Preserving Randomness for Adaptive Algorithms

William M. Hoza Adam R. Klivans

May 25, 2017 Caltech Theory of Computing Seminar

$$\Pr[\|\mathsf{Est}(C) - \mu(C)\|_{\infty} > \varepsilon] \le \delta$$

▶ Algorithm Est(C) estimates some value $\mu(C) \in \mathbb{R}^d$

$$\Pr[\|\mathsf{Est}(C) - \mu(C)\|_{\infty} > \varepsilon] \le \delta$$

Canonical example:

$$\Pr[\|\mathsf{Est}(C) - \mu(C)\|_{\infty} > \varepsilon] \le \delta$$

- Canonical example:
 - ▶ C is a Boolean circuit

$$\Pr[\|\mathsf{Est}(C) - \mu(C)\|_{\infty} > \varepsilon] \le \delta$$

- Canonical example:
 - ▶ C is a Boolean circuit
 - $\mu(C) \stackrel{\mathsf{def}}{=} \mathsf{Pr}_{\mathsf{x}}[C(\mathsf{x}) = 1] \quad (d = 1)$

$$\Pr[\|\mathsf{Est}(C) - \mu(C)\|_{\infty} > \varepsilon] \le \delta$$

- Canonical example:
 - ▶ C is a Boolean circuit
 - $\mu(C) \stackrel{\mathsf{def}}{=} \mathsf{Pr}_{\mathsf{x}}[C(\mathsf{x}) = 1] \quad (d = 1)$
 - Est(C) evaluates C at several randomly chosen points

▶ Goal: Execute $\operatorname{Est}(C_1), \operatorname{Est}(C_2), \ldots, \operatorname{Est}(C_k)$

- ▶ Goal: Execute $\operatorname{Est}(C_1), \operatorname{Est}(C_2), \dots, \operatorname{Est}(C_k)$
- ► Say Est uses *n* random bits

- ▶ Goal: Execute $\operatorname{Est}(C_1), \operatorname{Est}(C_2), \dots, \operatorname{Est}(C_k)$
- ▶ Say Est uses *n* random bits
- ▶ Naïve implementation: *nk* random bits

- ▶ Goal: Execute $\operatorname{Est}(C_1), \operatorname{Est}(C_2), \dots, \operatorname{Est}(C_k)$
- ▶ Say Est uses *n* random bits
- ▶ Naïve implementation: *nk* random bits
- Can we do better?

- ▶ Goal: Execute $\operatorname{Est}(C_1), \operatorname{Est}(C_2), \ldots, \operatorname{Est}(C_k)$
- ▶ Say Est uses *n* random bits
- ▶ Naïve implementation: nk random bits
- ► Can we do better?
- ▶ **Theorem**: Can use just $n + O(k \log(d + 1))$ random bits!

- ▶ Goal: Execute $\operatorname{Est}(C_1), \operatorname{Est}(C_2), \dots, \operatorname{Est}(C_k)$
- ▶ Say Est uses *n* random bits
- Naïve implementation: nk random bits
- Can we do better?
- ▶ **Theorem**: Can use just $n + O(k \log(d + 1))$ random bits!
 - Slight increases in error, failure probability

► Algorithm that uses just *n* random bits:

- ► Algorithm that uses just *n* random bits:
 - 1. Pick $X \in \{0,1\}^n$ uniformly at random once

- ▶ Algorithm that uses just *n* random bits:
 - 1. Pick $X \in \{0,1\}^n$ uniformly at random once
 - 2. Execute $\operatorname{Est}(C_1, X), \operatorname{Est}(C_2, X), \dots, \operatorname{Est}(C_k, X)$

- ▶ Algorithm that uses just *n* random bits:
 - 1. Pick $X \in \{0,1\}^n$ uniformly at random once
 - 2. Execute $\operatorname{Est}(C_1, X), \operatorname{Est}(C_2, X), \dots, \operatorname{Est}(C_k, X)$
- Overall failure probability is still $k\delta$ (union bound)

▶ Let X be the randomness used for Est(C_1)

- ▶ Let X be the randomness used for $Est(C_1)$
- ► C₂ is stochastically dependent on X

- ▶ Let X be the randomness used for $Est(C_1)$
- ► C₂ is stochastically dependent on X
- ▶ Failure probability of $Est(C_2, X)$ is ???

Concentrated functions

 $f: \{0,1\}^n \to \mathbb{R}^d$

Concentrated functions

- $f: \{0,1\}^n \to \mathbb{R}^d$
- ▶ **Definition**: f is (ε, δ) -concentrated at $\mu \in \mathbb{R}^d$ if

$$\Pr_{X}[\|f(X) - \mu\|_{\infty} > \varepsilon] \le \delta.$$

Concentrated functions

- $f: \{0,1\}^n \to \mathbb{R}^d$
- ▶ **Definition**: f is (ε, δ) -concentrated at $\mu \in \mathbb{R}^d$ if

$$\Pr_{X}[\|f(X) - \mu\|_{\infty} > \varepsilon] \le \delta.$$

▶ Example: $f(X) \stackrel{\text{def}}{=} \text{Est}(C, X)$

Randomness steward model

Randomness steward model

Randomness steward model

▶ Each f_i is (ε, δ) -concentrated at some μ_i

- ▶ Each f_i is (ε, δ) -concentrated at some μ_i
- ► Steward requirement: For any owner,

$$\Pr\left[\max_{i}\|Y_{i}-\mu_{i}\|_{\infty}>\varepsilon'\right]\leq \delta'$$

One-query stewards

▶ **Definition**: One-query steward: Only accesses each f_i by querying a single point $f_i(X_i)$

One-query stewards

- ▶ **Definition**: One-query steward: Only accesses each f_i by querying a single point $f_i(X_i)$
 - ightharpoonup Querying f_i corresponds to executing Est

One-query stewards

- ▶ **Definition**: One-query steward: Only accesses each f_i by querying a single point $f_i(X_i)$
 - ightharpoonup Querying f_i corresponds to executing Est
 - ► The owner does not see X_i

▶ **Theorem**: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for d = 1 with

- ▶ **Theorem**: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for d = 1 with
 - ▶ Error $\varepsilon' \leq O(\varepsilon)$ (vs. naïve ε)

- ▶ **Theorem**: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for d = 1 with
 - ▶ Error $\varepsilon' \leq O(\varepsilon)$ (vs. naïve ε)
 - ► Failure probability $\delta' \leq 2^k \cdot \delta$ (vs. naïve $k\delta$)

- ▶ **Theorem**: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for d = 1 with
 - ▶ Error $\varepsilon' \leq O(\varepsilon)$ (vs. naïve ε)
 - ► Failure probability $\delta' \leq 2^k \cdot \delta$ (vs. naïve $k\delta$)
 - Randomness n (vs. naïve nk)

- ▶ **Theorem**: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for d = 1 with
 - ▶ Error $\varepsilon' \leq O(\varepsilon)$ (vs. naïve ε)
 - ► Failure probability $\delta' \leq 2^k \cdot \delta$ (vs. naïve $k\delta$)
 - Randomness n (vs. naïve nk)
- ▶ The steward: "Reuse randomness and round"

- ▶ **Theorem**: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for d = 1 with
 - ▶ Error $\varepsilon' \leq O(\varepsilon)$ (vs. naïve ε)
 - ► Failure probability $\delta' \leq 2^k \cdot \delta$ (vs. naïve $k\delta$)
 - Randomness n (vs. naïve nk)
- ► The steward: "Reuse randomness and round"
 - ▶ Pick $X \in \{0,1\}^n$ uniformly at random once

- ▶ **Theorem**: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for d = 1 with
 - ▶ Error $\varepsilon' \leq O(\varepsilon)$ (vs. naïve ε)
 - ► Failure probability $\delta' \leq 2^k \cdot \delta$ (vs. naïve $k\delta$)
 - Randomness n (vs. naïve nk)
- ► The steward: "Reuse randomness and round"
 - ▶ Pick $X \in \{0,1\}^n$ uniformly at random once
 - ▶ For i = 1 to k: Return $f_i(X)$, rounded to multiple of 2ε

▶ Imagine if the steward always returns $A(\mu)$ or $B(\mu)$...

 f_1

▶ Imagine if the steward always returns $A(\mu)$ or $B(\mu)$...

▶ Union bound: $Pr[X \text{ good for every function in tree}] \ge 1 - 2^k \delta$

- ▶ Union bound: $Pr[X \text{ good for every function in tree}] \ge 1 2^k \delta$
- ▶ If so, inductively, every f_i is in the tree!

▶ **Theorem**: For all $n, k, d, \varepsilon, \delta, \gamma$, there is an efficient one-query steward with

- ▶ **Theorem**: For all $n, k, d, \varepsilon, \delta, \gamma$, there is an efficient one-query steward with
 - ▶ Error $\varepsilon' \leq O(\varepsilon d)$

- ▶ **Theorem**: For all $n, k, d, \varepsilon, \delta, \gamma$, there is an efficient one-query steward with
 - ▶ Error $\varepsilon' \leq O(\varepsilon d)$
 - Failure probability $\delta' \leq k\delta + \gamma$

- ▶ **Theorem**: For all $n, k, d, \varepsilon, \delta, \gamma$, there is an efficient one-query steward with
 - ▶ Error $\varepsilon' \leq O(\varepsilon d)$
 - Failure probability $\delta' \leq k\delta + \gamma$
 - # random bits $n + O(k \log(d+1) + \log k \log(1/\gamma))$

▶ Pick random seed X, compute $(X_1, ..., X_k) = Gen(X)$

- ▶ Pick random seed X, compute $(X_1, ..., X_k) = Gen(X)$
- For i = 1 to k:

- ▶ Pick random seed X, compute $(X_1, ..., X_k) = Gen(X)$
- For i = 1 to k:
 - ▶ Obtain $W_i = f_i(X_i)$

- ▶ Pick random seed X, compute $(X_1, ..., X_k) = Gen(X)$
- For i = 1 to k:
 - ▶ Obtain $W_i = f_i(X_i)$
 - ▶ Shift and round W_i to determine output Y_i

- ▶ Pick random seed X, compute $(X_1, ..., X_k) = Gen(X)$
- For i = 1 to k:
 - ▶ Obtain $W_i = f_i(X_i)$
 - ▶ Shift and round *W_i* to determine output *Y_i*

▶ Ingredient 1: Gen: PRG for block decision trees

- ▶ Pick random seed X, compute $(X_1, ..., X_k) = Gen(X)$
- For i = 1 to k:
 - ▶ Obtain $W_i = f_i(X_i)$
 - ▶ Shift and round *W_i* to determine output *Y_i*

- ▶ Ingredient 1: Gen: PRG for block decision trees
- ▶ Ingredient 2: Deterministic shifting and rounding algorithm

▶ For $W \in \mathbb{R}^d$ and $\Delta \in [d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^d$ by shifting W according to Δ , then rounding

- ▶ For $W \in \mathbb{R}^d$ and $\Delta \in [d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^d$ by shifting W according to Δ , then rounding
- ▶ By construction, $Y_i = R_{\Delta}(W_i)$ for some Δ

- ▶ For $W \in \mathbb{R}^d$ and $\Delta \in [d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^d$ by shifting W according to Δ , then rounding
- ▶ By construction, $Y_i = R_{\Delta}(W_i)$ for some Δ
- ▶ Imagine if $Y_i = R_{\Delta}(\mu_i)$ for some Δ ...

- ▶ For $W \in \mathbb{R}^d$ and $\Delta \in [d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^d$ by shifting W according to Δ , then rounding
- ▶ By construction, $Y_i = R_{\Delta}(W_i)$ for some Δ
- ▶ Imagine if $Y_i = R_{\Delta}(\mu_i)$ for some Δ ...

 f_1

- ▶ For $W \in \mathbb{R}^d$ and $\Delta \in [d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^d$ by shifting W according to Δ , then rounding
- ▶ By construction, $Y_i = R_{\Delta}(W_i)$ for some Δ
- ▶ Imagine if $Y_i = R_{\Delta}(\mu_i)$ for some Δ ...

- ▶ For $W \in \mathbb{R}^d$ and $\Delta \in [d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^d$ by shifting W according to Δ , then rounding
- ▶ By construction, $Y_i = R_{\Delta}(W_i)$ for some Δ
- ▶ Imagine if $Y_i = R_{\Delta}(\mu_i)$ for some Δ ...

▶ A sequence $(X_1, ..., X_k)$ of query points determines:

- ▶ A sequence $(X_1, ..., X_k)$ of query points determines:
 - $A transcript (f_1, Y_1, f_2, Y_2, \dots, f_k, Y_k)$

- ▶ A sequence $(X_1, ..., X_k)$ of query points determines:
 - $A transcript (f_1, Y_1, f_2, Y_2, \dots, f_k, Y_k)$
 - ► A path P through tree

- ▶ A sequence $(X_1, ..., X_k)$ of query points determines:
 - A transcript $(f_1, Y_1, f_2, Y_2, ..., f_k, Y_k)$
 - ► A path P through tree
- ▶ If we pick $X_1, ..., X_k$ independently and u.a.r.,

$$\Pr_{(X_1,...,X_k)}[P \text{ has a } \perp \text{ node}] \leq k\delta$$

- ▶ A sequence $(X_1, ..., X_k)$ of query points determines:
 - A transcript $(f_1, Y_1, f_2, Y_2, ..., f_k, Y_k)$
 - ► A path P through tree
- ▶ If we pick $X_1, ..., X_k$ independently and u.a.r.,

$$\Pr_{(X_1,...,X_k)}[P \text{ has a } \perp \text{ node}] \leq k\delta$$

► (Certification) No \bot nodes in $P \implies$ every Y_i has error $O(\varepsilon d)$

(k, n, q) block decision tree: Full q-ary tree of height k

(k, n, q) block decision tree: Full q-ary tree of height k

- (k, n, q) block decision tree: Full q-ary tree of height k
- ▶ Each internal node v_s has a function $v_s : \{0,1\}^n \to [q]$

- (k, n, q) block decision tree: Full q-ary tree of height k
- ▶ Each internal node v_s has a function $v_s : \{0,1\}^n \to [q]$

- (k, n, q) block decision tree: Full q-ary tree of height k
- ▶ Each internal node v_s has a function $v_s : \{0,1\}^n \to [q]$
- ▶ Tree reads nk bits and outputs a leaf

▶ **Theorem**: There is an efficient γ -PRG for block decision trees with seed length

$$n + O(k \log q + \log k \log(1/\gamma))$$

▶ **Theorem**: There is an efficient γ -PRG for block decision trees with seed length

$$n + O(k \log q + \log k \log(1/\gamma))$$

▶ Proof idea: Modify parameters of INW generator

▶ **Theorem**: There is an efficient γ -PRG for block decision trees with seed length

$$n + O(k \log q + \log k \log(1/\gamma))$$

- Proof idea: Modify parameters of INW generator
- ▶ This generator fools the certification tree

Theorem: There is an efficient γ -PRG for block decision trees with seed length

$$n + O(k \log q + \log k \log(1/\gamma))$$

- Proof idea: Modify parameters of INW generator
- ▶ This generator fools the certification tree
- ▶ No need to fool steward/owner protocol!

▶ Oracle access to $x \in \{0,1\}^{2^n}$

- ▶ Oracle access to $x \in \{0,1\}^{2^n}$
- ▶ **Theorem**: Can find all Hadamard codewords that agree with x in $(\frac{1}{2} + \theta)$ -fraction of positions

- ▶ Oracle access to $x \in \{0,1\}^{2^n}$
- ▶ **Theorem**: Can find all Hadamard codewords that agree with x in $(\frac{1}{2} + \theta)$ -fraction of positions
 - ▶ Runtime poly $(n, 1/\theta, \log(1/\delta))$ $(\delta = \text{failure prob})$

- ▶ Oracle access to $x \in \{0,1\}^{2^n}$
- ▶ **Theorem**: Can find all Hadamard codewords that agree with x in $(\frac{1}{2} + \theta)$ -fraction of positions
 - ▶ Runtime poly $(n, 1/\theta, \log(1/\delta))$ $(\delta = \text{failure prob})$
 - $O(n + \log n \log(1/\delta))$ random bits (independent of θ !)

- ▶ Oracle access to $x \in \{0,1\}^{2^n}$
- ▶ **Theorem**: Can find all Hadamard codewords that agree with x in $(\frac{1}{2} + \theta)$ -fraction of positions
 - ▶ Runtime poly $(n, 1/\theta, \log(1/\delta))$ $(\delta = \text{failure prob})$
 - ▶ $O(n + \log n \log(1/\delta))$ random bits (independent of θ !)
- ▶ Previous best: $O(n \log(n/\theta) \log(1/(\delta\theta)))$ random bits (Bshouty et al. '04)

- ▶ Oracle access to $x \in \{0,1\}^{2^n}$
- ▶ **Theorem**: Can find all Hadamard codewords that agree with x in $(\frac{1}{2} + \theta)$ -fraction of positions
 - ▶ Runtime poly $(n, 1/\theta, \log(1/\delta))$ $(\delta = \text{failure prob})$
 - $O(n + \log n \log(1/\delta))$ random bits (independent of θ !)
- ▶ Previous best: $O(n \log(n/\theta) \log(1/(\delta\theta)))$ random bits (Bshouty et al. '04)
- Proof ingredients:

Application: Randomness-efficient Goldreich-Levin

- ▶ Oracle access to $x \in \{0,1\}^{2^n}$
- ▶ **Theorem**: Can find all Hadamard codewords that agree with x in $(\frac{1}{2} + \theta)$ -fraction of positions
 - ▶ Runtime poly $(n, 1/\theta, \log(1/\delta))$ $(\delta = \text{failure prob})$
 - ▶ $O(n + \log n \log(1/\delta))$ random bits (independent of θ !)
- ▶ Previous best: $O(n \log(n/\theta) \log(1/(\delta\theta)))$ random bits (Bshouty et al. '04)
- Proof ingredients:
 - Standard Goldreich-Levin algorithm

Application: Randomness-efficient Goldreich-Levin

- ▶ Oracle access to $x \in \{0,1\}^{2^n}$
- ▶ **Theorem**: Can find all Hadamard codewords that agree with x in $(\frac{1}{2} + \theta)$ -fraction of positions
 - ▶ Runtime poly $(n, 1/\theta, \log(1/\delta))$ $(\delta = \text{failure prob})$
 - ▶ $O(n + \log n \log(1/\delta))$ random bits (independent of θ !)
- ▶ Previous best: $O(n \log(n/\theta) \log(1/(\delta\theta)))$ random bits (Bshouty et al. '04)
- Proof ingredients:
 - Standard Goldreich-Levin algorithm
 - Our steward with $d = poly(1/\theta)$

Application: Randomness-efficient Goldreich-Levin

- ▶ Oracle access to $x \in \{0,1\}^{2^n}$
- ▶ **Theorem**: Can find all Hadamard codewords that agree with x in $(\frac{1}{2} + \theta)$ -fraction of positions
 - ▶ Runtime $poly(n, 1/\theta, log(1/\delta))$ ($\delta = failure prob$)
 - ▶ $O(n + \log n \log(1/\delta))$ random bits (independent of θ !)
- ▶ Previous best: $O(n \log(n/\theta) \log(1/(\delta\theta)))$ random bits (Bshouty et al. '04)
- Proof ingredients:
 - Standard Goldreich-Levin algorithm
 - Our steward with $d = poly(1/\theta)$
 - Goldreich-Wigderson sampler

ε'	δ'	Randomness complexity	Reference

ε'	δ'	Randomness complexity	Reference
ε	$k\delta$	nk	Naïve

ε'	δ'	Randomness complexity	Reference
ε	kδ	nk	Naïve
O(arepsilon)	$2^k\delta$	n (works for $d=1$ only)	This work

ε'	δ'	Randomness complexity	Reference
ε	kδ	nk	Naïve
O(arepsilon)	$2^k\delta$	n (works for $d=1$ only)	This work
$O(\varepsilon d)$	$k\delta + \gamma$	$n + O(k\log(d+1) + \log k\log(1/\gamma))$	This work

 Steward model captures derandomization constructions in literature

ε'	δ'	Randomness complexity	Reference
ε	kδ	nk	Naïve
O(arepsilon)	$2^k\delta$	n (works for $d=1$ only)	This work
$O(\varepsilon d)$	$k\delta + \gamma$	$n + O(k\log(d+1) + \log k\log(1/\gamma))$	This work

 Steward model captures derandomization constructions in literature

ε'	δ'	Randomness complexity	Reference
ε	kδ	nk	Naïve
O(arepsilon)	$2^k\delta$	n (works for $d=1$ only)	This work
$O(\varepsilon d)$	$k\delta + \gamma$	$n + O(k\log(d+1) + \log k\log(1/\gamma))$	This work
$O(arepsilon kd/\gamma)$	$\textit{k}\delta + \gamma$	$n + O(k \log k + k \log d + k \log(1/\gamma))$	\approx SZ '99

► Steward model captures derandomization constructions in literature

arepsilon'	δ'	Randomness complexity	Reference
ε	kδ	nk	Naïve
O(arepsilon)	$2^k\delta$	n (works for $d=1$ only)	This work
$O(\varepsilon d)$	$k\delta + \gamma$	$n + O(k\log(d+1) + \log k\log(1/\gamma))$	This work
$\mathit{O}(arepsilon \mathit{kd}/\gamma)$	$k\delta + \gamma$	$n + O(k \log k + k \log d + k \log(1/\gamma))$	pprox SZ '99
O(arepsilon)	$k\delta + k/2^{n^{\Omega(1)}}$	$O(n^6 + kd)$	\approx IZ '89

Steward model captures derandomization constructions in literature

ε'	δ'	Randomness complexity	Reference

$$2^k\delta$$
 n

(works for
$$d=1$$
 only)

$$n + O(k\log(d+1) + \log k\log(1/\gamma))$$

$$k\delta + \gamma$$
 n

$$+O(k\log k)$$

$$\log(d+1) + \log$$

$$n + O(k \log k + k \log d + k \log(1/\gamma))$$

$$\log k +$$

 $n + O(kd + \log k \log(1/\gamma))$

$$\log \kappa + \kappa \log a + \kappa$$

$$O(n^6 + kd)$$

Naïve

This work

This work

 \approx S7 '99

 \approx 17 '89

This work

$$\varepsilon'$$
 δ'

 $O(\varepsilon)$

 $O(\varepsilon d)$

 $O(\varepsilon)$

 $O(\varepsilon)$

 $O(\varepsilon kd/\gamma)$

$$\kappa \delta$$
 r

kδ

 $k\delta + \gamma$

 $k\delta + \gamma$

 $k\delta + k/2^{n^{\Omega(1)}}$

Steward model captures derandomization constructions in

literature			

$$\delta'$$
 Rand

(works for
$$d=1$$
 only)

 $O(n^6 + kd)$

$$n + \Omega(k) - \log(\delta'/\delta)$$

 $n + O(k \log(d+1) + \log k \log(1/\gamma))$

 $n + O(k \log k + k \log d + k \log(1/\gamma))$

 $n + O(kd + \log k \log(1/\gamma))$

Reference

This work

This work

 \approx S7 '99

 \approx IZ '89

This work

This work

Naïve

 $2^k \delta$

 $k\delta + \gamma$

 $k\delta + \gamma$

 $k\delta + \gamma$

Any ≤ 0.2

 $k\delta + k/2^{n^{\Omega(1)}}$

 $O(\varepsilon)$

 $O(\varepsilon d)$

 $O(\varepsilon)$

 $O(\varepsilon)$

Any

 $O(\varepsilon kd/\gamma)$

Open questions

▶ Optimal randomness complexity when *d* is large?

Open questions

- Optimal randomness complexity when d is large?
- ▶ Simultaneously achieve error $\varepsilon' \leq O(\varepsilon)$ and randomness complexity $n + O(k \log(d+1))$?

Open questions

- Optimal randomness complexity when d is large?
- ▶ Simultaneously achieve error $\varepsilon' \leq O(\varepsilon)$ and randomness complexity $n + O(k \log(d+1))$?

Thanks! Questions?

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1610403.