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Randomized estimation algorithms

» Algorithm Est(C) estimates some value p(C) € R?

Pr{|Est(C) — u(C)loc > €] < 6

» Canonical example:
» C is a Boolean circuit
> p(C) EPr[Cx)=1] (d=1)

» Est(C) evaluates C at several randomly chosen points

20
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Executing Est many times

v

Goal: Execute Est(Cy), Est((,),. . ., Est(Ck)

Say Est uses n random bits

v

v

Naive implementation: nk random bits

Can we do better?

v

v

Theorem: Can use just n+ O(klog(d + 1)) random bits!
» Slight increases in error, failure probability
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G, ..., C

ESt(Cl), ce ESt(Ck)

> Algorithm that uses just n random bits:

1. Pick X € {0,1}" uniformly at random once
2. Execute Est(Gy, X), Est((G, X)), ..., Est(Ck, X)

» Overall failure probability is still k§ (union bound)
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G

' ) Est(G1)
G

) Est(()
Ck

Est(Ck)

» Let X be the randomness used for Est(C;)
» ( is stochastically dependent on X
» Failure probability of Est(Cp, X) is 777
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Concentrated functions

» £:{0,1}" — R
» Definition: f is (¢, §)-concentrated at yu € R? if

PrIF(X) — plloe > ] < 6.

» Example: f(X) gef Est(C, X)
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» Each f; is (¢, d)-concentrated at some p;
» Steward requirement: For any owner,

Pr{max||Y; — pilloo > '] <&
1
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One-query stewards

» Definition: One-query steward: Only accesses each f; by
querying a single point f;(X;)
» Querying f; corresponds to executing Est
» The owner does not see X;
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Warm-up steward

» Theorem: For any n, k, e, d, there exists a one-query steward

for d =1 with
» Error &/ < O(¢) (vs. naive €)
» Failure probability &' < 2%.§ (vs. naive ké)
» Randomness n (vs. naive nk)

> The steward: “Reuse randomness and round”
» Pick X € {0,1}" uniformly at random once
» For i =1 to k: Return f;(X), rounded to multiple of 2¢
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Analysis of warm-up steward

2 £y
PAEEEN PAEE
ﬂfA ﬁfB EFA ﬁFB
FoN Yo\ F o\ '

AAA rAAB (ABA (ABB (BAA (BAB ¢BBA ¢BBB
/SAN R A A e 7

» Union bound: Pr[X good for every function in tree] > 1 — 2§
» If so, inductively, every f; is in the tree! O
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» Theorem: For all n, k,d, e, d,, there is an efficient one-query
steward with
» Error ¢/ < O(ed)
» Failure probability 6’ < ké + v
» # random bits n+ O(k log(d + 1) + log k log(1/7))
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Main steward

v

Pick random seed X, compute (Xi, ..., Xx) = Gen(X)
For i =1 to k:

» Obtain W; = f;(X;)

» Shift and round W; to determine output Y;

v

v

Ingredient 1: Gen: PRG for block decision trees

v

Ingredient 2: Deterministic shifting and rounding algorithm
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Analysis of shifting and rounding algorithm

» For W € R? and A € [d + 1], define Ra(W) € RY by shifting
W according to A, then rounding

» By construction, Y; = Ra(W;) for some A
» Imagine if Y; = Ra(u;) for some A...

le(m) k
() Raie2) fRz(m) Rz(/tz) m
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/ fl
f2R1(u1) szz(Ml) f2R3(,u1) L
f3R2(H1),R2(M2) f3R2(u1):R3(#2) n

» A sequence (Xi,...,Xx) of query points determines:
» A transcript (f, Y1, %, Ya,. .., fx, Y)
> A path P through tree

> If we pick Xi,..., X\ independently and u.a.r.,

f3R2(H1),R1 (12)

Pr [P has a L node] < kd
(X11'~'7Xk)

» (Certification) No L nodes in P = every Y; has error O(ed)
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Block decision trees

» (k,n, q) block decision tree: Full g-ary tree of height k
» Each internal node vs has a function vs : {0,1}" — [q]

» Tree reads nk bits and outputs a leaf

v

00,11 10
01

Y
Vb Ve

Va
\ / ,
Vaa Vab Vac Vba

Vbb  Vbc Vca Veb Vee
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PRG for block decision trees

v

Theorem: There is an efficient v-PRG for block decision trees
with seed length

n+ O(klog g + log k log(1/7))

v

Proof idea: Modify parameters of INW generator

v

This generator fools the certification tree

v

No need to fool steward/owner protocol! O
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» Theorem: Can find all Hadamard codewords that agree with x
in (3 + 0)-fraction of positions
» Runtime poly(n,1/6,log(1/0)) (6 = failure prob)
» O(n+lognlog(1/6)) random bits (independent of 1)
» Previous best: O(nlog(n/0)log(1/(d6))) random bits
(Bshouty et al. '04)
» Proof ingredients:
» Standard Goldreich-Levin algorithm
» Our steward with d = poly(1/6)

» Goldreich-Wigderson sampler
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O(ed) ko + n+ O(klog(d + 1) + log klog(1/7)) | This work
O(ekd/v) | kd +~ n+ O(klogk + klogd + klog(1/7)) | = SZ '99
O(e) k6 + k/27" | O(n® + kd) ~ 1Z 89
O(¢) ko + n+ O(kd + log k log(1/7)) This work
Any Any < 0.2 n+ Q(k) — log(d'/9) This work
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Open questions

» Optimal randomness complexity when d is large?
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» Optimal randomness complexity when d is large?

» Simultaneously achieve error ¢’ < O(e) and randomness
complexity n+ O(klog(d + 1))?
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Open questions

v

Optimal randomness complexity when d is large?

v

Simultaneously achieve error &/ < O(e) and randomness
complexity n+ O(klog(d + 1))?

Thanks! Questions?

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-1610403.
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