Depth- d Threshold Circuits vs. Depth- $(d + 1)$ AND-OR Trees

TOCA-SV @ Stanford May 20, 2022

Pooya Hatami¹ Ohio State University

William M. Hoza² Simons Institute

Avishay Tal UC Berkeley

Roei Tell IAS & DIMACS

Circuit lower bounds

- $\exists F\colon\{0,1\}^n\to\{0,1\}$ with circuit complexity $2^{\Omega(n)}$
- Challenge: Find explicit examples
- TCS model: "Explicit" ≡ "Efficiently computable"
- So, we want to construct F such that
	- The circuit complexity of F is high...
	- …but F can be computed by a uniform algorithm that is as efficient as possible
- Example: If $\exists F \in \text{NP}$ with super-polynomial circuit complexity, then $P \neq NP$

State of the art

• So far, the best circuit lower bounds for functions in NP are only linear \odot

Restricted circuit classes

- The good news: We can prove super-linear lower bounds for restricted circuits
- In the most famous theorems, the "hard function" is in P

Hard functions in uniform $AC⁰$

- Can we prove super-linear lower bounds where the hard function is in uniform $AC⁰$?
	- Recall: $AC^0 = constant$ -depth poly-size unbounded-fan-in circuits using AND/OR/NOT gates
	- Can we prove circuit lower bounds for "hyperexplicit" functions?

TC⁰ circuit model

• Each gate computes a linear threshold function (LTF):

 $\Phi(x) = 1 \Leftrightarrow \sum_{i=1}^n w_i x_i \geq \theta$ where $w \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$

- AND, OR, MAJORITY, …
- Boolean analogue of a neural network
- Size = number of wires
- TC⁰: Depth = $O(1)$, size = $\text{poly}(n)$

Super-linear lower bounds for TC^0 circuits

• Let $n, d \in \mathbb{N}$ with $d = o(\log \log n)$

Theorem [Impagliazzo, Paturi, Saks 1997]: $\exists \gamma = 2^{-\Theta(d)}$ such that the parity

function on n bits cannot be computed by depth- d LTF circuits with $n^{1+\gamma}$ wires

Our Theorem: $\exists \gamma = 2^{-\Theta(d)}$ and $\exists F: \{0, 1\}^n \rightarrow \{0, 1\}$ such that

- F can be computed by an explicit depth- $(d + 1)$ AC⁰ circuit with $O(n)$ wires
- F cannot be computed by depth-d LTF circuits with $n^{1+\gamma}$ wires
- Many prior lower bounds for simulating $AC⁰$ by subclasses of LTF circuits such as monotone LTF circuits, MAJ ∘ LTF circuits, etc.

Our hard function F

- \bullet F is a monotone read-once AC^0 formula (an AND-OR tree)
- Every gate at distance *i* from the input has fan-in f_i
- The fan-ins grow rapidly as we move up the tree $(f_1 \ll f_2 \ll \cdots \ll f_{d+1})$

Our lower bound approach

- We build on the proof of the Average-Case Depth Hierarchy Theorem for AC^0 [Håstad, Rossman, Servedio, Tan 2017]
- A projection is a map π : $\{x_1, ..., x_n\} \rightarrow \{0, 1, y_1, ..., y_m\}$ where x_i , y_j are variables
	- Traditional restrictions are the special case $\pi(x_i) \in \{0, 1, x_i\}$
- Following [HRST17], we show that under a suitable random projection, an LTF circuit becomes near-trivial while our AND-OR tree F maintains structure
- Our analysis of LTF circuits builds on prior analyses of LTF circuits under random restrictions, especially [Chen, Santhanam, and Srinivasan 2018]

- We construct an explicit $F \in AC^0$ that cannot be computed by depth- d LTF circuits with $n^{1+\gamma}$ wires
- Our result essentially matches the best lower bounds for depth- d LTF circuits ($d > 2$), with one bonus feature: now the hard function is in AC⁰
- •Thanks for listening! Questions?