Depth-d Threshold Circuits vs. Depth-(d + 1) AND-OR Trees

TOCA-SV @ Stanford May 20, 2022

Pooya Hatami¹ Ohio State University

William M. Hoza² Simons Institute

Avishay Tal UC Berkeley

Roei Tell IAS & DIMACS

¹Supported by NSF grant CCF-1947546. ²Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin.

Circuit lower bounds

- $\exists F: \{0, 1\}^n \rightarrow \{0, 1\}$ with circuit complexity $2^{\Omega(n)}$
- Challenge: Find explicit examples
- TCS model: "Explicit" = "Efficiently computable"
- So, we want to construct F such that
 - The circuit complexity of *F* is high...
 - ...but F can be computed by a uniform algorithm that is as efficient as possible
- Example: If $\exists F \in NP$ with super-polynomial circuit complexity, then $P \neq NP$

State of the art

• So far, the best circuit lower bounds for functions in NP are only linear 🔅

Basis	Size lower bound	Reference
<i>B</i> ₂	2n - O(1)	[Kloss, Malyshev 1965]
B_2	2.5n - O(1)	[Stockmeyer 1977]
<i>B</i> ₂	3n - o(n)	[Blum 1984]
<i>B</i> ₂	$\left(3+\frac{1}{86}\right)n-o(n)$	[Find, Golovnev, Hirsch, Kulikov 2016]
U_2	3n - O(1)	[Schnorr 1976]
U_2	4n - O(1)	[Zwick 1991]
U_2	4.5n - O(1)	[Lachish, Raz 2001]
U_2	5n - o(n)	[Iwama, Morizumi 2002]

Restricted circuit classes

- The good news: We can prove super-linear lower bounds for restricted circuits
- In the most famous theorems, the "hard function" is in P

Hard function	Model	Size lower bound	Reference
Parity	Depth- d AC 0	$\exp(n^{\Omega(1/d)})$	[Ajtai 1983] [Furst, Saxe, Sipser 1984] [Yao 1985] [Håstad 1986]
Majority	Depth- d $\mathrm{AC}^0[\oplus]$	$\exp(n^{\Omega(1/d)})$	[Razborov 1987] [Smolensky 1987] [Oliveira, Santhanam, Srinivasan 2019]
Andreev's function	De Morgan formulas	$\widetilde{\Omega}(n^3)$	[Andreev 1987] [Impagliazzo, Nisan 1993] [Paterson, Zwick 1993] [Håstad 1998] [Tal 2014]
Parity	Depth- $d \ { m TC}^0$	$n^{1+2^{-\Theta(d)}}$	[Impagliazzo, Paturi, Saks 1997]

Hard functions in uniform AC⁰

- Can we prove super-linear lower bounds where the hard function is in uniform AC⁰?
 - Recall: AC⁰ = constant-depth poly-size unbounded-fan-in circuits using AND/OR/NOT gates
 - Can we prove circuit lower bounds for "hyperexplicit" functions?

Model	Size lower bound	Hard function's AC ⁰ parameters	Reference
Depth- d AC ⁰	$\exp(n^{\Omega(1/d)})$	Depth $d + 1$ Size $O(n)$	[Sipser 1983] [Yao 1985] [Håstad 1987]
Depth- d $\operatorname{AC}^0[\oplus]$	$n^{(\log n)^{\Omega(1/d)}}$	Depth $d + 1$ Size $O(n)$	[O'Donnell, Wimmer 2007] [Amano 2009] [Limaye, Sreenivasaiah, Srinivasan, Tripathi, Venkitesh 2021]
Depth- d $\operatorname{AC}^0[\oplus]$	n^k	Depth d Size $n^{O(k)}$	[Limaye, Sreenivasaiah, Srinivasan, Tripathi, Venkitesh 2021] [Limaye, Srinivasan, Tripathi 2019]
De Morgan formulas	$n^{3-o(1)}$	Depth 4 Size $O(n^3)$	[Filmus, Meir, Tal 2021]
Depth- $d \ \mathrm{TC}^{0}$???	???	???

TC⁰ circuit model

• Each gate computes a linear threshold function (LTF):

 $\Phi(x) = 1 \Leftrightarrow \sum_{i=1}^{n} w_i x_i \ge \theta$ where $w \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$

- AND, OR, MAJORITY, ...
- Boolean analogue of a neural network
- Size = number of wires
- TC^0 : Depth = O(1), size = poly(n)

Super-linear lower bounds for TC⁰ circuits

• Let $n, d \in \mathbb{N}$ with $d = o(\log \log n)$

Theorem [Impagliazzo, Paturi, Saks 1997]: $\exists \gamma = 2^{-\Theta(d)}$ such that the parity

function on n bits cannot be computed by depth-d LTF circuits with $n^{1+\gamma}$ wires

Our Theorem: $\exists \gamma = 2^{-\Theta(d)}$ and $\exists F: \{0, 1\}^n \rightarrow \{0, 1\}$ such that

- F can be computed by an explicit depth- $(d + 1) \operatorname{AC}^{0}$ circuit with O(n) wires
- F cannot be computed by depth-d LTF circuits with $n^{1+\gamma}$ wires
- Many prior lower bounds for simulating AC⁰ by subclasses of LTF circuits such as monotone LTF circuits, MAJ LTF circuits, etc.

Our hard function F

- *F* is a monotone read-once AC⁰ formula (an AND-OR tree)
- Every gate at distance i from the input has fan-in f_i
- The fan-ins grow rapidly as we move up the tree

Our lower bound approach

- We build on the proof of the Average-Case Depth Hierarchy Theorem for AC⁰ [Håstad, Rossman, Servedio, Tan 2017]
- A projection is a map $\pi: \{x_1, \dots, x_n\} \rightarrow \{0, 1, y_1, \dots, y_m\}$ where x_i, y_j are variables
 - Traditional restrictions are the special case $\pi(x_i) \in \{0, 1, x_i\}$
- Following [HRST17], we show that under a suitable random projection, an LTF circuit becomes near-trivial while our AND-OR tree *F* maintains structure
- Our analysis of LTF circuits builds on prior analyses of LTF circuits under random restrictions, especially [Chen, Santhanam, and Srinivasan 2018]

- We construct an explicit $F \in AC^0$ that cannot be computed by depth-dLTF circuits with $n^{1+\gamma}$ wires
- Our result essentially matches the best lower bounds for depth-d LTF circuits (d > 2), with one bonus feature: now the hard function is in AC⁰
- Thanks for listening! Questions?