

function h ~ H and then using it several times (see paper for more)
* There is some “bad event” B where Pr|B] =~ ¢
* Thisis okay: E[f(X)] = Pr[-B] -E[f(X) | =B] = (1 — ¢) - E[f]

e Crucially, we do not claim E[f(X)] < (1 + ¢) - E[f]!



Fooling decision trees

e Claim: If X is k-wise e-probably uniform, then X fools depth-k decision trees
with error ¢

* Proof: Let A be the set of accepting leaves in a depth-k decision tree T

* For each leaf u € A, let T,,(x) indicate whether T(x) reaches u

EITCO] = ) EIT,0012 ) (1-2)-E[T,WU,)] = ET(U,)] - ¢

UEA UEA

« E[T(X)] < E[T(U,)] + €, because 1 — T is another depth-k decision tree



Conclusions

* We construct PRGs fooling near-maximal decision trees and

U,-circuits of size 2.99 - n

* The construction is based on a new kind of almost k-wise

independence, called k-wise probable uniformity
* Open problem: Find more applications of k-wise probable uniformity

* Thank you!
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