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Randomized estimation algorithms

I Algorithm Est(C ) estimates some value µ(C ) ∈ Rd

Pr[‖Est(C )− µ(C )‖∞ > ε] ≤ δ

I Canonical example:

I C is a Boolean circuit

I µ(C )
def
= Prx [C (x) = 1] (d = 1)

I Est(C ) evaluates C at several randomly chosen points
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Using Est as a subroutine

Owner Steward

C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?
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I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13



Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits
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Main result

I Theorem (informal): There is a steward that uses just

n + O(k log(d + 1))

random bits!

I Mild increases in both error and failure probability

I Prior work:

I [Saks, Zhou ’99], [Impagliazzo, Zuckerman ’89] both imply
stewards

I Our steward has better parameters
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Outline of our steward

1. Compute pseudorandom bits Xi ∈ {0, 1}n

2. Compute Wi := Est(Ci ,Xi )

3. Compute Yi by carefully modifying Wi
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Pseudorandom bits

I Gen : {0, 1}s → {0, 1}nk : Variant of INW pseudorandom
generator

I Before first round, steward computes

(X1,X2, . . . ,Xk) = Gen(Us)

I In round i , steward runs Est(Ci ,Xi )
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Shifting and rounding
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Analysis

I Theorem (informal): With high probability, for every i ,

‖Yi − µ(Ci )‖∞ ≤ O(εd).

I Notation: For W ∈ Rd ,∆ ∈ [d + 1], define bW e∆ ∈ Rd by
rounding each coordinate to nearest value y such that

y ≡ 2ε∆ mod (d + 1) · 2ε

I In this notation,
Yi = bWie∆

for a suitable ∆ ∈ [d + 1]
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Analysis (continued)

I Yi = bWie∆

I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci )e∆

I Consider d + 2 cases:

I Yi = bµ(Ci )e1, or

I Yi = bµ(Ci )e2, or

...

I Yi = bµ(Ci )ed+1, or

I Yi = something else.

9 / 13



Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci )e∆

I Consider d + 2 cases:

I Yi = bµ(Ci )e1, or

I Yi = bµ(Ci )e2, or

...

I Yi = bµ(Ci )ed+1, or

I Yi = something else.

9 / 13



Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci )e∆

I Consider d + 2 cases:

I Yi = bµ(Ci )e1, or

I Yi = bµ(Ci )e2, or

...

I Yi = bµ(Ci )ed+1, or

I Yi = something else.

9 / 13



Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci )e∆

I Consider d + 2 cases:
I Yi = bµ(Ci )e1, or

I Yi = bµ(Ci )e2, or

...

I Yi = bµ(Ci )ed+1, or

I Yi = something else.

9 / 13



Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci )e∆

I Consider d + 2 cases:
I Yi = bµ(Ci )e1, or

I Yi = bµ(Ci )e2, or

...

I Yi = bµ(Ci )ed+1, or

I Yi = something else.

9 / 13



Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci )e∆

I Consider d + 2 cases:
I Yi = bµ(Ci )e1, or

I Yi = bµ(Ci )e2, or

...

I Yi = bµ(Ci )ed+1, or

I Yi = something else.

9 / 13



Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci )e∆

I Consider d + 2 cases:
I Yi = bµ(Ci )e1, or

I Yi = bµ(Ci )e2, or

...

I Yi = bµ(Ci )ed+1, or

I Yi = something else.

9 / 13



Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci )e∆

I Consider d + 2 cases:
I Yi = bµ(Ci )e1, or

I Yi = bµ(Ci )e2, or

...

I Yi = bµ(Ci )ed+1, or

I Yi = something else.

9 / 13



Block decision tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I A sequence (X1, . . . ,Xk) determines:

I A transcript (C1,Y1,C2,Y2, . . . ,Ck ,Yk)
I A path P through tree

I If we pick X1, . . . ,Xk independently and u.a.r.,

Pr
(X1,...,Xk )

[P has a ⊥ node] ≤ kδ
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Fooling the tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I Tree has low memory

I So when X1, . . . ,Xk are pseudorandom,

Pr
(X1,...,Xk )

[P has a ⊥ node] ≤ kδ + γ
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The tree certifies correctness

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I (Certification) No ⊥ nodes in P =⇒ every Yi has error O(εd)
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Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in ( 1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler
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Open questions

I Optimal randomness complexity when d is large?

I Avoid error blowup ε→ O(εd)?

I More applications?

I Thanks! Questions?
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