Preserving Randomness for Adaptive Algorithms

William M. Hoza Adam R. Klivans

May 25, 2017
Caltech Theory of Computing Seminar

Randomized estimation algorithms

- Algorithm $\operatorname{Est}(C)$ estimates some value $\mu(C) \in \mathbb{R}^{d}$

Randomized estimation algorithms

- Algorithm $\operatorname{Est}(C)$ estimates some value $\mu(C) \in \mathbb{R}^{d}$

$$
\operatorname{Pr}\left[\|\operatorname{Est}(C)-\mu(C)\|_{\infty}>\varepsilon\right] \leq \delta
$$

Randomized estimation algorithms

- Algorithm $\operatorname{Est}(C)$ estimates some value $\mu(C) \in \mathbb{R}^{d}$

$$
\operatorname{Pr}\left[\|\operatorname{Est}(C)-\mu(C)\|_{\infty}>\varepsilon\right] \leq \delta
$$

- Canonical example:

Randomized estimation algorithms

- Algorithm $\operatorname{Est}(C)$ estimates some value $\mu(C) \in \mathbb{R}^{d}$

$$
\operatorname{Pr}\left[\|\operatorname{Est}(C)-\mu(C)\|_{\infty}>\varepsilon\right] \leq \delta
$$

- Canonical example:
- C is a Boolean circuit

Randomized estimation algorithms

- Algorithm $\operatorname{Est}(C)$ estimates some value $\mu(C) \in \mathbb{R}^{d}$

$$
\operatorname{Pr}\left[\|\operatorname{Est}(C)-\mu(C)\|_{\infty}>\varepsilon\right] \leq \delta
$$

- Canonical example:
- C is a Boolean circuit
- $\mu(C) \stackrel{\text { def }}{=} \operatorname{Pr}_{x}[C(x)=1] \quad(d=1)$

Randomized estimation algorithms

- Algorithm $\operatorname{Est}(C)$ estimates some value $\mu(C) \in \mathbb{R}^{d}$

$$
\operatorname{Pr}\left[\|\operatorname{Est}(C)-\mu(C)\|_{\infty}>\varepsilon\right] \leq \delta
$$

- Canonical example:
- C is a Boolean circuit
- $\mu(C) \stackrel{\text { def }}{=} \operatorname{Pr}_{x}[C(x)=1] \quad(d=1)$
- Est (C) evaluates C at several randomly chosen points

Executing Est many times

Executing Est many times

- Goal: Execute $\operatorname{Est}\left(C_{1}\right), \operatorname{Est}\left(C_{2}\right), \ldots, \operatorname{Est}\left(C_{k}\right)$

Executing Est many times

- Goal: Execute $\operatorname{Est}\left(C_{1}\right), \operatorname{Est}\left(C_{2}\right), \ldots, \operatorname{Est}\left(C_{k}\right)$
- Say Est uses n random bits

Executing Est many times

- Goal: Execute $\operatorname{Est}\left(C_{1}\right), \operatorname{Est}\left(C_{2}\right), \ldots, \operatorname{Est}\left(C_{k}\right)$
- Say Est uses n random bits
- Naïve implementation: nk random bits

Executing Est many times

- Goal: Execute $\operatorname{Est}\left(C_{1}\right), \operatorname{Est}\left(C_{2}\right), \ldots, \operatorname{Est}\left(C_{k}\right)$
- Say Est uses n random bits
- Naïve implementation: nk random bits
- Can we do better?

Executing Est many times

- Goal: Execute $\operatorname{Est}\left(C_{1}\right), \operatorname{Est}\left(C_{2}\right), \ldots, \operatorname{Est}\left(C_{k}\right)$
- Say Est uses n random bits
- Naïve implementation: nk random bits
- Can we do better?
- Theorem: Can use just $n+O(k \log (d+1))$ random bits!

Executing Est many times

- Goal: Execute $\operatorname{Est}\left(C_{1}\right), \operatorname{Est}\left(C_{2}\right), \ldots, \operatorname{Est}\left(C_{k}\right)$
- Say Est uses n random bits
- Naïve implementation: nk random bits
- Can we do better?
- Theorem: Can use just $n+O(k \log (d+1))$ random bits!
- Slight increases in error, failure probability

Nonadaptive setting

Nonadaptive setting

Nonadaptive setting

Nonadaptive setting

- Algorithm that uses just n random bits:

Nonadaptive setting

- Algorithm that uses just n random bits:

1. Pick $X \in\{0,1\}^{n}$ uniformly at random once

Nonadaptive setting

- Algorithm that uses just n random bits:

1. Pick $X \in\{0,1\}^{n}$ uniformly at random once 2. Execute $\operatorname{Est}\left(C_{1}, X\right), \operatorname{Est}\left(C_{2}, X\right), \ldots, \operatorname{Est}\left(C_{k}, X\right)$

Nonadaptive setting

- Algorithm that uses just n random bits:

1. Pick $X \in\{0,1\}^{n}$ uniformly at random once 2. Execute $\operatorname{Est}\left(C_{1}, X\right), \operatorname{Est}\left(C_{2}, X\right), \ldots, \operatorname{Est}\left(C_{k}, X\right)$

- Overall failure probability is still $k \delta$ (union bound)

Adaptive setting

Adaptive setting

Adaptive setting

Adaptive setting

Adaptive setting

Adaptive setting

Adaptive setting

- Let X be the randomness used for $\operatorname{Est}\left(C_{1}\right)$

Adaptive setting

- Let X be the randomness used for $\operatorname{Est}\left(C_{1}\right)$
- C_{2} is stochastically dependent on X

Adaptive setting

- Let X be the randomness used for $\operatorname{Est}\left(C_{1}\right)$
- C_{2} is stochastically dependent on X
- Failure probability of $\operatorname{Est}\left(C_{2}, X\right)$ is ???

Concentrated functions

- $f:\{0,1\}^{n} \rightarrow \mathbb{R}^{d}$

Concentrated functions

- $f:\{0,1\}^{n} \rightarrow \mathbb{R}^{d}$
- Definition: f is (ε, δ)-concentrated at $\mu \in \mathbb{R}^{d}$ if

$$
\underset{X}{\operatorname{Pr}}\left[\|f(X)-\mu\|_{\infty}>\varepsilon\right] \leq \delta .
$$

Concentrated functions

- $f:\{0,1\}^{n} \rightarrow \mathbb{R}^{d}$
- Definition: f is (ε, δ)-concentrated at $\mu \in \mathbb{R}^{d}$ if

$$
\underset{X}{\operatorname{Pr}}\left[\|f(X)-\mu\|_{\infty}>\varepsilon\right] \leq \delta .
$$

- Example: $f(X) \stackrel{\text { def }}{=} \operatorname{Est}(C, X)$

Randomness steward model

Randomness steward model

Randomness steward model

Randomness steward model

Randomness steward model

Randomness steward model

Randomness steward model

- Each f_{i} is (ε, δ)-concentrated at some μ_{i}

Randomness steward model

- Each f_{i} is (ε, δ)-concentrated at some μ_{i}
- Steward requirement: For any owner,

$$
\operatorname{Pr}\left[\max _{i}\left\|Y_{i}-\mu_{i}\right\|_{\infty}>\varepsilon^{\prime}\right] \leq \delta^{\prime}
$$

One-query stewards

- Definition: One-query steward: Only accesses each f_{i} by querying a single point $f_{i}\left(X_{i}\right)$

One-query stewards

- Definition: One-query steward: Only accesses each f_{i} by querying a single point $f_{i}\left(X_{i}\right)$
- Querying f_{i} corresponds to executing Est

One-query stewards

- Definition: One-query steward: Only accesses each f_{i} by querying a single point $f_{i}\left(X_{i}\right)$
- Querying f_{i} corresponds to executing Est
- The owner does not see X_{i}

Warm-up steward

- Theorem: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for $d=1$ with

Warm-up steward

- Theorem: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for $d=1$ with
- Error $\varepsilon^{\prime} \leq O(\varepsilon) \quad$ (vs. naïve ε)

Warm-up steward

- Theorem: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for $d=1$ with
- Error $\varepsilon^{\prime} \leq O(\varepsilon) \quad$ (vs. naïve ε)
- Failure probability $\delta^{\prime} \leq 2^{k} \cdot \delta \quad$ (vs. naïve $k \delta$)

Warm-up steward

- Theorem: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for $d=1$ with
- Error $\varepsilon^{\prime} \leq O(\varepsilon) \quad$ (vs. naïve ε)
- Failure probability $\delta^{\prime} \leq 2^{k} \cdot \delta \quad$ (vs. naïve $k \delta$)
- Randomness n (vs. naïve $n k$)

Warm-up steward

- Theorem: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for $d=1$ with
- Error $\varepsilon^{\prime} \leq O(\varepsilon) \quad$ (vs. naïve ε)
- Failure probability $\delta^{\prime} \leq 2^{k} \cdot \delta \quad$ (vs. naïve $k \delta$)
- Randomness n (vs. naïve $n k$)
- The steward: "Reuse randomness and round"

Warm-up steward

- Theorem: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for $d=1$ with
- Error $\varepsilon^{\prime} \leq O(\varepsilon) \quad$ (vs. naïve ε)
- Failure probability $\delta^{\prime} \leq 2^{k} \cdot \delta \quad$ (vs. naïve $k \delta$)
- Randomness n (vs. naïve $n k$)
- The steward: "Reuse randomness and round"
- Pick $X \in\{0,1\}^{n}$ uniformly at random once

Warm-up steward

- Theorem: For any $n, k, \varepsilon, \delta$, there exists a one-query steward for $d=1$ with
- Error $\varepsilon^{\prime} \leq O(\varepsilon) \quad$ (vs. naïve ε)
- Failure probability $\delta^{\prime} \leq 2^{k} \cdot \delta \quad$ (vs. naïve $k \delta$)
- Randomness n (vs. naïve $n k$)
- The steward: "Reuse randomness and round"
- Pick $X \in\{0,1\}^{n}$ uniformly at random once
- For $i=1$ to k : Return $f_{i}(X)$, rounded to multiple of 2ε

Analysis of warm-up steward

Analysis of warm-up steward

Analysis of warm-up steward

Analysis of warm-up steward

Analysis of warm-up steward

- Imagine if the steward always returns $A(\mu)$ or $B(\mu) \ldots$

Analysis of warm-up steward

- Imagine if the steward always returns $A(\mu)$ or $B(\mu) \ldots$
f_{1}

Analysis of warm-up steward

- Imagine if the steward always returns $A(\mu)$ or $B(\mu) \ldots$

Analysis of warm-up steward

- Imagine if the steward always returns $A(\mu)$ or $B(\mu) \ldots$

Analysis of warm-up steward

- Imagine if the steward always returns $A(\mu)$ or $B(\mu) \ldots$

Analysis of warm-up steward

- Imagine if the steward always returns $A(\mu)$ or $B(\mu) \ldots$

- Union bound: $\operatorname{Pr}[X$ good for every function in tree $] \geq 1-2^{k} \delta$

Analysis of warm-up steward

- Imagine if the steward always returns $A(\mu)$ or $B(\mu) \ldots$

- Union bound: $\operatorname{Pr}[X$ good for every function in tree $] \geq 1-2^{k} \delta$
- If so, inductively, every f_{i} is in the tree!

Main result

- Theorem: For all $n, k, d, \varepsilon, \delta, \gamma$, there is an efficient one-query steward with

Main result

- Theorem: For all $n, k, d, \varepsilon, \delta, \gamma$, there is an efficient one-query steward with
- Error $\varepsilon^{\prime} \leq O(\varepsilon d)$

Main result

- Theorem: For all $n, k, d, \varepsilon, \delta, \gamma$, there is an efficient one-query steward with
- Error $\varepsilon^{\prime} \leq O(\varepsilon d)$
- Failure probability $\delta^{\prime} \leq k \delta+\gamma$

Main result

- Theorem: For all $n, k, d, \varepsilon, \delta, \gamma$, there is an efficient one-query steward with
- Error $\varepsilon^{\prime} \leq O(\varepsilon d)$
- Failure probability $\delta^{\prime} \leq k \delta+\gamma$
- \# random bits $n+O(k \log (d+1)+\log k \log (1 / \gamma))$

Main steward

- Pick random seed X, compute $\left(X_{1}, \ldots, X_{k}\right)=\operatorname{Gen}(X)$

Main steward

- Pick random seed X, compute $\left(X_{1}, \ldots, X_{k}\right)=\operatorname{Gen}(X)$
- For $i=1$ to k :

Main steward

- Pick random seed X, compute $\left(X_{1}, \ldots, X_{k}\right)=\operatorname{Gen}(X)$
- For $i=1$ to k :
- Obtain $W_{i}=f_{i}\left(X_{i}\right)$

Main steward

- Pick random seed X, compute $\left(X_{1}, \ldots, X_{k}\right)=\operatorname{Gen}(X)$
- For $i=1$ to k :
- Obtain $W_{i}=f_{i}\left(X_{i}\right)$
- Shift and round W_{i} to determine output Y_{i}

Main steward

- Pick random seed X, compute $\left(X_{1}, \ldots, X_{k}\right)=\operatorname{Gen}(X)$
- For $i=1$ to k :
- Obtain $W_{i}=f_{i}\left(X_{i}\right)$
- Shift and round W_{i} to determine output Y_{i}
- Ingredient 1: Gen: PRG for block decision trees

Main steward

- Pick random seed X, compute $\left(X_{1}, \ldots, X_{k}\right)=\operatorname{Gen}(X)$
- For $i=1$ to k :
- Obtain $W_{i}=f_{i}\left(X_{i}\right)$
- Shift and round W_{i} to determine output Y_{i}
- Ingredient 1: Gen: PRG for block decision trees
- Ingredient 2: Deterministic shifting and rounding algorithm

Shifting and rounding algorithm

Shifting and rounding algorithm

Shifting and rounding algorithm

Shifting and rounding algorithm

Shifting and rounding algorithm

Shifting and rounding algorithm

Shifting and rounding algorithm

Shifting and rounding algorithm

Analysis of shifting and rounding algorithm

- For $W \in \mathbb{R}^{d}$ and $\Delta \in[d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^{d}$ by shifting W according to Δ, then rounding

Analysis of shifting and rounding algorithm

- For $W \in \mathbb{R}^{d}$ and $\Delta \in[d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^{d}$ by shifting W according to Δ, then rounding
- By construction, $Y_{i}=R_{\Delta}\left(W_{i}\right)$ for some Δ

Analysis of shifting and rounding algorithm

- For $W \in \mathbb{R}^{d}$ and $\Delta \in[d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^{d}$ by shifting W according to Δ, then rounding
- By construction, $Y_{i}=R_{\Delta}\left(W_{i}\right)$ for some Δ
- Imagine if $Y_{i}=R_{\Delta}\left(\mu_{i}\right)$ for some $\Delta \ldots$

Analysis of shifting and rounding algorithm

- For $W \in \mathbb{R}^{d}$ and $\Delta \in[d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^{d}$ by shifting W according to Δ, then rounding
- By construction, $Y_{i}=R_{\Delta}\left(W_{i}\right)$ for some Δ
- Imagine if $Y_{i}=R_{\Delta}\left(\mu_{i}\right)$ for some $\Delta \ldots$
f_{1}

Analysis of shifting and rounding algorithm

- For $W \in \mathbb{R}^{d}$ and $\Delta \in[d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^{d}$ by shifting W according to Δ, then rounding
- By construction, $Y_{i}=R_{\Delta}\left(W_{i}\right)$ for some Δ
- Imagine if $Y_{i}=R_{\Delta}\left(\mu_{i}\right)$ for some $\Delta \ldots$

Analysis of shifting and rounding algorithm

- For $W \in \mathbb{R}^{d}$ and $\Delta \in[d+1]$, define $R_{\Delta}(W) \in \mathbb{R}^{d}$ by shifting W according to Δ, then rounding
- By construction, $Y_{i}=R_{\Delta}\left(W_{i}\right)$ for some Δ
- Imagine if $Y_{i}=R_{\Delta}\left(\mu_{i}\right)$ for some $\Delta \ldots$

Certification tree

Certification tree

- A sequence $\left(X_{1}, \ldots, X_{k}\right)$ of query points determines:

Certification tree

- A sequence $\left(X_{1}, \ldots, X_{k}\right)$ of query points determines:
- A transcript $\left(f_{1}, Y_{1}, f_{2}, Y_{2}, \ldots, f_{k}, Y_{k}\right)$

Certification tree

- A sequence $\left(X_{1}, \ldots, X_{k}\right)$ of query points determines:
- A transcript $\left(f_{1}, Y_{1}, f_{2}, Y_{2}, \ldots, f_{k}, Y_{k}\right)$
- A path P through tree

Certification tree

- A sequence $\left(X_{1}, \ldots, X_{k}\right)$ of query points determines:
- A transcript $\left(f_{1}, Y_{1}, f_{2}, Y_{2}, \ldots, f_{k}, Y_{k}\right)$
- A path P through tree
- If we pick X_{1}, \ldots, X_{k} independently and u.a.r.,

$$
\operatorname{Pr}_{\left(X_{1}, \ldots, X_{k}\right)}[P \text { has a } \perp \text { node }] \leq k \delta
$$

Certification tree

- A sequence $\left(X_{1}, \ldots, X_{k}\right)$ of query points determines:
- A transcript $\left(f_{1}, Y_{1}, f_{2}, Y_{2}, \ldots, f_{k}, Y_{k}\right)$
- A path P through tree
- If we pick X_{1}, \ldots, X_{k} independently and u.a.r.,

$$
\operatorname{Pr}_{\left(X_{1}, \ldots, X_{k}\right)}[P \text { has a } \perp \text { node }] \leq k \delta
$$

- (Certification) No \perp nodes in $P \Longrightarrow$ every Y_{i} has error $O(\varepsilon d)$

Block decision trees

- (k, n, q) block decision tree: Full q-ary tree of height k

Block decision trees

- (k, n, q) block decision tree: Full q-ary tree of height k

Block decision trees

- (k, n, q) block decision tree: Full q-ary tree of height k
- Each internal node v_{s} has a function $v_{s}:\{0,1\}^{n} \rightarrow[q]$

Block decision trees

- (k, n, q) block decision tree: Full q-ary tree of height k
- Each internal node v_{s} has a function $v_{s}:\{0,1\}^{n} \rightarrow[q]$

Block decision trees

- (k, n, q) block decision tree: Full q-ary tree of height k
- Each internal node v_{s} has a function $v_{s}:\{0,1\}^{n} \rightarrow[q]$
- Tree reads $n k$ bits and outputs a leaf

PRG for block decision trees

- Theorem: There is an efficient γ-PRG for block decision trees with seed length

$$
n+O(k \log q+\log k \log (1 / \gamma))
$$

PRG for block decision trees

- Theorem: There is an efficient γ-PRG for block decision trees with seed length

$$
n+O(k \log q+\log k \log (1 / \gamma))
$$

- Proof idea: Modify parameters of INW generator

PRG for block decision trees

- Theorem: There is an efficient γ-PRG for block decision trees with seed length

$$
n+O(k \log q+\log k \log (1 / \gamma))
$$

- Proof idea: Modify parameters of INW generator
- This generator fools the certification tree

PRG for block decision trees

- Theorem: There is an efficient γ-PRG for block decision trees with seed length

$$
n+O(k \log q+\log k \log (1 / \gamma))
$$

- Proof idea: Modify parameters of INW generator
- This generator fools the certification tree
- No need to fool steward/owner protocol!

Application: Randomness-efficient Goldreich-Levin

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$
- Theorem: Can find all Hadamard codewords that agree with x in $\left(\frac{1}{2}+\theta\right)$-fraction of positions

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$
- Theorem: Can find all Hadamard codewords that agree with x in $\left(\frac{1}{2}+\theta\right)$-fraction of positions
- Runtime $\operatorname{poly}(n, 1 / \theta, \log (1 / \delta)) \quad(\delta=$ failure prob $)$

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$
- Theorem: Can find all Hadamard codewords that agree with x in $\left(\frac{1}{2}+\theta\right)$-fraction of positions
- Runtime poly $(n, 1 / \theta, \log (1 / \delta)) \quad(\delta=$ failure prob $)$
- $O(n+\log n \log (1 / \delta))$ random bits (independent of θ !)

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$
- Theorem: Can find all Hadamard codewords that agree with x in $\left(\frac{1}{2}+\theta\right)$-fraction of positions
- Runtime poly $(n, 1 / \theta, \log (1 / \delta)) \quad(\delta=$ failure prob $)$
- $O(n+\log n \log (1 / \delta))$ random bits (independent of θ !)
- Previous best: $O(n \log (n / \theta) \log (1 /(\delta \theta)))$ random bits (Bshouty et al. '04)

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$
- Theorem: Can find all Hadamard codewords that agree with x in $\left(\frac{1}{2}+\theta\right)$-fraction of positions
- Runtime poly $(n, 1 / \theta, \log (1 / \delta)) \quad(\delta=$ failure prob $)$
- $O(n+\log n \log (1 / \delta))$ random bits (independent of θ !)
- Previous best: $O(n \log (n / \theta) \log (1 /(\delta \theta)))$ random bits (Bshouty et al. '04)
- Proof ingredients:

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$
- Theorem: Can find all Hadamard codewords that agree with x in $\left(\frac{1}{2}+\theta\right)$-fraction of positions
- Runtime poly $(n, 1 / \theta, \log (1 / \delta)) \quad(\delta=$ failure prob $)$
- $O(n+\log n \log (1 / \delta))$ random bits (independent of θ !)
- Previous best: $O(n \log (n / \theta) \log (1 /(\delta \theta)))$ random bits (Bshouty et al. '04)
- Proof ingredients:
- Standard Goldreich-Levin algorithm

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$
- Theorem: Can find all Hadamard codewords that agree with x in $\left(\frac{1}{2}+\theta\right)$-fraction of positions
- Runtime poly $(n, 1 / \theta, \log (1 / \delta)) \quad(\delta=$ failure prob $)$
- $O(n+\log n \log (1 / \delta))$ random bits (independent of θ !)
- Previous best: $O(n \log (n / \theta) \log (1 /(\delta \theta)))$ random bits (Bshouty et al. '04)
- Proof ingredients:
- Standard Goldreich-Levin algorithm
- Our steward with $d=\operatorname{poly}(1 / \theta)$

Application: Randomness-efficient Goldreich-Levin

- Oracle access to $x \in\{0,1\}^{2^{n}}$
- Theorem: Can find all Hadamard codewords that agree with x in $\left(\frac{1}{2}+\theta\right)$-fraction of positions
- Runtime poly $(n, 1 / \theta, \log (1 / \delta)) \quad(\delta=$ failure prob $)$
- $O(n+\log n \log (1 / \delta))$ random bits (independent of θ !)
- Previous best: $O(n \log (n / \theta) \log (1 /(\delta \theta)))$ random bits (Bshouty et al. '04)
- Proof ingredients:
- Standard Goldreich-Levin algorithm
- Our steward with $d=\operatorname{poly}(1 / \theta)$
- Goldreich-Wigderson sampler

Landscape of stewards

Landscape of stewards

ε^{\prime}	δ^{\prime}	Randomness complexity	Reference
ε	$k \delta$	$n k$	Naïve

Landscape of stewards

ε^{\prime}	δ^{\prime}	Randomness complexity	Reference
ε	$k \delta$	$n k \quad$ Naïve	
$O(\varepsilon)$	$2^{k} \delta$	$n \quad$ (works for $d=1$ only)	This work

Landscape of stewards

ε^{\prime}	δ^{\prime}	Randomness complexity	Reference
ε	$k \delta$	$n k$	Naïve
$O(\varepsilon)$	$2^{k} \delta$	$n \quad($ works for $d=1$ only $)$	This work
$O(\varepsilon d)$	$k \delta+\gamma$	$n+O(k \log (d+1)+\log k \log (1 / \gamma))$	This work

Landscape of stewards

- Steward model captures derandomization constructions in literature

ε^{\prime}	δ^{\prime}	Randomness complexity	Reference
ε	$k \delta$	$n k \quad$	Naïve
$O(\varepsilon)$	$2^{k} \delta$	$n \quad($ works for $d=1$ only $)$	This work
$O(\varepsilon d)$	$k \delta+\gamma$	$n+O(k \log (d+1)+\log k \log (1 / \gamma))$	This work

Landscape of stewards

- Steward model captures derandomization constructions in literature

ε^{\prime}	δ^{\prime}	Randomness complexity	Reference
ε	$k \delta$	$n k$	Naïve
$O(\varepsilon)$	$2^{k} \delta$	$n \quad$ (works for $d=1$ only)	This work
$O(\varepsilon d)$	$k \delta+\gamma$	$n+O(k \log (d+1)+\log k \log (1 / \gamma))$	This work
$O(\varepsilon k d / \gamma)$	$k \delta+\gamma$	$n+O(k \log k+k \log d+k \log (1 / \gamma))$	\approx SZ '99

Landscape of stewards

- Steward model captures derandomization constructions in literature

ε^{\prime}	δ^{\prime}	Randomness complexity	Reference
ε	$k \delta$	$n k$	Naïve
$O(\varepsilon)$	$2^{k} \delta$	$n \quad$ (works for $d=1$ only)	This work
$O(\varepsilon d)$	$k \delta+\gamma$	$n+O(k \log (d+1)+\log k \log (1 / \gamma))$	This work
$O(\varepsilon k d / \gamma)$	$k \delta+\gamma$	$n+O(k \log k+k \log d+k \log (1 / \gamma))$	\approx SZ '99
$O(\varepsilon)$	$k \delta+k / 2^{n^{\Omega(1)}}$	$O\left(n^{6}+k d\right)$	\approx IZ '89

Landscape of stewards

- Steward model captures derandomization constructions in literature

ε^{\prime}	δ^{\prime}	Randomness complexity	Reference
ε	$k \delta$	$n k$	Naïve
$O(\varepsilon)$	$2^{k} \delta$	$n \quad$ (works for $d=1$ only)	This work
$O(\varepsilon d)$	$k \delta+\gamma$	$n+O(k \log (d+1)+\log k \log (1 / \gamma))$	This work
$O(\varepsilon k d / \gamma)$	$k \delta+\gamma$	$n+O(k \log k+k \log d+k \log (1 / \gamma))$	\approx SZ '99
$O(\varepsilon)$	$k \delta+k / 2^{n^{\Omega(1)}}$	$O\left(n^{6}+k d\right)$	\approx IZ '89
$O(\varepsilon)$	$k \delta+\gamma$	$n+O(k d+\log k \log (1 / \gamma))$	This work

Landscape of stewards

- Steward model captures derandomization constructions in literature

ε^{\prime}	δ^{\prime}	Randomness complexity	Reference
ε	$k \delta$	$n k$	Naïve
$O(\varepsilon)$	$2^{k} \delta$	$n \quad$ (works for $d=1$ only)	This work
$O(\varepsilon d)$	$k \delta+\gamma$	$n+O(k \log (d+1)+\log k \log (1 / \gamma))$	This work
$O(\varepsilon k d / \gamma)$	$k \delta+\gamma$	$n+O(k \log k+k \log d+k \log (1 / \gamma))$	\approx SZ '99
$O(\varepsilon)$	$k \delta+k / 2^{n^{\Omega(1)}}$	$O\left(n^{6}+k d\right)$	\approx IZ '89
$O(\varepsilon)$	$k \delta+\gamma$	$n+O(k d+\log k \log (1 / \gamma))$	This work
Any	Any ≤ 0.2	$n+\Omega(k)-\log \left(\delta^{\prime} / \delta\right)$	This work

Open questions

- Optimal randomness complexity when d is large?

Open questions

- Optimal randomness complexity when d is large?
- Simultaneously achieve error $\varepsilon^{\prime} \leq O(\varepsilon)$ and randomness complexity $n+O(k \log (d+1))$?

Open questions

- Optimal randomness complexity when d is large?
- Simultaneously achieve error $\varepsilon^{\prime} \leq O(\varepsilon)$ and randomness complexity $n+O(k \log (d+1))$?

- Thanks! Questions?

- This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1610403.

