Preserving Randomness for Adaptive Algorithms

William M. Hoza Adam R. Klivans

TEXAS

The University of Texas at Austin

May 25, 2017
Caltech Theory of Computing Seminar

1/20

Randomized estimation algorithms

» Algorithm Est(C) estimates some value p(C) € R?

20

Randomized estimation algorithms

» Algorithm Est(C) estimates some value p(C) € R?

Pr{|Est(C) — u(C)loc > €] < 6

20

Randomized estimation algorithms

» Algorithm Est(C) estimates some value p(C) € R?

Pr{|Est(C) — u(C)loc > €] < 6

» Canonical example:

20

Randomized estimation algorithms

» Algorithm Est(C) estimates some value p(C) € R?

Pr{|Est(C) — u(C)loc > €] < 6

» Canonical example:
» C is a Boolean circuit

20

Randomized estimation algorithms

» Algorithm Est(C) estimates some value p(C) € R?

Prl[[Est(C) = i(C)lloc > €] <6

» Canonical example:

» C is a Boolean circuit

> w(C) EPrC(x)=1 (d=1)

20

Randomized estimation algorithms

» Algorithm Est(C) estimates some value p(C) € R?

Pr{|Est(C) — u(C)loc > €] < 6

» Canonical example:
» C is a Boolean circuit
> p(C) EPr[Cx)=1] (d=1)

» Est(C) evaluates C at several randomly chosen points

20

Executing Est many times

/20

Executing Est many times

» Goal: Execute Est(Cy), Est((,),. . ., Est(Ck)

20

Executing Est many times

» Goal: Execute Est(Cy), Est((,),. . ., Est(Ck)

» Say Est uses n random bits

20

Executing Est many times

» Goal: Execute Est(Cy), Est((,),. . ., Est(Ck)
» Say Est uses n random bits

» Naive implementation: nk random bits

20

Executing Est many times

v

Goal: Execute Est(Cy), Est((,),. . ., Est(Ck)

Say Est uses n random bits

v

v

Naive implementation: nk random bits

Can we do better?

v

20

Executing Est many times

v

Goal: Execute Est(Cy), Est((,),. . ., Est(Ck)

Say Est uses n random bits

v

v

Naive implementation: nk random bits

Can we do better?

v

v

Theorem: Can use just n+ O(klog(d + 1)) random bits!

20

Executing Est many times

v

Goal: Execute Est(Cy), Est((,),. . ., Est(Ck)

Say Est uses n random bits

v

v

Naive implementation: nk random bits

Can we do better?

v

v

Theorem: Can use just n+ O(klog(d + 1)) random bits!
» Slight increases in error, failure probability

20

Nonadaptive setting

4/20

Nonadaptive setting

G, ...

7Ck

Y

Nonadaptive setting

G, ..., C

ESt(Cl), ce ESt(Ck)

Y

A

Nonadaptive setting

G, ..., C

ESt(Cl), ce ESt(Ck)

Y

A

> Algorithm that uses just n random bits:

Nonadaptive setting

G, ..., C

ESt(Cl), ce ESt(Ck)

> Algorithm that uses just n random bits:
1. Pick X € {0,1}" uniformly at random once

Nonadaptive setting

G, ..., C

ESt(Cl), ce ESt(Ck)

> Algorithm that uses just n random bits:

1. Pick X € {0,1}" uniformly at random once
2. Execute Est(Gy, X), Est((G, X)), ..., Est(Ck, X)

Nonadaptive setting

G, ..., C

ESt(Cl), ce ESt(Ck)

> Algorithm that uses just n random bits:

1. Pick X € {0,1}" uniformly at random once
2. Execute Est(Gy, X), Est((G, X)), ..., Est(Ck, X)

» Overall failure probability is still k§ (union bound)

Adaptive setting

Adaptive setting

G

Adaptive setting

G

ESt(Cl)

Y

Adaptive setting

G

ESt(Cl)

G

Adaptive setting

G

ESt(Cl)

G

A

ESt(C2)

Adaptive setting

G

ESt(Cl)
G

ESt(C2)
Ck

ESt(Ck)

Adaptive setting

G

') Est(G1)
G

) Est(()
Ck

Est(Ck)

» Let X be the randomness used for Est(C;)

Adaptive setting

G

') Est(G1)
G

) Est(()
Ck

Est(Ck)

» Let X be the randomness used for Est(C;)

» (is stochastically dependent on X

Adaptive setting

G

') Est(G1)
G

) Est(()
Ck

Est(Ck)

» Let X be the randomness used for Est(C;)
» (is stochastically dependent on X
» Failure probability of Est(Cp, X) is 777

Concentrated functions

» £:{0,1}" — R?

/20

Concentrated functions

» £:{0,1}" — R
» Definition: f is (¢, §)-concentrated at yu € R? if

PrIF(X) — plloe >] < 6.

20

Concentrated functions

» £:{0,1}" — R
» Definition: f is (¢, §)-concentrated at yu € R? if

PrIF(X) — plloe >] < 6.

» Example: f(X) gef Est(C, X)

20

Randomness steward model

Owner

Steward

~

Randomness steward model

Owner

f

Steward

~

Randomness steward model

Owner

f

Y1

Steward

~

Randomness steward model

Owner

Y1

Steward

~

Randomness steward model

Owner

f

Y1

Y2

Steward

~

Randomness steward model

Owner

f

Y1
H

Y2
fi

Y

Steward

~

Randomness steward model

Owner

fi ‘
® - ”
) 5 |
- Y2
i ‘
Y,]

» Each f; is (¢, d)-concentrated at some p;

Steward

~

Randomness steward model

Owner ; Steward
® "
< - ‘

« Y2
fi -
Y]

» Each f; is (¢, d)-concentrated at some p;
» Steward requirement: For any owner,

Pr{max||Y; — pilloo > '] <&
1

~

One-query stewards

» Definition: One-query steward: Only accesses each f; by
querying a single point f;(X;)

20

One-query stewards

» Definition: One-query steward: Only accesses each f; by
querying a single point f;(X;)
» Querying f; corresponds to executing Est

20

One-query stewards

» Definition: One-query steward: Only accesses each f; by
querying a single point f;(X;)
» Querying f; corresponds to executing Est
» The owner does not see X;

20

Warm-up steward

» Theorem: For any n, k, e, d, there exists a one-query steward
for d = 1 with

20

Warm-up steward

» Theorem: For any n, k, e, d, there exists a one-query steward
for d = 1 with

» Error &/ < O(¢) (vs. naive €)

20

Warm-up steward

» Theorem: For any n, k, e, d, there exists a one-query steward
for d = 1 with

» Error &/ < O(¢) (vs. naive €)
> Failure probability &' < 2%.§ (vs. naive k¢)

20

Warm-up steward

» Theorem: For any n, k, e, d, there exists a one-query steward
for d = 1 with

» Error &/ < O(¢) (vs. naive €)
> Failure probability &' < 2%.§ (vs. naive k¢)

» Randomness n (vs. naive nk)

20

Warm-up steward

» Theorem: For any n, k, e, d, there exists a one-query steward

for d =1 with
» Error &/ < O(¢) (vs. naive €)
» Failure probability &' < 2%.§ (vs. naive ké)
» Randomness n (vs. naive nk)

» The steward: “Reuse randomness and round”

20

Warm-up steward

» Theorem: For any n, k, e, d, there exists a one-query steward

for d =1 with
» Error &/ < O(¢) (vs. naive €)
» Failure probability &' < 2%.§ (vs. naive ké)
» Randomness n (vs. naive nk)

» The steward: “Reuse randomness and round”
» Pick X € {0,1}" uniformly at random once

20

Warm-up steward

» Theorem: For any n, k, e, d, there exists a one-query steward

for d =1 with
» Error &/ < O(¢) (vs. naive €)
» Failure probability &' < 2%.§ (vs. naive ké)
» Randomness n (vs. naive nk)

> The steward: “Reuse randomness and round”
» Pick X € {0,1}" uniformly at random once
» For i =1 to k: Return f;(X), rounded to multiple of 2¢

Analysis of warm-up steward

10/20

Analysis of warm-up steward

10/20

Analysis of warm-up steward

10/20

Analysis of warm-up steward

10/20

Analysis of warm-up steward

» Imagine if the steward always returns A(u) or B(p)...

10/20

Analysis of warm-up steward

» Imagine if the steward always returns A(u) or B(p)...

f

10/20

Analysis of warm-up steward

» Imagine if the steward always returns A(u) or B(p)...

f! fy

10/20

Analysis of warm-up steward

10/20

Analysis of warm-up steward

2 £y
PAEEEN PAEE
ﬂfA ﬁfB EFA ﬁFB
FoN Yo\ F o\ '

AAA rAAB (ABA (ABB (BAA (BAB ¢BBA ¢BBB
/SAN R A A e 7

10/20

Analysis of warm-up steward

2 £y
PAEEEN PAEE
ﬂfA ﬁfB EFA ﬁFB
FoN Yo\ F o\ '

AAA rAAB (ABA (ABB (BAA (BAB ¢BBA ¢BBB
/SAN R A A e 7

» Union bound: Pr[X good for every function in tree] > 1 — 2§

10/20

Analysis of warm-up steward

2 £y
PAEEEN PAEE
ﬂfA ﬁfB EFA ﬁFB
FoN Yo\ F o\ '

AAA rAAB (ABA (ABB (BAA (BAB ¢BBA ¢BBB
/SAN R A A e 7

» Union bound: Pr[X good for every function in tree] > 1 — 2§
» If so, inductively, every f; is in the tree! O

10/20

Main result

» Theorem: For all n, k,d, e, d,, there is an efficient one-query
steward with

11/20

Main result

» Theorem: For all n, k,d, e, d,, there is an efficient one-query
steward with

» Error &/ < O(ed)

11/20

Main result

» Theorem: For all n, k,d, e, d,, there is an efficient one-query
steward with
» Error ¢/ < O(ed)
» Failure probability 6’ < ké + v

11/20

Main result

» Theorem: For all n, k,d, e, d,, there is an efficient one-query
steward with
» Error ¢/ < O(ed)
» Failure probability 6’ < ké + v
» # random bits n+ O(k log(d + 1) + log k log(1/7))

11/20

Main steward

» Pick random seed X, compute (X1, ..., Xx) = Gen(X)

12/20

Main steward

» Pick random seed X, compute (X1, ..., Xx) = Gen(X)
» Fori=1to k:

12/20

Main steward

» Pick random seed X, compute (X1, ..., Xx) = Gen(X)
» Fori=1to k:
» Obtain W; = f;(X;)

12/20

Main steward

» Pick random seed X, compute (X1, ..., Xx) = Gen(X)
» Fori=1to k:

» Obtain W; = f;(X;)

» Shift and round W; to determine output Y;

12/20

Main steward

» Pick random seed X, compute (X1, ..., Xx) = Gen(X)
» Fori=1to k:

» Obtain W; = f;(X;)

» Shift and round W; to determine output Y;

> Ingredient 1: Gen: PRG for block decision trees

12/20

Main steward

v

Pick random seed X, compute (Xi, ..., Xx) = Gen(X)
For i =1 to k:

» Obtain W; = f;(X;)

» Shift and round W; to determine output Y;

v

v

Ingredient 1: Gen: PRG for block decision trees

v

Ingredient 2: Deterministic shifting and rounding algorithm

12/20

Shifting and rounding algorithm
(d+1) 2

Wig
| e 1 1 |
W;

13/20

Shifting and rounding algorithm
(d+1) 2

Wig
| e 1 1 |
W;

13/20

Shifting and rounding algorithm
(d+1) 2
/—/H

N R A SN S
A I L

| e | | | |
{ e \ \ \ \
Wi,
| | el | | |
{ \ 8] \ \ \
Wis

13/20

Shifting and rounding algorithm
(d+1) 2
/—/H

N R A SN S
A I L

| e | | | |
{ e \ \ \ \
Wi,
| | el | | |
{ \ 8] \ \ \
Wis

13/20

Shifting and rounding algorithm

(d+1)-2¢
/—/H
}::::::}:: } } :}:Q: }
W;
] | | | |
W;
| | | o] |
W;
| e | | |
W;
L, | | ay |
[\ \ i |

13/20

Shifting and rounding algorithm

(d+1)-2¢
/—/H
}::::::}:: } } :}:Q: }
W;
] | | | |
W;
| | | o] |
W;
| e | | |
W;
L, | | ay |
[\ \ i |

13/20

Shifting and rounding algorithm

(d+1)-2¢
/—/H
- | | - |
I \ \ \ \ |
W,
] | | | |
W,
| | |] |
W,
| AR e | | |
W;
| | e | | |

13/20

Shifting and rounding algorithm

(d+1)-2¢
/—/H
- | | - |
I \ \ \ \ |
W;
] | | | |
W;
| | |] |
W;
| AR e | | |
W;
| | e | | |

13/20

Analysis of shifting and rounding algorithm

» For W € R? and A € [d + 1], define Ra(W) € RY by shifting
W according to A, then rounding

14 /20

Analysis of shifting and rounding algorithm

» For W € R? and A € [d + 1], define Ra(W) € RY by shifting
W according to A, then rounding

» By construction, Y; = Ra(W;) for some A

14 /20

Analysis of shifting and rounding algorithm

» For W € R? and A € [d + 1], define Ra(W) € RY by shifting
W according to A, then rounding

» By construction, Y; = Ra(W;) for some A
» Imagine if Y; = Ra(u;) for some A...

14 /20

Analysis of shifting and rounding algorithm

» For W € R? and A € [d + 1], define Ra(W) € RY by shifting
W according to A, then rounding

» By construction, Y; = Ra(W;) for some A
» Imagine if Y; = Ra(u;) for some A...

fi

14 /20

Analysis of shifting and rounding algorithm

» For W € R? and A € [d + 1], define Ra(W) € RY by shifting
W according to A, then rounding

» By construction, Y; = Ra(W;) for some A
» Imagine if Y; = Ra(u;) for some A...

/ fl
f-2R2(u1) ’E&X 1

szl(Ml)

14 /20

Analysis of shifting and rounding algorithm

» For W € R? and A € [d + 1], define Ra(W) € RY by shifting
W according to A, then rounding

» By construction, Y; = Ra(W;) for some A
» Imagine if Y; = Ra(u;) for some A...

le(m) k
() Raie2) fRz(m) Rz(/tz) m

14 /20

Certification tree

/ fl
gRu(m) gRa(p)

A fR3(/‘«1) 1

R. R R; ,R: RR\
f, 2(p1),Ra(p2) f, 2(p1),Ra(p2) f, 2(11),R3(p2) L

15/20

Certification tree

/ fl
) fR2(N1)

R:
/ 2 f-2 3(H1) J_
f3R2(H1),R2(M2) f3R2(u1):R3(#2) n

» A sequence (Xi,...,Xx) of query points determines:

f2R1(u1

f3R2(H1),R1 (12)

15/20

Certification tree

/ fl
f2R1(u1) szz(Ml) f2R3(,u1) L
f3R2(H1),R2(M2) f3R2(u1):R3(#2) n

» A sequence (Xi,...,Xx) of query points determines:
» A transcript (f, Y1, %, Ya,. .., fx, Y)

f3R2(H1),R1 (12)

15/20

Certification tree

/ fl
f2R1(u1) szz(Ml) f2R3(,u1)
f3R2(H1),R2(M2) f3R2(u1):R3(#2) n

» A sequence (Xi,...,Xx) of query points determines:
» A transcript (f, Y1, %, Ya,. .., fx, Y)
> A path P through tree

f3R2(H1),R1 (12)

L

15/20

Certification tree

/ fl
f2R1(u1) szz(Ml) f2R3(,u1)
f3R2(H1),R2(M2) f3R2(u1):R3(#2) n

» A sequence (Xi,...,Xx) of query points determines:
» A transcript (f, Y1, %, Ya,. .., fx, Y)
> A path P through tree

> If we pick Xi,..., X\ independently and u.a.r.,

f3R2(H1),R1 (12)

Pr [P has a L node] < kd
(X1, Xk)

L

15/20

Certification tree

/ fl
f2R1(u1) szz(Ml) f2R3(,u1) L
f3R2(H1),R2(M2) f3R2(u1):R3(#2) n

» A sequence (Xi,...,Xx) of query points determines:
» A transcript (f, Y1, %, Ya,. .., fx, Y)
> A path P through tree

> If we pick Xi,..., X\ independently and u.a.r.,

f3R2(H1),R1 (12)

Pr [P has a L node] < kd
(X11'~'7Xk)

» (Certification) No L nodes in P = every Y; has error O(ed)

15/20

Block decision trees

» (k,n, q) block decision tree: Full g-ary tree of height k

16 /20

Block decision trees

» (k,n, q) block decision tree: Full g-ary tree of height k

14
v
Va Vb Ve
\ ,\ /
Vaa Vab Vac Vba Vbb Vbc Vca Veb Vee

16 /20

Block decision trees

» (k,n, q) block decision tree: Full g-ary tree of height k
» Each internal node vs has a function vs : {0,1}" — [q]

14
v
Va Vb Ve
\ ,\ /
Vaa Vab Vac Vba Vbb Vbc Vca Veb Vee

16

20

Block decision trees

» (k,n, q) block decision tree: Full g-ary tree of height k

» Each internal node vs has a function vs : {0,1}" — [q]

14
00,11 10
01
v
Va Vb Ve
Vaa Vab Vac Vba Vbb Vbc Vca Veb Vee

16 /20

Block decision trees

» (k,n, q) block decision tree: Full g-ary tree of height k
» Each internal node vs has a function vs : {0,1}" — [q]

» Tree reads nk bits and outputs a leaf

v

00,11 10
01

Y
Vb Ve

Va
\ / ,
Vaa Vab Vac Vba

Vbb Vbc Vca Veb Vee

16

20

PRG for block decision trees

» Theorem: There is an efficient v-PRG for block decision trees
with seed length

n+ O(klog q + log k log(1/7))

17 /20

PRG for block decision trees

» Theorem: There is an efficient v-PRG for block decision trees
with seed length

n+ O(klog g + log k log(1/7))

> Proof idea: Modify parameters of INW generator

17 /20

PRG for block decision trees

» Theorem: There is an efficient v-PRG for block decision trees
with seed length

n+ O(klog g + log k log(1/7))

> Proof idea: Modify parameters of INW generator

» This generator fools the certification tree

17 /20

PRG for block decision trees

v

Theorem: There is an efficient v-PRG for block decision trees
with seed length

n+ O(klog g + log k log(1/7))

v

Proof idea: Modify parameters of INW generator

v

This generator fools the certification tree

v

No need to fool steward/owner protocol! O

17 /20

Application: Randomness-efficient Goldreich-Levin

18/20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}*"

18/20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}%

» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions

18 /20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}%

» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions
» Runtime poly(n,1/6,log(1/0)) (6 = failure prob)

18 /20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}%

» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions
» Runtime poly(n,1/6,log(1/0)) (6 = failure prob)
» O(n+lognlog(1/6)) random bits (independent of 1)

18 /20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}%
» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions
» Runtime poly(n,1/6,log(1/0)) (6 = failure prob)
» O(n+lognlog(1/6)) random bits (independent of 1)
» Previous best: O(nlog(n/0)log(1/(d6))) random bits
(Bshouty et al. '04)

18 /20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}%
» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions
» Runtime poly(n,1/6,log(1/0)) (6 = failure prob)
» O(n+lognlog(1/6)) random bits (independent of 1)
» Previous best: O(nlog(n/0)log(1/(d6))) random bits
(Bshouty et al. '04)
» Proof ingredients:

18 /20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}%
» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions
» Runtime poly(n,1/6,log(1/0)) (6 = failure prob)
» O(n+lognlog(1/6)) random bits (independent of 1)
» Previous best: O(nlog(n/0)log(1/(d6))) random bits
(Bshouty et al. '04)
» Proof ingredients:
» Standard Goldreich-Levin algorithm

18 /20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}%
» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions
» Runtime poly(n,1/6,log(1/0)) (6 = failure prob)
» O(n+lognlog(1/6)) random bits (independent of 1)
» Previous best: O(nlog(n/0)log(1/(d6))) random bits
(Bshouty et al. '04)
» Proof ingredients:
» Standard Goldreich-Levin algorithm
» Our steward with d = poly(1/6)

18 /20

Application: Randomness-efficient Goldreich-Levin

» Oracle access to x € {0,1}%
» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions
» Runtime poly(n,1/6,log(1/0)) (6 = failure prob)
» O(n+lognlog(1/6)) random bits (independent of 1)
» Previous best: O(nlog(n/0)log(1/(d6))) random bits
(Bshouty et al. '04)
» Proof ingredients:
» Standard Goldreich-Levin algorithm
» Our steward with d = poly(1/6)

» Goldreich-Wigderson sampler

18 /20

Landscape of stewards

o’ Randomness complexity Reference

19/20

Landscape of stewards

‘ o’ ‘ Randomness complexity ‘ Reference

‘ ko ‘ nk ‘ Naive

19/20

Landscape of stewards

4 ‘ o Randomness complexity Reference
€ ko nk Naive
O(¢) 2k§ n (works for d =1 only) This work

19/20

Landscape of stewards

€ o Randomness complexity Reference
€ ko nk Naive

O(e) 2k§ n (works for d =1 only) This work
O(ed) ko + n+ O(klog(d + 1) + log klog(1/7)) | This work

19/20

Landscape of stewards

» Steward model captures derandomization constructions in

literature
4 o Randomness complexity Reference
€ ko nk Naive
O(¢) 2k§ n (works for d =1 only) This work
O(ed) ko + n+ O(klog(d + 1) + log klog(1/7)) | This work

19/20

Landscape of stewards

» Steward model captures derandomization constructions in

literature
4 o Randomness complexity Reference
€ ko nk Naive
O(e) 2k§ n (works for d =1 only) This work
O(ed) ko + n+ O(klog(d + 1) + log klog(1/7)) | This work
O(ekd/v) | kd +~ n+ O(klogk + klogd + klog(1/7)) | ~ SZ '99

19/20

Landscape of stewards

» Steward model captures derandomization constructions in

literature
4 o Randomness complexity Reference
€ kd nk Naive
O(e) 2k§ n (works for d =1 only) This work
O(ed) ko + n+ O(klog(d + 1) + log klog(1/7)) | This work
O(ekd/v) | kd +~ n+ O(klogk + klogd + klog(1/7)) | ~ SZ '99
O(e) k6 + k/27" | O(n® + kd) ~ 17 '89

19/20

Landscape of stewards

» Steward model captures derandomization constructions in

literature

o’ Randomness complexity Reference

kd nk Naive
O(e) 2k§ n (works for d =1 only) This work
O(ed) ko + n+ O(klog(d + 1) + log klog(1/7)) | This work
O(ekd/v) | kd +~ n+ O(klogk + klogd + klog(1/7)) | = SZ '99
O(e) k6 + k/27" | O(n® + kd) ~ 1Z 89
O(¢) ko + n+ O(kd + log k log(1/7)) This work

19/20

Landscape of stewards

» Steward model captures derandomization constructions in

literature

4 o Randomness complexity Reference
€ ké nk Naive
O(e) 2k§ n (works for d =1 only) This work
O(ed) ko + n+ O(klog(d + 1) + log klog(1/7)) | This work
O(ekd/v) | kd +~ n+ O(klogk + klogd + klog(1/7)) | = SZ '99
O(e) k6 + k/27" | O(n® + kd) ~ 1Z 89
O(¢) ko + n+ O(kd + log k log(1/7)) This work
Any Any < 0.2 n+ Q(k) — log(d'/9) This work

19/20

Open questions

» Optimal randomness complexity when d is large?

20/20

Open questions

» Optimal randomness complexity when d is large?

» Simultaneously achieve error ¢’ < O(e) and randomness
complexity n+ O(klog(d + 1))?

20/20

Open questions

v

Optimal randomness complexity when d is large?

v

Simultaneously achieve error &/ < O(e) and randomness
complexity n+ O(klog(d + 1))?

Thanks! Questions?

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-1610403.

v

v

20/20

	anm0:
	anm1:
	anm2:
	anm3:
	anm4:
	anm5:
	anm6:
	anm7:

