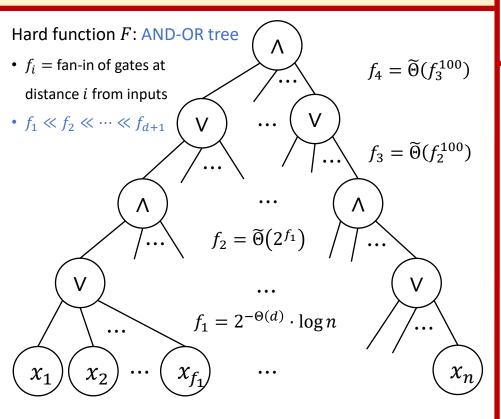
Depth-d Threshold Circuits vs. Depth-(d + 1) AND-OR Trees

Pooya Hatami (Ohio State University), William Hoza (Simons Institute), Avishay Tal (UC Berkeley), and Roei Tell (IAS & DIMACS)

- Let n be sufficiently large, let $d \leq 0.05 \log \log n$, and let $\gamma = 2^{-10 \cdot d}$
- Main Theorem: $\exists F: \{0, 1\}^n \rightarrow \{0, 1\}$ such that
 - F can be computed by an explicit depth- $(d + 1) \operatorname{AC}^{0}$ circuit with O(n) wires...
 - ...but F cannot be computed by any

depth-*d* threshold circuit with $n^{1+\gamma}$ wires



Background

• In a "threshold circuit," each gate computes a linear threshold

function: $\Phi(x) = 1 \Leftrightarrow \sum_{i=1}^{n} w_i \cdot x_i \ge \theta$ where $w \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$

- TC⁰ = constant-depth poly-size threshold circuits
- Open problem: Prove NEXP \nsubseteq TC⁰ (progress toward P \neq NP)
- **Theorem** (Impagliazzo, Paturi, Saks 1997): $\exists \gamma = 2^{-\Theta(d)}$ s.t. parity cannot be computed by depth-*d* threshold circuits with $n^{1+\gamma}$ wires
- Prior lower bounds for simulating AC⁰ by subclasses of threshold circuits (monotone threshold circuits, MAJ LTF circuits, etc.)

Our lower bound approach

- A projection is a map π : $\{x_1, \dots, x_m\} \rightarrow \{0, 1, y_1, \dots, y_m\}$ where $x_1, \dots, x_n, y_1, \dots, y_m$ are variables. Restriction: $\pi(x_i) \in \{0, 1, x_i\}$
- Building on work by Håstad, Rossman, Servedio, and Tan (2017), we design a random projection π s.t. for a suitable distribution σ :
- (1) W.h.p. over π , the projected AND-OR tree is balanced:

 $\Pr_{\sigma}[F|_{\pi}(\sigma) = 1] = 1/2 \pm o(1)$

- (2) ∀ threshold circuit f with n^{1+γ} wires, w.h.p. over π, the projected circuit is biased: ∃b s.t. Pr_σ[f|_π(σ) = b] = 1 − o(1)
- Proof of (2) builds on prior analyses of threshold circuits under random restrictions, especially work on average-case lower bounds by Chen, Santhanam, and Srinivasan (2018)