
Preserving Randomness for Adaptive Algorithms

William M. Hoza1 Adam R. Klivans

August 20, 2018
RANDOM

1Supported by the NSF GRFP under Grant DGE-1610403 and by a
Harrington Fellowship from UT Austin

1 / 13

Randomized estimation algorithms

I Algorithm Est(C) estimates some value µ(C) ∈ Rd

Pr[‖Est(C)− µ(C)‖∞ > ε] ≤ δ

I Canonical example:

I C is a Boolean circuit

I µ(C)
def
= Prx [C (x) = 1] (d = 1)

I Est(C) evaluates C at several randomly chosen points

2 / 13

Randomized estimation algorithms

I Algorithm Est(C) estimates some value µ(C) ∈ Rd

Pr[‖Est(C)− µ(C)‖∞ > ε] ≤ δ

I Canonical example:

I C is a Boolean circuit

I µ(C)
def
= Prx [C (x) = 1] (d = 1)

I Est(C) evaluates C at several randomly chosen points

2 / 13

Randomized estimation algorithms

I Algorithm Est(C) estimates some value µ(C) ∈ Rd

Pr[‖Est(C)− µ(C)‖∞ > ε] ≤ δ

I Canonical example:

I C is a Boolean circuit

I µ(C)
def
= Prx [C (x) = 1] (d = 1)

I Est(C) evaluates C at several randomly chosen points

2 / 13

Randomized estimation algorithms

I Algorithm Est(C) estimates some value µ(C) ∈ Rd

Pr[‖Est(C)− µ(C)‖∞ > ε] ≤ δ

I Canonical example:
I C is a Boolean circuit

I µ(C)
def
= Prx [C (x) = 1] (d = 1)

I Est(C) evaluates C at several randomly chosen points

2 / 13

Randomized estimation algorithms

I Algorithm Est(C) estimates some value µ(C) ∈ Rd

Pr[‖Est(C)− µ(C)‖∞ > ε] ≤ δ

I Canonical example:
I C is a Boolean circuit

I µ(C)
def
= Prx [C (x) = 1] (d = 1)

I Est(C) evaluates C at several randomly chosen points

2 / 13

Randomized estimation algorithms

I Algorithm Est(C) estimates some value µ(C) ∈ Rd

Pr[‖Est(C)− µ(C)‖∞ > ε] ≤ δ

I Canonical example:
I C is a Boolean circuit

I µ(C)
def
= Prx [C (x) = 1] (d = 1)

I Est(C) evaluates C at several randomly chosen points

2 / 13

Using Est as a subroutine

Owner Steward

C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13

Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13

Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13

Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13

Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13

Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13

Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13

Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?

3 / 13

Using Est as a subroutine

Owner Steward
C1

Y1 ≈ µ(C1)

C2

Y2 ≈ µ(C2)

...
Ck

Yk ≈ µ(Ck)

I Suppose Est uses n random bits

I Näıvely, total number of random bits = nk

I Can we do better?
3 / 13

Main result

I Theorem (informal): There is a steward that uses just

n + O(k log(d + 1))

random bits!

I Mild increases in both error and failure probability

I Prior work:

I [Saks, Zhou ’99], [Impagliazzo, Zuckerman ’89] both imply
stewards

I Our steward has better parameters

4 / 13

Main result

I Theorem (informal): There is a steward that uses just

n + O(k log(d + 1))

random bits!

I Mild increases in both error and failure probability

I Prior work:

I [Saks, Zhou ’99], [Impagliazzo, Zuckerman ’89] both imply
stewards

I Our steward has better parameters

4 / 13

Main result

I Theorem (informal): There is a steward that uses just

n + O(k log(d + 1))

random bits!

I Mild increases in both error and failure probability

I Prior work:

I [Saks, Zhou ’99], [Impagliazzo, Zuckerman ’89] both imply
stewards

I Our steward has better parameters

4 / 13

Main result

I Theorem (informal): There is a steward that uses just

n + O(k log(d + 1))

random bits!

I Mild increases in both error and failure probability

I Prior work:
I [Saks, Zhou ’99], [Impagliazzo, Zuckerman ’89] both imply

stewards

I Our steward has better parameters

4 / 13

Main result

I Theorem (informal): There is a steward that uses just

n + O(k log(d + 1))

random bits!

I Mild increases in both error and failure probability

I Prior work:
I [Saks, Zhou ’99], [Impagliazzo, Zuckerman ’89] both imply

stewards
I Our steward has better parameters

4 / 13

Outline of our steward

1. Compute pseudorandom bits Xi ∈ {0, 1}n

2. Compute Wi := Est(Ci ,Xi)

3. Compute Yi by carefully modifying Wi

5 / 13

Outline of our steward

1. Compute pseudorandom bits Xi ∈ {0, 1}n

2. Compute Wi := Est(Ci ,Xi)

3. Compute Yi by carefully modifying Wi

5 / 13

Outline of our steward

1. Compute pseudorandom bits Xi ∈ {0, 1}n

2. Compute Wi := Est(Ci ,Xi)

3. Compute Yi by carefully modifying Wi

5 / 13

Pseudorandom bits

I Gen : {0, 1}s → {0, 1}nk : Variant of INW pseudorandom
generator

I Before first round, steward computes

(X1,X2, . . . ,Xk) = Gen(Us)

I In round i , steward runs Est(Ci ,Xi)

6 / 13

Pseudorandom bits

I Gen : {0, 1}s → {0, 1}nk : Variant of INW pseudorandom
generator

I Before first round, steward computes

(X1,X2, . . . ,Xk) = Gen(Us)

I In round i , steward runs Est(Ci ,Xi)

6 / 13

Pseudorandom bits

I Gen : {0, 1}s → {0, 1}nk : Variant of INW pseudorandom
generator

I Before first round, steward computes

(X1,X2, . . . ,Xk) = Gen(Us)

I In round i , steward runs Est(Ci ,Xi)

6 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Shifting and rounding

7 / 13

Analysis

I Theorem (informal): With high probability, for every i ,

‖Yi − µ(Ci)‖∞ ≤ O(εd).

I Notation: For W ∈ Rd ,∆ ∈ [d + 1], define bW e∆ ∈ Rd by
rounding each coordinate to nearest value y such that

y ≡ 2ε∆ mod (d + 1) · 2ε

I In this notation,
Yi = bWie∆

for a suitable ∆ ∈ [d + 1]

8 / 13

Analysis

I Theorem (informal): With high probability, for every i ,

‖Yi − µ(Ci)‖∞ ≤ O(εd).

I Notation: For W ∈ Rd ,∆ ∈ [d + 1], define bW e∆ ∈ Rd by
rounding each coordinate to nearest value y such that

y ≡ 2ε∆ mod (d + 1) · 2ε

I In this notation,
Yi = bWie∆

for a suitable ∆ ∈ [d + 1]

8 / 13

Analysis

I Theorem (informal): With high probability, for every i ,

‖Yi − µ(Ci)‖∞ ≤ O(εd).

I Notation: For W ∈ Rd ,∆ ∈ [d + 1], define bW e∆ ∈ Rd by
rounding each coordinate to nearest value y such that

y ≡ 2ε∆ mod (d + 1) · 2ε

I In this notation,
Yi = bWie∆

for a suitable ∆ ∈ [d + 1]

8 / 13

Analysis (continued)

I Yi = bWie∆

I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci)e∆

I Consider d + 2 cases:

I Yi = bµ(Ci)e1, or

I Yi = bµ(Ci)e2, or

...

I Yi = bµ(Ci)ed+1, or

I Yi = something else.

9 / 13

Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci)e∆

I Consider d + 2 cases:

I Yi = bµ(Ci)e1, or

I Yi = bµ(Ci)e2, or

...

I Yi = bµ(Ci)ed+1, or

I Yi = something else.

9 / 13

Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci)e∆

I Consider d + 2 cases:

I Yi = bµ(Ci)e1, or

I Yi = bµ(Ci)e2, or

...

I Yi = bµ(Ci)ed+1, or

I Yi = something else.

9 / 13

Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci)e∆

I Consider d + 2 cases:
I Yi = bµ(Ci)e1, or

I Yi = bµ(Ci)e2, or

...

I Yi = bµ(Ci)ed+1, or

I Yi = something else.

9 / 13

Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci)e∆

I Consider d + 2 cases:
I Yi = bµ(Ci)e1, or

I Yi = bµ(Ci)e2, or

...

I Yi = bµ(Ci)ed+1, or

I Yi = something else.

9 / 13

Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci)e∆

I Consider d + 2 cases:
I Yi = bµ(Ci)e1, or

I Yi = bµ(Ci)e2, or

...

I Yi = bµ(Ci)ed+1, or

I Yi = something else.

9 / 13

Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci)e∆

I Consider d + 2 cases:
I Yi = bµ(Ci)e1, or

I Yi = bµ(Ci)e2, or

...

I Yi = bµ(Ci)ed+1, or

I Yi = something else.

9 / 13

Analysis (continued)

I Yi = bWie∆
I If Xi = fresh randomness, then w.h.p.,

bWie∆ = bµ(Ci)e∆

I Consider d + 2 cases:
I Yi = bµ(Ci)e1, or

I Yi = bµ(Ci)e2, or

...

I Yi = bµ(Ci)ed+1, or

I Yi = something else.

9 / 13

Block decision tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I A sequence (X1, . . . ,Xk) determines:

I A transcript (C1,Y1,C2,Y2, . . . ,Ck ,Yk)
I A path P through tree

I If we pick X1, . . . ,Xk independently and u.a.r.,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ

10 / 13

Block decision tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I A sequence (X1, . . . ,Xk) determines:

I A transcript (C1,Y1,C2,Y2, . . . ,Ck ,Yk)
I A path P through tree

I If we pick X1, . . . ,Xk independently and u.a.r.,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ

10 / 13

Block decision tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I A sequence (X1, . . . ,Xk) determines:

I A transcript (C1,Y1,C2,Y2, . . . ,Ck ,Yk)
I A path P through tree

I If we pick X1, . . . ,Xk independently and u.a.r.,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ

10 / 13

Block decision tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I A sequence (X1, . . . ,Xk) determines:

I A transcript (C1,Y1,C2,Y2, . . . ,Ck ,Yk)
I A path P through tree

I If we pick X1, . . . ,Xk independently and u.a.r.,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ

10 / 13

Block decision tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I A sequence (X1, . . . ,Xk) determines:
I A transcript (C1,Y1,C2,Y2, . . . ,Ck ,Yk)

I A path P through tree

I If we pick X1, . . . ,Xk independently and u.a.r.,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ

10 / 13

Block decision tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I A sequence (X1, . . . ,Xk) determines:
I A transcript (C1,Y1,C2,Y2, . . . ,Ck ,Yk)
I A path P through tree

I If we pick X1, . . . ,Xk independently and u.a.r.,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ

10 / 13

Block decision tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I A sequence (X1, . . . ,Xk) determines:
I A transcript (C1,Y1,C2,Y2, . . . ,Ck ,Yk)
I A path P through tree

I If we pick X1, . . . ,Xk independently and u.a.r.,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ

10 / 13

Fooling the tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I Tree has low memory

I So when X1, . . . ,Xk are pseudorandom,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ + γ

11 / 13

Fooling the tree

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I Tree has low memory

I So when X1, . . . ,Xk are pseudorandom,

Pr
(X1,...,Xk)

[P has a ⊥ node] ≤ kδ + γ

11 / 13

The tree certifies correctness

C1

C
(1)
2 C

(2)
2 C

(3)
2 ⊥

C
(2,1)
3 C

(2,2)
3 C

(2,3)
3 ⊥

I (Certification) No ⊥ nodes in P =⇒ every Yi has error O(εd)

12 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Application: Randomness-efficient Goldreich-Levin

I Oracle access to x ∈ {0, 1}2n

I Theorem: Can find all Hadamard codewords that agree with x
in (1

2 + θ)-fraction of positions

I Runtime poly(n, 1/θ, log(1/δ)) (δ = failure prob)

I O(n + log n log(1/δ)) random bits (independent of θ!)

I Previous best: O(n log(n/θ) log(1/(δθ))) random bits
(Bshouty et al. ’04)

I Proof ingredients:

I Standard Goldreich-Levin algorithm

I Our steward with d = poly(1/θ)

I Goldreich-Wigderson sampler

13 / 13

Open questions

I Optimal randomness complexity when d is large?

I Avoid error blowup ε→ O(εd)?

I More applications?

I Thanks! Questions?

14 / 13

Open questions

I Optimal randomness complexity when d is large?

I Avoid error blowup ε→ O(εd)?

I More applications?

I Thanks! Questions?

14 / 13

Open questions

I Optimal randomness complexity when d is large?

I Avoid error blowup ε→ O(εd)?

I More applications?

I Thanks! Questions?

14 / 13

Open questions

I Optimal randomness complexity when d is large?

I Avoid error blowup ε→ O(εd)?

I More applications?

I Thanks! Questions?

14 / 13

	anm9:
	9.20:
	9.19:
	9.18:
	9.17:
	9.16:
	9.15:
	9.14:
	9.13:
	9.12:
	9.11:
	9.10:
	9.9:
	9.8:
	9.7:
	9.6:
	9.5:
	9.4:
	9.3:
	9.2:
	9.1:
	9.0:
	anm8:
	8.20:
	8.19:
	8.18:
	8.17:
	8.16:
	8.15:
	8.14:
	8.13:
	8.12:
	8.11:
	8.10:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

