
Paradigms for Unconditional
Pseudorandom Generators
Pooya Hatami1 and William Hoza2

1The Ohio State University, USA; pooyahat@gmail.com
2The University of Chicago, USA; williamhoza@uchicago.edu

ABSTRACT

This is a survey of unconditional pseudorandom genera-
tors (PRGs). A PRG uses a short, truly random seed to
generate a long, “pseudorandom” sequence of bits. To be
more specific, for each restricted model of computation (e.g.,
bounded-depth circuits or read-once branching programs),
we would like to design a PRG that “fools” the model, mean-
ing that every function computable in the model behaves
approximately the same when we plug in pseudorandom
bits from the PRG as it does when we plug in truly random
bits. In this survey, we discuss four major paradigms for
designing PRGs:

• We present several PRGs based on k-wise uniform gen-
erators, small-bias generators, and simple combinations
thereof, including proofs of Viola’s theorem on fooling
low-degree polynomials [242] and Braverman’s theorem
on fooling AC0 circuits [36].

• We present several PRGs based on “recycling” random
bits to take advantage of communication bottlenecks,
such as the Impagliazzo-Nisan-Wigderson generator
[131].

Pooya Hatami and William Hoza (2024), “Paradigms for Unconditional Pseudoran-
dom Generators”, Foundations and Trends® in Theoretical Computer Science: Vol.
16, No. 1-2, pp 1–210. DOI: 10.1561/0400000109.
©2024 P. Hatami and W. Hoza

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2

• We present connections between PRGs and computa-
tional hardness, including the Nisan-Wigderson frame-
work for converting a hard Boolean function into a
PRG [183].

• We present PRG frameworks based on random restric-
tions, including the “polarizing random walks” frame-
work [49].

We explain how to use these paradigms to construct PRGs
that work unconditionally, with no unproven complexity-
theoretic assumptions. The PRG constructions use ingredi-
ents such as finite field arithmetic, expander graphs, and
randomness extractors. The analyses use techniques such as
Fourier analysis, sandwiching approximators, and simplifi-
cation-under-restrictions lemmas.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1
Introduction

To make random choices, it would be useful to have an unlimited supply
of “truly random” bits: unbiased and independent coin flips. What
can we do if we only have a few truly random bits? A pseudorandom
generator (PRG) uses a small amount of true randomness, called the
“seed,” to generate a long sequence that appears to be completely random
(even though it isn’t). PRGs are ubiquitous in computing theory and
practice. The basic motivation is that we think of randomness as a
scarce computational resource, akin to time or space, so whenever we
get our hands on some random bits, we want to stretch them as far as
possible.

To model PRGs mathematically, we consider some “observer,” mod-
eled as a function f . Let Un denote the uniform distribution over {0, 1}n.
We would like to “fool” f in the following sense.

Definition 1.1 (Fooling). Suppose f : {0, 1}n → {0, 1} is a function, X
is a probability distribution over {0, 1}n, and ε > 0. We say that X
fools f with error ε, or ε-fools f , if

| Pr[f(X) = 1] − Pr[f(Un) = 1]| ≤ ε.

3

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4 Introduction

More generally, we can consider a real-valued function f : {0, 1}n → R.
In this case, we say that X fools f with error ε if

|E[f(X)] − E[f(Un)]| ≤ ε.

If ε = 0, we say that X perfectly fools f .
Remark 1.1. As a shorthand, we often identify the function f with the
random variable f(Un). For example, instead of E[f(Un)], we simply
write E[f].

Definition 1.1 says that although X might not be uniform, X and
Un are nevertheless indistinguishable, at least from f ’s perspective.
Conversely, if X does not ε-fool f , we refer to f as a “distinguisher”
for X. A PRG’s job is to use a few truly random bits to sample a
distribution that fools f .
Definition 1.2 (PRGs). Suppose f : {0, 1}n → R and G : {0, 1}s →
{0, 1}n are functions and ε > 0. We say that G is an ε-PRG for f if
G(Us) fools f with error ε. In this case, we also say that G fools f with
error ε (see Figure 1.1.)

f f

G

≈

$ $$$$$$$

$ $ $ $

Figure 1.1: A PRG (G) uses a few truly random bits (depicted here using $ symbols)
to sample a pseudorandom string that is indistinguishable from a truly random
string, from the perspective of the observer (f).

The parameter s is called the seed length of the PRG; we would like
s to be as small as possible. Throughout this text, the parameter “n”
will always denote the number of pseudorandom bits we are generating.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.1. Whom Shall We Fool? Three Approaches to PRGs 5

1.1 Whom Shall We Fool? Three Approaches to PRGs

An unavoidable fact of life is that for any nontrivial PRG, there exists
a function that is not fooled by the PRG.

Claim 1.1 (Impossibility of fooling all functions). LetG : {0, 1}s → {0, 1}n

where s < n. There exists some f : {0, 1}n → {0, 1} such that G does
not 0.49-fool f .

Proof. Let f be the indicator function for the image of G. Then
E[f(G(Us))] = 1, whereas E[f] ≤ 1/2 because s < n.

In light of Claim 1.1, the best we can hope for is generating bits
that fool some large sets of observers but not all of them. After all, as
Avi Wigderson says, randomness is in the eye of the beholder [248].

Definition 1.3 (PRG for a class of functions). Let n ∈ N, let F be a class
of functions f : {0, 1}n → R, let G : {0, 1}s → {0, 1}n be a function, and
let ε > 0. We say that G is an ε-PRG for F if G fools every f ∈ F with
error ε.

Which observers shall we fool? The study of PRGs can be crudely
divided into three approaches based on three possible answers:

1. Everyday non-adversarial applications.

2. All efficient observers.

3. Restricted models of computation.

We discuss these three approaches in Sections 1.1.1 to 1.1.3.

1.1.1 PRGs for everyday non-adversarial applications

In practice, when programmers want randomness, they invoke some type
of random() method provided by the computing environment. Under
the hood, these random() methods typically involve several components,
each of which might be quite sophisticated. When practitioners speak
of “pseudorandom number generators” or “random number generators,”
they are usually referring to the entire randomness system as a whole,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

6 Introduction

including whatever techniques are used to produce an initial seed. For
example, the system might derive a seed from the current time of day,
even though such a seed is rather predictable. As another example,
the system might use hardware random number generators based on
thermal noise measurements.

In this text, we sidestep the important issue of producing a seed,
along with many other issues that are important in practice. We fo-
cus on the challenge of stretching a truly random seed out to a long
pseudorandom string. In our terminology, this is the job of a PRG (see
Definition 1.2). A PRG is thus one of multiple components of a prac-
tical randomness system. For example, Java’s Math.random() method
currently uses a type of PRG called a linear congruential generator. For
such a PRG, the seed is a random number X0 ∈ {0, 1, . . . ,M − 1}, and
the output sequence is (X1, X2, X3, . . .), where

Xi+1 = a ·Xi + b mod M

for some parameters M,a, b. Meanwhile, Python’s random.random()
method uses an algorithm called the “Mersenne twister” [169], and
major web browsers currently use a PRG in the “xorshift+ family” [240]
to implement Javascript’s Math.random() function.

Why these PRGs are unsatisfactory

Practitioners use these randomness systems for both casual applications
(e.g., video games) and serious applications (e.g., scientific simulations).
However, for a generic randomized algorithm, there is no firm mathe-
matical guarantee that the outputs will be reliable when the algorithm is
executed using one of these practical randomness systems. The methods
that practitioners typically use to run randomized algorithms must be
considered heuristics.

To be clear, a lot of work goes into designing high-quality practical
randomness systems. Designers strive to ensure that these systems can
be safely used in any application that “comes up naturally” in practice.
The system is only deemed acceptable for everyday use when it passes
a great number of creative statistical tests, such as those in the TestU01
family [147].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.1. Whom Shall We Fool? Three Approaches to PRGs 7

These statistical tests are valuable, but there is a wide gap between
the statistical tests and a typical randomized algorithm. The designers
behind practical systems such as Java’s Math.random() method wisely
do not claim that they work in adversarial scenarios, so these systems
are considered unsuitable for cryptography. This is true even if we focus
solely on the PRG component of these systems. Furthermore, sometimes
programs “accidentally” distinguish pseudorandom numbers from truly
random numbers. There are quite a few documented cases in which
PRGs have been shown to cause inaccurate scientific simulations [68],
[69], [88], [89], [107], [139], [174], [187]! One must imagine that other
cases have gone unnoticed.

To a theoretician, this state of affairs is deeply unsatisfactory. Yes,
modern practical PRGs seem to almost always work well in practice,
but we don’t have a mathematically rigorous explanation for why these
systems work. It’s not even clear what precisely the goal is. (Mathemat-
ically, how can we make a distinction between “adversarially-designed”
programs and “naturally-occurring” programs?) By theoreticians’ stan-
dards, the success of practical PRGs is largely a mystery.

1.1.2 PRGs for all efficient observers

One of the great ideas in the theory of computing is the concept of a PRG
that fools all computationally efficient observers. Given such a PRG
and a truly random seed, we would be able to execute any randomized
algorithm that is actually worth executing. (After all, there’s no point
running a program if one won’t even survive long enough to see the
output!) Such a PRG could also be used in cryptographic settings,
because we can safely assume that eavesdroppers and hackers only have
so much computational power.1

For example, the Blum-Blum-Shub (BBS) generator [27] uses a
short seed to randomly select a suitable modulus M and a number

1There is a subtle distinction here. In the context of randomized algorithms,
it’s okay if the PRG itself uses a little more time than the algorithms that we
are trying to fool. On the other hand, in the context of cryptography, we want an
efficiently-computable PRG that fools all efficient adversaries, including those that
use polynomially more time than the PRG uses.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

8 Introduction

X0 ∈ {1, 2, . . . ,M − 1}, and then it outputs the sequence (X1 mod
2, X2 mod 2, X3 mod 2, . . .) where

Xi+1 = X2
i mod M.

This PRG is reminiscent of linear congruential generators, but the
similarity is only superficial. It is believed that the BBS generator fools
polynomial-time algorithms.

Why these PRGs are also (currently) unsatisfactory

Fooling all efficient observers is a well-defined and well-motivated
goal. Unfortunately, nobody knows how to prove that some efficiently-
computable PRG actually has this marvelous property.

To be clear, there is a substantial body of “evidence” indicating
that such PRGs exist. For example, Blum et al. [27] showed that their
generator fools all polynomial-time observers, under the plausible-but-
unproven assumption that there is no good algorithm for the “quadratic
residuosity problem”. There are many other examples of PRGs that
fool all polynomial-time observers under reasonable cryptographic or
complexity-theoretic assumptions [28], [83], [119], [134], [144], [183],
[236], [249].2 For practical cryptography, software developers tend to
use PRGs that are not even supported by rigorous conditional proofs
of correctness, but rather are supported by heuristic and intuitive
arguments.

There is a genuine possibility that these PRGs are not secure. In
one infamous incident, the U.S. National Institute of Standards and
Technology (NIST) recommended using a PRG called “Dual_EC_DRBG.”
The PRG was designed by the U.S. National Security Agency (NSA), and
allegedly, they intentionally designed it to be insecure for surveillance
purposes [189].

Once again, to a theoretician, this state of affairs is not satisfactory.
There is genuine room for doubt about whether known PRGs work, and
perhaps more importantly, even if they do work, we don’t have a good

2Note that some of these PRGs use somewhat more time than the observers
they fool, and hence are suitable for simulating randomized algorithms but not for
cryptography (cf. Footnote 1).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.1. Whom Shall We Fool? Three Approaches to PRGs 9

explanation for why they work. Conditional proofs can be considered
partial explanations at best. The problem of designing PRGs that
unconditionally fool all efficient observers is very challenging, with
connections to deep topics such as the famous P vs. NP problem (see
Section 4.1).

1.1.3 PRGs for restricted models of computation

The main topic of this text is a third approach to PRGs. In this third
approach, we identify an interesting and well-defined restricted model
of computation. Then we design PRGs that fool the chosen model of
computation (unconditionally – with no unproven assumptions) and try
to optimize the seed length of the PRG.

A toy example might clarify the idea. Let us design a PRG

G : {0, 1}2 → {0, 1}3

that fools every observer f that only looks at two of the three output
bits. This problem is not completely trivial, because we don’t know
which two bits f will observe. Nevertheless, the problem can be solved
by defining

G(u1, u2) = (u1, u2, u1 ⊕ u2),
where ⊕ denotes the XOR operation. When u1 and u2 are chosen
uniformly at random, the three output bits are correlated, but any two
of the bits are independent and uniform random.

Unconditional PRGs can be constructed for much richer and more
interesting restricted models of computation. We are especially inter-
ested in fooling models of computation that have a “complexity theory”
flavor, i.e., we want the output of the PRG to appear random to any
observer that is “sufficiently efficient” in some sense. Arguably, the two
most important models in this field are constant-depth circuits (AC0,
see Definition 2.13) and read-once branching programs (ROBPs, see
Definition 1.5).

The value of these PRGs

Could PRGs for restricted models ever be directly used in practical
applications? Potentially. PRGs for restricted models can be used to

The version of record is available at: http://dx.doi.org/10.1561/0400000109

10 Introduction

simulate randomized algorithms without significantly distorting their
behavior, provided that the algorithms in question are “sufficiently
efficient” in the appropriate sense. (See Section 1.5 for more details.)

Admittedly, it’s a bit unrealistic to imagine the PRGs studied in the
theoretical literature being implemented on actual computers, because
it is hard to compete with the practical PRGs discussed in Section 1.1.1.
Instead, the study of PRGs for restricted models has a much grander
and broader purpose: these PRGs help to uncover the mysteries of
the theory of computing, and hence are invaluable from a scientific
perspective.

We briefly elaborate on some of the applications of PRGs within
the theory of computing in Section 1.5. Apart from any application,
we hope to convince the reader that PRGs for restricted models are
interesting in their own right.

1.2 Overview of this Text

In this work, we survey some of the most important frameworks and
techniques for constructing unconditional PRGs for restricted models
of computation. We focus on four major PRG paradigms:

• In Section 2, we present k-wise uniform generators, small-bias
generators, and simple combinations thereof.

• In Section 3, we present PRGs that “recycle” randomness to take
advantage of communication bottlenecks, such as the Impagliazzo-
Nisan-Wigderson generator [131].

• In Section 4, we present connections between PRGs and compu-
tational hardness, including the Nisan-Wigderson framework for
converting a hard Boolean function into a PRG [183].

• In Section 5, we present methods for constructing PRGs based
on (pseudo)random restrictions, including the relatively recent
“polarizing random walks” framework [49].

Along the way, as needed, we introduce the computational models that
we fool (decision trees, circuits, branching programs, etc.) and tech-

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.3. The Generic Probabilistic Existence Proof 11

niques for analyzing PRGs (Fourier analysis, sandwiching approximators,
simplification-under-restriction lemmas, etc.)

The literature on unconditional PRGs is vast, and this survey is far
from exhaustive. (For example, we do not discuss the important line
of work on fooling linear threshold functions [78], [104], [173], [195].)
Instead, we hope that this work serves as a suitable introduction to the
field of unconditional PRGs, preparing the reader to study new and old
papers on PRGs and make their own contributions.

The results that we cover include both classic and recent works.
Besides covering the most important principles of PRG design and
analysis, we also made sure to include expositions of many of the most
important examples of unconditional PRGs, such as Viola’s [242] PRG
for low-degree polynomials, Braverman’s [36] theorem that limited
independence fools AC0, and Forbes and Kelley’s [91] relatively recent
PRG for arbitrary-order ROBPs.

This text is primarily expository. However, we couldn’t help but
include a few novel theorems and proofs. For example, we present a
new proof of Braverman’s theorem (Section 2.6), and we present a
new improvement to the polarizing random walks framework in the
low-error regime (Section 5.1.4). We also highlight plenty of important
open problems regarding PRGs for restricted models of computation.

Many wonderful prior expository works [15], [97], [165], [175], [185],
[238] and lecture notes [45]–[47], [215], [216], [218], [219], [229], [233],
[244], [253] include some coverage of unconditional PRGs. However,
none of them has quite the same focus as our work, so we feel that our
work fills a gap.

In the rest of this section, we discuss some additional basic issues re-
lated to the concept of a PRG, paving the way for the PRG constructions
in subsequent sections.

1.3 The Generic Probabilistic Existence Proof

For many classes F , including classes defined by standard nonuniform
computational models (such as decision trees, circuits, branching pro-
grams, etc.), there is a totally generic argument showing that there
exist PRGs that fool F with a small seed length.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

12 Introduction

Proposition 1.1 (Nonexplicit PRGs). Let F be a class of functions
f : {0, 1}n → {0, 1}. For every ε > 0, there exists an ε-PRG for F with
seed length log log |F| + 2 log(1/ε) +O(1).

Proof. Pick a function G : {0, 1}s → {0, 1}n uniformly at random. Con-
sider any arbitrary f ∈ F . For each seed y, the value f(G(y)) is a
random bit satisfying

E
G

[f(G(y))] = E
Un

[f(Un)].

Furthermore, as y ranges over all 2s possible seeds, these random
variables f(G(y)) are independent. Therefore, by Hoeffding’s inequality,

Pr
G

∣∣∣∣∣∣E[f] − 2−s
∑

y∈{0,1}s

f(G(y))

∣∣∣∣∣∣ > ε

 ≤ 2e−2ε22s
.

By the union bound, the probability that G fails to ε-fool F is bounded
by 2|F|e−2ε22s . For s = log log |F| + 2 log(1/ε) +O(1), this probability
is less than 1, i.e., there exists a G that does ε-fool F .

In a typical case – e.g., if F is the set of all circuits of size at
most n – each function f ∈ F can be described using poly(n) bits, i.e.,
|F| ≤ 2poly(n). In this case, the PRG guaranteed by Proposition 1.1 has
seed length O(log(n/ε)).

1.4 Explicitness

Proposition 1.1 has a major weakness: it does not guarantee that the
PRG is efficiently computable. The proof of Proposition 1.1 is in some
sense “nonconstructive.” Ideally, we want an algorithm for sampling
from a pseudorandom distribution, and we want the algorithm to be
reasonably efficient with respect to randomness and more conventional
complexity measures simultaneously.

Definition 1.4 (Explicitness). A PRG G : {0, 1}s → {0, 1}n is explicit if
it can be computed in time poly(n).

One could consider alternative standards of explicitness. We could re-
quire that each individual output bit can be computed in time polylogn,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.4. Explicitness 13

or that the PRG runs in space O(logn), or that each bit can be com-
puted in AC0, or any number of other conditions. The truth is, there
is no “one true definition” of explicitness. The appropriate definition
depends on what one hopes to gain from the PRG; see Section 1.5.

In this text, we will stick with Definition 1.4 for concreteness, but
when we present PRG constructions, we will generally not bother
carefully verifying the runtime bound. Instead, we will focus on making
the construction clear to the reader.

1.4.1 Families of PRGs

Definition 1.4 refers to the time complexity of a PRG. To meaningfully
speak of time complexity, we technically ought to be considering a
whole family of PRGs. The convention in this line of work is to keep
the family implicit. For example, a theorem might say something like
the following.

For all n,m ∈ N and all ε > 0, there exists an explicit ε-PRG for
size-m decision trees on n input bits with seed length O(log(m/ε) +
log logn).

(See Section 2.3.3.) Translating into more precise language, the same
theorem can be restated as follows.

There exists a randomized algorithm G satisfying the following.

1. Given input parameters n,m, ε, the algorithm G outputs a
string G(n,m, ε) ∈ {0, 1}n.

2. For all n,m, ε, the output distribution G(n,m, ε) fools size-m
decision trees with error ε.

3. G(n,m, ε) uses at most O(log(m/ε) + log logn) random bits
and runs in time poly(n).

There is something potentially troubling about this “translation”
process. The quantifiers got flipped! In the informal theorem statement,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

14 Introduction

we say “for all n,m, ε, there exists an explicit PRG,” but strictly speak-
ing, we mean that there exists a single algorithm G that works for all
n,m, ε simultaneously! Is this “flipped quantifiers” convention wise?

Let us make an analogy with big-O notation. Recall, e.g., the famous
planar separator theorem:

For all n ∈ N, for every n-vertex planar graph, there exists a set of
O(

√
n) vertices such that removing those vertices splits the graph

into connected components with at most 2n/3 vertices each.

If we wanted to be more rigorous, we ought to flip the quantifiers
and write something like the following:

There exists a function f : N → N such that f ∈ O(
√
n) and for

all n ∈ N, for every n-vertex planar graph, there exists a set of
f(n) vertices such that removing those vertices splits the graph into
connected components with at most 2n/3 vertices each.

We don’t bother with such careful language because it obscures
more than it clarifies. The important thing is that the expression
“O(

√
n)” tells how the number of removed vertices scales with the

universally quantified parameter n. Analogously, when we say “there
exists an explicit PRG,” the word “explicit” tells how the computational
complexity of the PRG scales with the parameters.

1.4.2 The default conjecture: Explicit PRGs exist

For each “reasonable” class F , the standard conjecture is that there
exists an explicit PRG with essentially the same seed length as the
generic nonexplicit bound (Proposition 1.1). Oftentimes, this conjecture
can be supported with evidence in the form of conditional constructions.
For example, consider the class F of all CNF formulas of size at most
n. The nonexplicit PRG has seed length O(log(n/ε)). Under plausible
complexity-theoretic assumptions, there is indeed an explicit PRG for

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.5. Applications of PRGs 15

all size-n Boolean circuits (whether CNF formulas or not) with seed
length O(log(n/ε)) [134].

Even without a compelling conditional construction, the “default”
conjecture would be that for natural families of functions a probabilistic
existence proof can be matched by an explicit construction. The main
challenge is to find the explicit construction. Typically, such a PRG
would be optimal, i.e., one can unconditionally prove a seed length lower
bound matching the nonexplicit bound to within a constant factor.3
For example, every PRG for size-n CNF formulas (explicit or not) must
have seed length at least Ω(log(n/ε)).

1.5 Applications of PRGs

PRGs for restricted models have many applications. We will not attempt
to exhaustively list these applications, nor even to properly survey
them. We will, however, briefly describe some of the most important
applications. Hopefully, this brief discussion of applications will serve
to motivate the main topic of this text, which is the construction and
analysis of PRGs.

1.5.1 Simulating randomized algorithms

One of the most natural applications of PRGs is to simulate a random-
ized algorithm using only a few truly random bits (the seed of the PRG).
Let A be a randomized algorithm that we would like to simulate. In
order to simulate A without significantly distorting its behavior, what
property should our PRG have?

For simplicity, let us assume that A is a decision algorithm, i.e.,
it outputs a bit. Let A(a, x) denote the output value of A when the
input is a and the random bits are x. For each input a, we can define
a function fa : {0, 1}n → {0, 1}, where n is the number of random bits
that A uses,4 by the rule fa(x) = A(a, x). That is, fa describes the
behavior of A on input a as a function of its random bits. Definition 1.2

3For a counterexample, see the work of Hoza et al. [127].
4For simplicity, we assume that n is determined by a rather than varying based

on the random bits. This is a “Monte Carlo” algorithm rather than a “Las Vegas”
algorithm.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

16 Introduction

implies that if G : {0, 1}s → {0, 1}n is an PRG that fools fa with error
ε, then G can be used to simulate A without changing its acceptance
probability by more than ε:

| Pr[A(a, Un) = 1] − Pr[A(a,G(Us)) = 1]| ≤ ε.

Thus, if we wish to design a PRG to simulate A, we should study the
computational complexity of the functions fa.

Simulating randomized polynomial-time algorithms

One important case is when A is a polynomial-time randomized al-
gorithm, corresponding to the complexity class BPP. In this case,
the following claim says that the functions fa can be computed by
polynomial-size Boolean circuits.5

Claim 1.2 (PRGs for circuits can be used to simulate BPP). Let A
be a randomized decision algorithm and let a be an input. Let n

be the number of random bits that A uses on input a and define
fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let T be the running
time of A on input a and assume T ≥ |a|. Then fa can be computed by
a Boolean circuit of size poly(T).6

Proof. The function A(a, x) can be computed by a Boolean circuit of
size poly(T) that reads both a and x [190]. When we fix the “a” portion
of the input bits to arbitrary values, what remains is a circuit of size
poly(T) operating on x.

Claim 1.2 implies that if G : {0, 1}s → {0, 1}n fools circuits of size
poly(T), then G can be used to simulate time-T randomized algorithms.
The running time of this simulation is essentially T plus the running time
of G, so for this application, the appropriate “explicitness” condition is
that G can be computed quickly, e.g., in time poly(T). Unfortunately,
as discussed previously, the challenge of designing explicit PRGs for
general Boolean circuits is extremely difficult.

5Recall that a Boolean circuit is a network of AND, OR, and NOT gates.
6Again, we assume for simplicity that n and T are determined by a rather than

varying based on the random bits (cf. Footnote 4).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.5. Applications of PRGs 17

Remark 1.2 (Nonuniformity). The Boolean circuit model is a nonuniform
model, i.e., each individual Boolean circuit operates on inputs of some
fixed length. The reader might find it counterintuitive that we seek
PRGs for circuits in order to simulate uniform randomized polynomial-
time algorithms (i.e., the one randomized algorithm can handle inputs
of any arbitrary length). The concept of advice might be helpful [141].
Recall that a family of polynomial-size circuits (one circuit for each input
length) is equivalent to a polynomial-time algorithm with a polynomial
amount of advice: data that is trustworthy but that depends only on
the input length. In our setting, the input a to the polynomial-time
algorithm A can be viewed as advice that A uses to try to distinguish
between truly random bits and the output of a PRG. We want to
simulate A correctly even on a worst-case input a, and hence we want
a PRG that fools an adversarial polynomial-time observer with advice,
i.e., a Boolean circuit.

Simulating randomized log-space algorithms

Another important case is when A is a log-space randomized algorithm,
corresponding to the complexity class BPL. In this case, for each input
a, the function fa can be computed by a polynomial-width standard-order
read-once branching program (ROBP), defined next.

Definition 1.5 (Standard-order read-once branching programs). A length-
n standard-order read-once branching program (standard-order ROBP)
f consists of a directed layered multigraph with n+ 1 layers, V0, . . . , Vn.
For every i < n, each vertex v ∈ Vi has two outgoing edges leading to
Vi+1, one labeled 0 and the other labeled 1. Vertices in Vn have zero
outgoing edges. There is a designated “start vertex” vstart ∈ V0. An
input x ∈ {0, 1}n selects a path (v0, v1, . . . , vn) through the graph: the
path starts at v0 = vstart, and upon reaching a vertex vi ∈ Vi, the bit
xi+1 specifies which outgoing edge to use. There is a designated set of
“accept vertices” Vaccept ⊆ Vn, and f(x) = 1 if vn ∈ Vaccept and f(x) = 0
otherwise. The width of the program is the maximum number of vertices
in a single layer (see Figure 1.2).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

18 Introduction

vstart
1

0

x1

1

0

1

0

1

0

0

1

1

0

x3

1

0

1

0

1

0

0

1

1

0

x5

1

0

1

0

1

0

0

1

reject

reject

reject

reject

accept

1

0

x2

0

1

1

0

0

1

1

0

x4

0

1

1

0

0

1

1

0

x6

0

1

1

0

0

1

0

1

0

1

0

1

Figure 1.2: A width-5 length-6 standard-order ROBP computing the function
f(x) = MAJ(x1 ⊕ x2, x3 ⊕ x4, x5 ⊕ x6).

Claim 1.3 (PRGs for ROBPs can be used to simulate BPL). Let A
be a randomized decision algorithm and let a be an input. Let n

be the number of random bits that A uses on input a and define
fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let S be the number
of bits of space used by A on input a and assume S ≥ log |a|. Then fa

can be computed by a standard-order ROBP of width 2O(S).

Proof. We think of A as a Turing machine with an input tape, a work
tape, and a random tape. Each vertex in the program corresponds to
a configuration of A, consisting of the contents of its work tape, the
location of the input tape and work tape read heads, and the internal
state of A. An edge (u, v) labeled b ∈ {0, 1} indicates that if we run A

on input a starting at configuration u until its next coin toss, and if that
coin toss outcome is b, then the machine’s configuration immediately
following the coin toss is v.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.5. Applications of PRGs 19

Remark 1.3 (The read-once property). In general, a log-space algorithm
with a polynomial amount of advice is equivalent to a polynomial-size
branching program that might read its bits many times (see Defini-
tion 5.16). Nevertheless, we get a read-once branching program in
Claim 1.3. The reason is that we are focusing on the behavior of the
algorithm as a function of its random bits. An algorithm in the standard
BPL model only has read-once access to its random tape: the algorithm
cannot go back and re-read old random bits. (If one is computing using
a single fair coin, then one cannot ask the coin what the outcome of
the first toss was after tossing it a second time.)

Remark 1.4 (ROBP terminology). In the pseudorandomness literature,
standard-order ROBPs are often referred to as simply “ROBPs.” This
practice is a bit misleading, since the definition is not simply “a branch-
ing program that is read-once.” Indeed, in addition to being read-once,
we are assuming that the program is oblivious, meaning that the variable
queried in time step i depends only on i, and more specifically, we are
assuming that the branching program follows the standard variable
ordering, meaning that in time step i, the program queries the variable
xi. (The branching program in the proof of Claim 1.3 indeed reads its
input bits in the standard order, because without loss of generality,
the algorithm A reads its read-once random tape from left to right.)
Unsurprisingly, many papers outside the pseudorandomness literature
use terms like “read-once branching program” to refer to more general
models that are not necessarily even oblivious [17], [21], [22], [201], [247].
In this text, for clarity, we use the more verbose term “standard-order
ROBP” to emphasize the variable ordering assumption.7

Claim 1.3 implies that if G : {0, 1}s → {0, 1}n fools standard-order
ROBPs of width 2O(S), then G can be used to simulate space-S ran-
domized algorithms. For this application, the appropriate “explicitness”
condition is that G can be computed in low space – perhaps space O(S).
More precisely, the space complexity of the deterministic simulation
is essentially S plus the space complexity of computing G(y) given
one-way read-only access to the seed y.

7Hoza used the same verbose terminology in some other recent expository
work [125].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

20 Introduction

Simulating other types of randomized algorithms

One can consider numerous other classes of randomized algorithms, as
well as specific important randomized algorithms. In each case, if we
wish to replace the truly random bits with pseudorandom bits, then the
question we must answer is, what is the algorithm doing as a function of
its random bits? If, for each fixed input a, the algorithm’s behavior can
be described by a function of “sufficiently low complexity” applied to its
random bits, then we can design a PRG that fools such “low-complexity”
functions and use it to simulate the algorithm. Because of the presence
of the worst-case input a, the appropriate complexity measure will
generally be captured by some nonuniform model of computation.

1.5.2 Derandomizing algorithms

If we use a PRG to simulate a randomized algorithm in the most
natural possible way (as discussed above), we are still using a small
amount of randomness, namely the truly random seed of the PRG.
However, in many cases it is possible to eliminate this small amount
of randomness, leading to a completely deterministic simulation. The
most straightforward way to do this is to exhaustively try all possible
seeds.

Claim 1.4 (Trying all seeds and taking a majority vote). Let A be a
randomized decision algorithm, let a be an input, and let n be the
number of random bits that A uses on input a.8 Let ε > 0 and assume
that A succeeds with probability greater than 1/2 +ε, i.e., there is some
“correct answer” b ∈ {0, 1} such that

Pr[A(a, Un) = b] > 1/2 + ε.

Define fa : {0, 1}n → {0, 1} by the rule fa(x) = A(a, x). Let G : {0, 1}s

→ {0, 1}n be a PRG that ε-fools fa. Then

MAJy∈{0,1}s(A(a,G(y))) = b.

Proof. First, suppose b = 1. The definition of fooling implies that

E[A(a,G(Us))] = E[f(G(Us))] ≥ E[f] − ε > 1/2 + ε− ε = 1/2.
8Again, we assume for simplicity that n is determined by a.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.5. Applications of PRGs 21

Therefore, A(a,G(y)) = 1 for a majority of seeds y. Now suppose instead
that b = 0. The fact that G fools fa with error ε implies that G also
fools 1 − fa with error ε, because for any distribution X, we have

|E[1−fa(X)]−E[1−fa]| = |1−E[fa(X)]−1+E[fa]| = |E[fa]−E[fa(X)]|.

Therefore, by our previous analysis applied to 1 −A(a, x), we see that
A(a,G(y)) = 0 for a majority of seeds y.

Claim 1.4 implies, for example, that if G : {0, 1}s → {0, 1}n fools
standard-order ROBPs of width 2O(S), then we can use it to determin-
istically simulate randomized space-S decision algorithms. The space
complexity of this deterministic simulation is essentially S, plus s, plus
the space complexity of computing G(y). Thus, for this application, the
appropriate “explicitness” condition is that G can be computed in low
space – perhaps space O(s). In particular, for this application, there
is no significant benefit to constructing a PRG with space complexity
o(s), because in the end we are going to use s bits of space to iterate
through all possible seeds anyway.

The standard nonconstructive argument (Proposition 1.1) implies
that there exists a nonexplicit ε-PRG for width-w length-n standard-
order ROBPs with seed length O(log(wn/ε)). Furthermore, the standard
definition of BPL implies that randomized log-space algorithms have
polynomial running time, and hence they use at most polynomially
many random bits. Consequently, if we can design a PRG for standard-
order ROBPs with seed length O(log(wn/ε)) and space complexity
O(log(wn/ε)), then it will follow that L = BPL. That is, such a PRG
would imply that randomized algorithms have at most a constant-factor
advantage over deterministic algorithms in terms of space complexity.
This would be a profound conclusion about the intrinsic relationship
between randomness and memory as computational resources.

So far, optimal constructions of explicit PRGs for ROBPs are not
known, but we do have “pretty good” constructions (see, e.g., Sec-
tion 3.2). Furthermore, there are many partial derandomization results
known for space-bounded computation, building on the theory of PRGs
for ROBPs (in nontrivial ways). For example, it has been shown that
randomized space-S algorithms can be simulated deterministically in

The version of record is available at: http://dx.doi.org/10.1561/0400000109

22 Introduction

space slightly less than S3/2 [124], [206]. The challenge of constructing
optimal PRGs for standard-order ROBPs is an exciting and central
open problem in the study of unconditional PRGs.

Other applications

We have briefly discussed the most straightforward applications of PRGs,
namely simulating randomized algorithms using little or no randomness.
We now give a small sample of less straightforward applications.

• Ironically, it turns out that PRGs are sometimes useful for design-
ing randomized algorithms. For example, PRGs for space-bounded
computation are often used in the design of randomized streaming
algorithms using a technique first introduced by Indyk [136].

• Unconditional PRGs for restricted models have applications to
“hardness amplification within NP” [105], [121], [160].

• Unconditional PRGs for restricted models have applications in
the area of “meta-complexity.” It turns out that PRGs can be
used to rule out certain types of “natural proofs” of strong circuit
lower bounds [199] or to show that certain models of computation
cannot solve the “Minimum Circuit Size Problem” [137]. For these
applications, the “correct” definition of explicitness is that for
each fixed seed y ∈ {0, 1}s, there is a small Boolean circuit Cy

such that for every i ∈ [n], we have Cy(i) = G(y)i.

1.6 Beyond PRGs: Hitting Set Generators and More

For the sake of context, in this section we briefly describe some relax-
ations of the PRG definition. The main motivation behind studying
these relaxations is that constructing PRGs is challenging. These “gen-
eralized PRGs” are sometimes easier to construct, and yet they suffice
for some (but not all) of the applications of PRGs. We only give a short
overview of these concepts, since our main focus is true PRGs.

The most well-known “generalized PRG” concept is a hitting set
generator (HSG).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

1.6. Beyond PRGs: Hitting Set Generators and More 23

Definition 1.6 (HSGs). Suppose F is a class of functions f : {0, 1}n →
{0, 1}. An ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that for
every f ∈ F , if E[f] ≥ ε, then there exists some x such that f(G(x)) = 1.

An HSG is a “one-sided PRG.” HSGs have been studied since the
1980s [3] if not earlier. HSGs can be used to derandomize algorithms
that have one-sided error, simply by trying all seeds. In some contexts,
HSGs can also be used (in nontrivial ways) to derandomize algorithms
that have two-sided error [11], [12], [40], [61], [100].

A few years ago, [37] introduced a different generalization of PRGs,
called weighted PRGs (WPRGs).9

Definition 1.7 (WPRG). Suppose F is a class of functions f : {0, 1}n →
R. An ε-WPRG for F is a pair (G, ρ), where G : {0, 1}s → {0, 1}n and
ρ : {0, 1}s → R, such that for every f ∈ F , we have∣∣∣∣ E

U∼Us

[f(G(U)) · ρ(U)] − E[f]
∣∣∣∣ ≤ ε.

Thus, WPRGs generalize PRGs because we consider sparse linear
combinations of the outputs of f rather than sparse convex combinations
of the outputs of f . Several recent works have exploited this extra
flexibility to construct WPRGs with better parameters than known
PRGs [37], [52], [70], [124], [193].

Yet another generalization of PRGs is the concept of a deterministic
sampler.

Definition 1.8 (Deterministic sampler). Suppose F is a class of functions
f : {0, 1}n → R. An ε-deterministic sampler for F is a deterministic
oracle algorithm A that makes queries to a function f ∈ F and outputs
a number Af ∈ R such that |Af − E[f]| ≤ ε.

The deterministic sampler model isolates a key feature of PRGs,
which is that they are useful even if we merely have black-box access to
the function f . Deterministic samplers have been discussed (by name)

9In Braverman, Cohen, and Garg’s [37] original paper, they speak of “pseudoran-
dom pseudo-distributions.” The “weighted PRG” terminology was introduced later,
by Cohen et al. [70].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

24 Introduction

in a few recent works [61], [191], [194]. Several older algorithms can also
be understood as deterministic samplers [11], [12], [40], [100], [132].

One can show that these four concepts form a hierarchy:

PRG =⇒ WPRG =⇒ deterministic sampler =⇒ HSG.

Thus, PRGs (our focus in this text) are the most desirable of the four.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2
Limited Independence and Small-Bias Generators

In this section, we study “k-wise uniform” generators, “small-bias” gener-
ators, and simple combinations thereof. What these PRG constructions
have in common is that they are closely related to error correcting
codes. Prior knowledge of coding theory is not necessary to understand
the PRGs. The constructions of these PRGs are fairly elementary, but
we emphasize that the analyses are interesting and not always trivial.
We will build up to showing that these simple PRGs can fool moder-
ately powerful classes of functions, such as bounded-depth circuits and
low-degree polynomials over F2.

2.1 Limited Independence

2.1.1 Pairwise uniform bits

For our first PRG, let us fool the first nontrivial case of juntas.

Definition 2.1 (Juntas). A function f on {0, 1}n is a k-junta if f only
depends on at most k variables, i.e.,

f(x) = g(xi1 , . . . , xik
)

for some indices i1, . . . , ik ∈ [n] and some function g.

25

The version of record is available at: http://dx.doi.org/10.1561/0400000109

26 Limited Independence and Small-Bias Generators

Fooling 1-juntas is trivial. Indeed, let G : {0, 1} → {0, 1}n be the
PRG with seed length 1 given by G(b) = (b, b, b, . . . , b). Then G perfectly
fools every 1-junta, because for any i, the i-th bit in the output of the
PRG is a uniform bit.

Let us consider the case of 2-juntas. Fooling one specific 2-junta,
such as the function f(x) = x7 ∧ x13, is still trivial: using a 2-bit seed,
we can sample X7, X13 ∈ {0, 1} uniformly and independently at random
and set Xi = 0 for all i ̸∈ {7, 13}. The challenge is to construct a single
PRG that fools all 2-juntas simultaneously. In other words, the challenge
is that when we design the PRG, we don’t know in advance which two
bits are relevant.

Theorem 2.1 (Pairwise uniform bits). For every n ∈ N, there is an
explicit PRG that perfectly fools 2-juntas on n bits with seed length
⌊logn⌋ + 1.

A distribution X that perfectly fools 2-juntas is also called a pairwise
uniform distribution, because every two bits of X are uniform over
{0, 1}2. In practice, people often use the alternative phrase “pairwise
independent.” This practice is a little sloppy, because it doesn’t clarify
the marginal distributions of the individual coordinates of X.

A generator for n = 3 was described in Section 1.1.3. The solution
for larger n is a natural generalization.

Proof of Theorem 2.1. Let s = ⌊logn⌋ + 1, and let I1, . . . , In be arbi-
trary nonempty subsets of [s], where we use that 2⌊log n⌋+1 − 1 ≥ n. The
PRG G : {0, 1}s → {0, 1}n is given by

G(y) =

⊕
i∈I1

yi, . . . ,
⊕
i∈In

yi

 . (2.1)

To prove that this works, consider sampling Y ∈ {0, 1}s uniformly at
random. First, observe that

⊕
i∈I Yi is uniform random for any nonempty

set I ⊆ [n], so each individual output bit ofG(Y) is distributed uniformly
over {0, 1}. Now let j, k ∈ [n] be two distinct indices, and define

A =
⊕
i∈Ij

Yi, B =
⊕
i∈Ik

Yi,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.1. Limited Independence 27

so (G(Y)j , G(Y)k) = (A,B). Observe that

A⊕B =
⊕

i∈Ij∆Ik

Yi,

and Ij∆Ik is nonempty. Therefore, A is uniform random, B is uniform
random, and A⊕B is uniform random. One can show that it follows that
(A,B) is distributed uniformly over {0, 1}2. Therefore, for any function
f that only depends on xj and xk, the random variables f(G(Us)) and
f(Un) are identically distributed.

The seed length in Theorem 2.1 is precisely optimal [8], [66], i.e.,
every pairwise uniform generator has a seed length of at least ⌊logn⌋+1.

Pairwise uniform bits, and the more general concept of pairwise
independence, have many applications in complexity theory and beyond;
see Luby and Wigderson’s work [165] for a survey.

2.1.2 k-wise uniform bits

For our next PRG, let us fool the class of k-juntas for any k, i.e., we
will construct a k-wise uniform distribution.

Theorem 2.2 (k-wise uniform bits). For every n, k ∈ N, there is an
explicit PRG that perfectly fools k-juntas on n bits with seed length
O(k logn).

Proof. Let Fq be a finite field with at least n elements. Let P be
the set of univariate polynomials over Fq of degrees less than k. Let
z1, . . . , zk ∈ Fq be distinct. In preparation for defining the PRG, define
H : P → Fk

q by
H(p) = (p(z1), . . . , p(zk)).

The function H is injective, because if H(p) = H(p′), then p− p′ is a
polynomial with at least k zeroes of degree less than k, hence p = p′.
Furthermore, |P| = |Fk

q | = qk, since a polynomial p ∈ P can be specified
by k coefficients from Fq. Therefore, H is bijective, and hence if P ∈ P
is sampled uniformly at random, H(P) is a uniform random vector.

Now let z1, . . . , zn ∈ Fq be distinct, and define G : P → Fn
q by

G(p) = (p(z1), . . . , p(zn)).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

28 Limited Independence and Small-Bias Generators

By the above analysis, when P ∈ P is sampled uniformly at random,
any k coordinates of G(P) are independent and uniform random.

All that remains is to bridge the gap between field elements and bits.
Let q be a power of two, so that field elements can be naturally encoded
as bitstrings. The seed of our PRG describes a polynomial p ∈ P by
giving the encodings of its k coefficients; this requires k log q = k ·⌈logn⌉
bits if we pick q to be the smallest power of two that is at least n. The
output of our PRG is the sequence of first bits of the encodings of the
coordinates of G(p).

The seed length in Theorem 2.2 is optimal up to a constant factor
for moderate values of k. More precisely, the optimal seed length is Θ(k ·
log(n/k)) [8], [62], [66], which is a slight improvement over Theorem 2.2
when k ≥ n1−o(1). Even when k is small, the constant factor in the seed
length of Theorem 2.2 can be improved by roughly a factor of two [8].

2.1.3 Perfectly fooling shallow decision trees

Next, let us fool shallow decision trees, which generalize juntas.

Definition 2.2 (Decision trees). A decision tree over {0, 1}n is a tree,
where each internal node is labeled with a variable xi and has two
children, the two edges leading from an internal node to its children
are labeled 0 and 1, and each leaf is labeled with an output value (0 or
1). A decision tree computes a function f : {0, 1}n → {0, 1} by walking
from root to leaf according to the values of the variables queried (see
Figure 2.1).

Every k-junta can be computed by a depth-k decision tree. To
fool decision trees, rather than constructing a new PRG from scratch,
we’ll show that every PRG for k-juntas automatically fools depth-k
decision trees – even though such a tree might compute a function that
depends on far more than k variables. This is a common pattern in
PRG design: first one designs a PRG for a relatively simple class of
functions, and then one proves that such a PRG automatically fools a
more sophisticated class of functions.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.1. Limited Independence 29

x5

x3 x1

1 x4x6x2

0 1 1 0 1 0

0

0

0 0

0

0

1

1

1

1

1 1

Figure 2.1: A depth-3 decision tree. Note that the function it computes depends
on all 6 variables.

Proposition 2.1 (Perfect PRGs for shallow decision trees). Let n, k ∈ N
and letX be a k-wise uniform distribution over {0, 1}n. ThenX perfectly
fools depth-k decision trees. Consequently, there is an explicit PRG
with seed length O(k logn) that perfectly fools depth-k decision trees
on n variables.

Proof. Let f be a depth-k decision tree. Let A be the set of accepting
leaves of f , i.e., leaves that are labeled 1. For each leaf u ∈ A, define
fu : {0, 1}n → {0, 1} by letting fu(x) = 1 if and only if f arrives at u
when it reads x. Note that fu is a k-junta, because its value only depends
on the variables queries on the path from the root to u. Furthermore,
we can express f as

f(x) =
∑
u∈A

fu(x).

Therefore, by linearity of expectation,

E[f(X)] = E
[∑

u∈A

fu(X)
]

=
∑
u∈A

E[fu(X)] =
∑
u∈A

E[fu]

= E
[∑

u∈A

fu

]
= E[f].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

30 Limited Independence and Small-Bias Generators

The simple technique in the proof above is quite valuable. Let us
abstract it out and generalize it to the case of imperfect PRGs.

Lemma 2.3 (Triangle Inequality for PRG Errors). Let f1, . . . , fk : {0, 1}n

→ R be functions, let λ0, . . . , λk ∈ R, and let f(x) = λ0 +
∑k

i=1 λi ·fi(x).
Let X be a distribution over {0, 1}n, and assume that X fools fi with
error εi for each i. Then X fools f with error ε, where

ε =
k∑

i=1
|λi| · εi.

Proof.

|E[f(X)] − E[f]| =
∣∣∣∣∣

k∑
i=1

λi · E[fi(X)] −
k∑

i=1
λi · E[fi]

∣∣∣∣∣
(Linearity of expectation)

≤
k∑

i=1
|λi| · |E[fi(X)] − E[fi]|

(Standard triangle inequality)

≤
k∑

i=1
|λi| · εi

because X fools fi with error εi.

2.1.4 Connection with coding theory: Dual codes

For readers with a background in coding theory, the constructions of
pairwise and k-wise uniform generators might have felt familiar. Indeed,
the constructions are closely related to the Hadamard code and the
Reed-Solomon code, respectively. For the sake of those readers who
have some familiarity with coding theory, we will now describe a general
elegant characterization of exactly which linear codes induce k-wise
uniform distributions. Recall that a linear code over Fn

2 is a subspace
C ⊆ Fn

2 , and its dual code is defined as

C⊥ = {x ∈ Fn
2 : ∀y ∈ C, ⟨x, y⟩ = 0},

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.1. Limited Independence 31

where ⟨·, ·⟩ is the standard dot product over Fn
2 . The minimum distance

of a code is the smallest Hamming distance between two distinct code-
words. For a linear code C, this distance coincides with the smallest
Hamming weight among all nonzero codewords of C.

Proposition 2.2 (Connection between k-wise uniformity and coding theory).
Let C ⊆ Fn

2 be a linear subspace, and sample X uniformly at random
from C. Then X is k-wise uniform if and only if C⊥ has minimum
distance at least k + 1.

Proof. First, suppose X is k-wise uniform. Let x ∈ Fn
2 be a nonzero

vector with Hamming weight at most k. Then ⟨x,X⟩ is a uniform
random bit, so there is certainly some y ∈ C such that ⟨x, y⟩ = 1.
Therefore, x ̸∈ C⊥. Since C⊥ is a subspace, it follows that C⊥ has
minimum distance at least k + 1.

Conversely, suppose C⊥ has minimum distance at least k + 1, and
consider any k distinct indices i1, . . . , ik ∈ [n]. Let s = dim(C), and let
M ∈ Fn×s

2 be a matrix with image C and rows M1, . . . ,Mn. Let x ∈ Fn
2

be an arbitrary nonzero vector supported on the indices i1, . . . , ik. Then
x has Hamming weight at most k, so x ̸∈ C⊥, i.e., there is some z ∈ Fs

2
such that

0 ̸= ⟨x,Mz⟩ =
n∑

i=1
xi · ⟨Mi, z⟩ =

〈
n∑

i=1
xiMi, z

〉
.

Therefore,
∑n

i=1 xiMi ̸= 0. Since x was arbitrary, this shows that
Mi1 , . . . ,Mik

are linearly independent. Define

M ′ =

Mi1

Mi2
...

Mik

 .
Since row rank is equal to column rank, there are k linearly independent
columns of M ′ with indices in some set J = {j1, . . . , jk}. Therefore,
when z ∈ Fs

2 is chosen uniformly at random, M ′z is a uniform random
element of Fk

2. To see this, note that for any x ∈ Fk
2 and any fixing of all

zj with j /∈ J , there is a unique choice of zJ ∈ Fk
2 for which M ′z = x.

It follows that X is k-wise uniform.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

32 Limited Independence and Small-Bias Generators

Proposition 2.2 provides a generic recipe for constructing k-wise
uniform distributions from error correcting codes. Recall that the re-
dundancy of a code is the difference between the block length and the
message length. A binary linear code with block length n, minimum
distance k + 1, and redundancy s induces a k-wise uniform generator
with seed length s and output length n.

2.2 Small-bias Distributions

2.2.1 Fooling parities of variables

For our first imperfect PRG, let us fool parity functions.

Definition 2.3 (Parity functions). A parity function is a function f : {0,
1}n → {0, 1} of the form f(x) =

⊕
i∈S xi for some set S ⊆ [n].

Equivalently, we can think of f as a map Fn
2 → F2. Then f is a

parity function if and only if f(x) = ⟨a, x⟩ for some fixed vector a, where
⟨·, ·⟩ is the usual inner product, i.e., ⟨a, x⟩ =

∑n
i=1 ai · xi. Sometimes it

is more convenient to work with {±1}-valued functions, in which case
parity functions become character functions.

Definition 2.4 (Character functions). Let n ∈ N, and let S ⊆ [n]. The
character function of S, denoted χS : {0, 1}n → {±1}, is defined by

χS(x) =
∏
i∈S

(−1)xi .

Note that f : {0, 1}n → {0, 1} is a parity function if and only if
(−1)f is a character function. Since (−1)f = 1 − 2f , it follows from
the triangle inequality that fooling character functions with error ε is
equivalent to fooling parity functions with error ε/2.

Definition 2.5 (Bias). An ε-biased distribution over {0, 1}n is a distri-
bution that ε-fools character functions. Equivalently, a distribution is
ε-biased if it (ε/2)-fools parity functions. An ε-biased generator is an
ε-PRG for character functions.

Theorem 2.4 (Small-bias generators [178], [188]). For every n ∈ N, ε > 0,
there is an explicit ε-biased generator with output length n and seed
length O(log(n/ε)).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.2. Small-bias Distributions 33

Remark 2.1. Ideally, we want to design PRGs for interesting and
powerful models of computation. The reader might feel that “parity
functions” is hardly a “model of computation” at all, and the utility
of ε-biased generators is unclear. However, we will see later that any
distribution that fools parity functions with sufficiently low error also
fools many more interesting models. Furthermore, ε-biased generators
are building blocks in many more powerful PRGs.

There are many possible ways to prove Theorem 2.4. The first
proofs were discovered by by Naor and Naor [178] and by Peralta [188]
independently. We’ll present a simpler construction due to Alon et al.
[9].

Proof of Theorem 2.4. Let q = n/ε, and assume without loss of gener-
ality that q is a power of two. As vector spaces over F2, identify Fq with
Flog q

2 . Our PRG G : Fq × Fq → {0, 1}n is defined by

(G(y, z))i = ⟨y, zi⟩.

To prove that this works, let f : {0, 1}n → {0, 1} be a nonzero parity
function, say f(x) =

⊕
i∈S xi. Then doing arithmetic in F2,

f(G(y, z)) =
∑
i∈S

⟨y, zi⟩ =
〈
y,
∑
i∈S

zi

〉
.

Define g(z) =
∑

i∈S z
i. Then g is a nonzero polynomial in Fq[z] of degree

at most n, and f(G(y, z)) = ⟨y, g(z)⟩. When z is a root of g, obviously
f(G(y, z)) = 0. On the other hand, when z is not a root of g, if we
sample Y ∈ Fq uniformly at random, f(G(Y, z)) is a uniform random
bit. Therefore, when we sample Y, Z ∈ Fq independently and uniformly
at random,

E
Y,Z

[f(G(Y, Z))] = 1
2 · Pr

Z
[g(Z) ̸= 0] ∈

[1
2 − n

2q ,
1
2

]
.

Since E[f] = 1
2 , our PRG G fools parity functions with error n/(2q) =

ε/2, and hence it fools character functions with error ε.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

34 Limited Independence and Small-Bias Generators

2.2.2 A better seed length for parities of few variables

The seed length O(log(n/ε)) in Theorem 2.4 is asymptotically opti-
mal [9]. However, we can achieve a better seed length for parities of just
a few variables, i.e., functions that are simultaneously parity functions
and juntas.

Definition 2.6 (k-wise ε-bias). Let X be a distribution over {0, 1}n. We
say that X is k-wise ε-biased if it ε-fools every character function χS

for which |S| ≤ k. Similarly, a k-wise ε-biased generator is an ε-PRG
for character functions χS that satisfy |S| ≤ k.

Theorem 2.5 (k-wise ε-biased generators [178]). For every n, k ∈ N and
every ε > 0, there is an explicit k-wise ε-biased generator with output
length n and seed length O(log(k/ε) + log logn).

Proof. Let G : {0, 1}s → {0, 1}n be a k-wise uniform generator that
is also a linear transformation when we think of it as a map between
vector spaces, G : Fs

2 → Fn
2 . (One can verify that the k-wise uniform

generator that we constructed to prove Theorem 2.2 is indeed a linear
transformation.) Let Y = G′(Us′) where G′ : {0, 1}s′ → {0, 1}s is an ε-
biased generator. We will show that G(Y) fools parities of at most k bits.
Indeed, let f(x) =

∑
i∈S xi, where x ∈ Fn

2 and |S| ≤ k. Let M ∈ Fn×s
2

be the matrix representation of G, with rows M1, . . . ,Mn ∈ Fs
2. Then

for any y ∈ Fs
2,

f(G(y)) =
∑
i∈S

⟨Mi, y⟩ =
∑
i∈S

s∑
j=1

Mijyj =
s∑

j=1

(∑
i∈S

Mij

)
yj .

This is a parity function of the variables y1, . . . , ys. Therefore, since Y
is ε-biased, |E[f(G(Y))] − E[f(G(U))]| ≤ ε/2. Furthermore, since G is
k-wise uniform and f is a k-junta, E[f(G(U))] = E[f]. Therefore, G(Y)
is k-wise ε-biased. To achieve the promised seed length, we can plug in
the constructions of Theorems 2.2 and 2.4 for G and G′ respectively.

Once again, the seed length of Theorem 2.5 is optimal up to constant
factors.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.2. Small-bias Distributions 35

2.2.3 Connection with coding theory: Nearly balanced codes

In Section 2.1.4, we saw a connection between k-wise uniform distribu-
tions and error correcting codes that “explains” our constructions of
k-wise uniform generators (Theorems 2.1 and 2.2). Now we discuss a
similar connection between ε-biased distributions and error correcting
codes.

Suppose C ⊆ Fm
2 is a linear code. It is generally desirable for C to

have a large minimum weight. Small-biased distributions are equivalent
to codes C that also have a small maximum weight. Specifically, we
say that C is ε-balanced if every nonzero x ∈ C has relative Hamming
weight 1

2 ± ε.

Proposition 2.3 (Nearly balanced code ⇐⇒ small-bias distribution). Let
M ∈ Fm×n

2 be a linear transformation, and let C be the image of M ,
i.e., C = {Ma : a ∈ {0, 1}n}. Sample X uniformly at random from the
rows of M , so X ∈ {0, 1}n. Then C is ε-balanced if and only if X is
(2ε)-biased.

Proof. For any nonzero “message” a ∈ {0, 1}n, the relative Hamming
weight of Ma is the fraction of rows Mi of M such that ⟨a,Mi⟩ = 1,
i.e., Pr[⟨a,X⟩ = 1].

A nearly balanced code that stretches an n-bit message to an m-
bit codeword corresponds to a small-bias generator that stretches a
(logm)-bit seed to an n-bit pseudorandom string. In both problems,
it is desirable to minimize m. A natural way to construct a nearly
balanced code is to concatenate the Hadamard code with the Reed-
Solomon code. Through Proposition 2.3, that gives an explicit ε-biased
generator similar to the PRG we constructed to prove Theorem 2.4.
The two constructions are not quite identical. Both have seed length
O(log(n/ε)), so the coding-theory perspective gives an alternative proof
of Theorem 2.4.

Because of the connection between small-bias distributions and
nearly balanced codes, even constant-factor improvements in the seed
length of small-bias generators are interesting. Note that a constant
factor in the seed length translates to a constant factor in the exponent of

The version of record is available at: http://dx.doi.org/10.1561/0400000109

36 Limited Independence and Small-Bias Generators

the codeword length! The seed length in Theorem 2.4 is 2 log(n/ε)+O(1).
For moderate ε, the best small-bias generator is a construction by Ta-
Shma [217] with seed length1

logn+ 2 log(1/ε) + Õ(log2/3(1/ε)).

This seed length is extremely close to the nonconstructive bound of
logn+2 log(1/ε)+O(1) (Proposition 1.1), as well as to the lower bound
of logn + 2 log(1/ε) − log log(1/ε) − O(1) [9]. Ta-Shma’s seed length
translates to an ε-balanced code that stretches messages of length n to
codewords of length n/ε2+o(1).

Open Problem 2.1 (Optimal small-bias generators up to an additive
constant in the seed length). Construct an explicit ε-biased generator
with seed length logn + 2 log(1/ε) + O(1), and hence an explicit ε-
balanced code that stretches messages of length n to codewords of
length O(n/ε2).

2.3 Analysis Technique: Fourier L1 Bounds

2.3.1 Basic Fourier analysis

PRGs for character functions (i.e., small-bias distributions) are especially
important because character functions are the basic “building blocks”
out of which all other functions f : {0, 1}n → R can be assembled.

Proposition 2.4 (The Fourier expansion). Every function f : {0, 1}n → R
can be uniquely written as a linear combination of characters, i.e.,

f(x) =
∑

S⊆[n]
f̂(S) · χS(x), (2.2)

where f̂(S) ∈ R.

Proof. The space of all functions f : {0, 1}n → R is a vector space,
isomorphic to R2n . Define an inner product on this space by

⟨f, g⟩ = E
U∼Un

[f(U) · g(U)].

1Here, we are ignoring rounding issues. That is, the domain size S of Ta-Shma’s
generator is not necessarily a power of two, and when we say “seed length” we simply
mean log2 S.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.3. Analysis Technique: Fourier L1 Bounds 37

With respect to this inner product, the 2n character functions are
orthonormal. Therefore, they form a basis.

The decomposition of Equation (2.2) is called the Fourier expansion
of f , and the numbers f̂(S) are called the Fourier coefficients of f . The
Fourier expansion of f can reveal important information about f . For
example, by linearity of expectation,

E[f] =
∑

S⊆[n]
f̂(S) · E[χS] = f̂(∅). (2.3)

We refer the reader to [76], [185] for an introduction to the Fourier
analysis of functions on the Boolean cube.

2.3.2 Almost k-wise uniform bits

Let us use Fourier analysis to obtain another PRG for k-juntas. For
moderate error, its seed length is superior to that of the k-wise uniform
generator that we saw before (Theorem 2.2). The following theorem is
a form of “Vazirani’s XOR Lemma.”

Theorem 2.6 (Almost k-wise uniform generator [178]). If X is a k-
wise δ-biased distribution over {0, 1}n, then X fools [−1, 1]-valued
k-juntas with error δ · 2k/2. Consequently, for every k, n ∈ N and ε > 0,
there is an explicit ε-PRG for [−1, 1]-valued k-juntas with seed length
O(k + log(1/ε) + log logn).

A distribution X that fools all {0, 1}-valued k-juntas with error ε
is also called an ε-almost k-wise uniform distribution.2 An equivalent
condition is that every k coordinates of X are ε-close to Uk in total
variation distance. In practice, people often use the alternative phrase
“ε-almost k-wise independent.”

The proof of Theorem 2.6 is based on bounding the magnitude of
Fourier coefficients.

Definition 2.7 (Fourier L1 norm). Let f : {0, 1}n → R. The Fourier L1
norm of f , also known as the Fourier algebra norm or spectral norm of

2Warning: Occasionally, the same “ε-almost” terminology refers to some other
measure of the extent to which X fails to be perfectly k-wise uniform [1].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

38 Limited Independence and Small-Bias Generators

f , denoted L1(f), is the sum of absolute values of Fourier coefficients
of f :

L1(f) =
∑

S⊆[n]
|f̂(S)|.

Lemma 2.7 (Universal Fourier L1 bound). For any function f : {0, 1}n →
[−1, 1], we have L1(f) ≤ 2n/2.

Proof. By the Cauchy-Schwarz inequality, L1(f) ≤
√

2n ·
∑

S⊆[n] f̂(S)2.
Furthermore, for any function f : {0, 1}n → R,

E[f(Un)2] = ⟨f, f⟩ =
∑

S,T ⊆[n]
f̂(S) · f̂(T) · ⟨χS , χT ⟩ =

∑
S⊆[n]

f̂(S)2. (2.4)

(Equation (2.4) is called Parseval’s theorem.) In our case, f is [−1, 1]-
valued, so E[f(Un)2] ≤ 1 and hence

∑
S⊆[n] f̂(S)2 ≤ 1.

Lemma 2.8 (Fourier L1 bound =⇒ fooled by small-bias). Let f : {0, 1}n

→ R. If X is ε-biased, then X fools f with error ε · L1(f).

Proof. This is a special case of the Triangle Inequality for PRG Errors
(Lemma 2.3).

Proof of Theorem 2.6. Let f : {0, 1}n → [−1, 1] be a k-junta, i.e., f(x)
= g(xi1 , . . . , xik

) for some function g : {0, 1}k → [−1, 1], where i1, . . . , ik
are distinct. By Lemmas 2.7 and 2.8, the distribution (Xi1 , . . . , Xik

)
fools g with error δ · 2k/2, and hence X fools f with the same error. The
final seed length follows from Theorem 2.5 by choosing δ = ε · 2−k/2.

2.3.3 Fooling bounded-size decision trees

Recall that in Section 2.1.3, we showed that k-wise uniform generators,
with seed length O(k logn), perfectly fool depth-k decision trees. As
another application of Fourier L1 bounds, let’s design another PRG for
bounded-depth decision trees with a better seed length (although this
time the error will be nonzero). More generally, we will consider decision
trees of unbounded depth but bounded size. The size of a decision tree
is the number of leaves (see Figure 2.2).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.3. Analysis Technique: Fourier L1 Bounds 39

x1

1x2

1x3

1

xn

10

. . .

1

1

1

1

0

0

0

0

0

. .
.

Figure 2.2: A decision tree computing the OR function on n bits. Note that the
size of this decision tree is n + 1, which is relatively low, whereas the depth of this
decision tree is maximal, which is unavoidable for the OR function.

Proposition 2.5 (PRG for bounded-size decision trees). If X is a δ-
biased distribution over {0, 1}n, then X fools size-m decision trees with
error mδ. Consequently, for every n,m ∈ N and ε > 0, there is an
explicit ε-PRG for size-m decision trees on n input bits with seed length
O(log(mn/ε)).

Note that Proposition 2.5 implies a PRG for depth-k decision trees
with seed length O(k + log(n/ε)), because a depth-k decision tree
always has size at most 2k. The proof of Proposition 2.5 is similar to
the construction of almost k-wise uniform generators: we will bound
the Fourier L1 norm of size-m decision trees. We start with the special
case of conjunctions of literals.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

40 Limited Independence and Small-Bias Generators

Proposition 2.6 (Fourier L1 bound for conjunctions of literals). Suppose
f : {0, 1}n → {0, 1} is a conjunction of literals, i.e.,

f(x) =
∧
i∈S

ℓi

where S ⊆ [n] and each ℓi is either xi or ¬xi. Then L1(f) = 1.

Proof. There is a convenient formula for the Fourier coefficients of any
function f :

E
U∼Un

[f(U) · χS(U)] = ⟨f, χS⟩ =
∑

T ⊆[n]
f̂(T) · ⟨χT , χS⟩ = f̂(S). (2.5)

In the case f = NORn (the n-input NOR function), we get

N̂ORn(S) = E
U∼Un

[NORn(U) · χS(U)] = 2−n.

Therefore, L1(NORn) = 2n · 2−n = 1. More generally, consider any
conjunction of literals f . Without loss of generality, we may assume
that all n variables appear in f . Consequently, there is some string
a ∈ {0, 1}n such that f(x) = NORn(x+ a), where + is the bitwise XOR
operation. Therefore, by Equation (2.5), for each S ⊆ [n],

f̂(S) = E
U

[NORn(U + a) · χS(U)] = E
U

[NORn(U) · χS(U + a)]

= χS(a) · N̂ORn(S)
= ±2−n.

(In general, negating variables can only change the signs of Fourier
coefficients, not the absolute values.) Therefore, L1(f) = 2n · 2−n =
1.

Corollary 2.9 (Fourier L1 bound for decision trees). If f is a size-m
decision tree, then L1(f) ≤ m.

Proof. One can verify that the Fourier L1(f) norm truly is a norm, i.e.,
L1(f + g) ≤ L1(f) + L1(g) and L1(λf) = |λ| · L1(f). Let f be a size-m
decision tree. Just like in the proof of Proposition 2.1, we can write
f =

∑
u∈A fu, where A is the set of accepting leaves and fu(x) indicates

whether x leads to u. Each fu is a conjunction of literals. Therefore,
L1(f) ≤

∑
u∈A L1(fu) ≤ m.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.3. Analysis Technique: Fourier L1 Bounds 41

Combining Theorems 2.4 and 2.9 and Lemma 2.8 completes the
proof of Proposition 2.5. When m < n, one can improve the seed length
to O(log(m/ε) + log logn) using m-wise δ-biased generators.

Proposition 2.5 extends to the more powerful model of parity decision
trees, which are decision trees in which each internal node may query
an arbitrary parity function of the input [146]. The reason is that
we can write such a tree f as f(x) = g(h1(x), . . . , hm(x)) where g is
a size-m standard decision tree and h1, . . . , hm are parity functions.
Consequently,

f(x) =
∑

S⊆[n]
ĝ(S) · (−1)

∑
i∈S

hi(x).

For each fixed S, the function (−1)
∑

i∈S
hi(x) is a character function, so

it has Fourier L1 norm 1, and hence L1(f) ≤ L1(g) ≤ m.

2.3.4 Fooling width-2 branching programs

For a final application of Fourier L1 bounds, let us obtain a PRG for
width-2 branching programs (see Figure 2.3). Branching programs are
one of the oldest sequential models of computation. For general size-m
branching programs, which model computing with logm bits of memory,
the current best PRG has seed length roughly

√
m (see Section 5.6). We

can do much better in the special case of width-2 branching programs,
which model computing with a single bit of memory and a clock. The
precise definition follows.

x1

x1

x3

x3

x1

x2

x1

x1

x4

x3

x3

x3

x1

x1

x2

x2

1

0
0

1

1 1 1 1 1 1 acc

rej

1

1 1 1 1 1 1 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

vstart

Figure 2.3: A width-2 length-8 branching program computing the function
f : {0, 1}4 → {0, 1} defined by f(x) = 1 ⇐⇒ |x| = 2, where |x| denotes Ham-
ming weight. Note that this function cannot be computed by a width-2 read-once
branching program. This example is derived from work by Borodin et al. [35].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

42 Limited Independence and Small-Bias Generators

Definition 2.8 (Bounded-width branching programs). A width-w length-
m branching program f is a directed (multi)graph with m + 1 layers
V0, . . . , Vm of w vertices each. For i ∈ [m], each vertex v ∈ Vi−1 is
labeled with an index jv ∈ [n] and has two outgoing edges labeled 0
and 1 leading to vertices in Vi. There is a designated “start vertex”
vstart ∈ V0 and a designated set of “accepting vertices” Vaccept ⊆ Vm.3
Given an input x ∈ {0, 1}n, the program starts at vstart, and in each
step, having reached a vertex v, the program queries xjv and traverses
the corresponding outgoing edge. Eventually, the program reaches a
vertex v ∈ Vm, and f(x) = 1 ⇐⇒ v ∈ Vaccept.

Branching programs of width even slightly larger than 2 are surpris-
ingly powerful. For example, Barrington’s theorem [19] says that the
majority function can be computed by constant-width polynomial-length
branching programs, and more generally, constant-width polynomial-
length branching programs can compute exactly the functions in non-
uniform NC1 (i.e., logarithmic-depth bounded-fan-in Boolean formulas).

On the other hand, width-2 branching programs are relatively weak,
which allows us to fool them with a short seed. The following theorem
is attributed to unpublished 1995 work of Saks and Zuckerman (see also
the work of Bogdanov et al. [29]).

Theorem 2.10 (PRGs for width-2 branching programs). If X is a δ-biased
distribution over {0, 1}n, then X fools width-2 length-m branching
programs with error δ · (m + 1)/2. Consequently, for every n,m ∈ N
and ε > 0, there is an explicit ε-PRG for width-2 length-m branching
programs with seed length O(log(mn/ε)).

One can show that every width-2 branching program on n variables
can be simulated by a width-2 branching program of length m =
O(n2) [35], so the seed length in Theorem 2.10 actually simplifies to
O(log(n/ε)). When Theorem 2.10 is mentioned in the literature, it is
sometimes indicated that we should assume that the branching program
is read-once [29], [105], [128], but such an assumption is not necessary.
Once again, we will prove Theorem 2.10 by proving a Fourier L1 bound.

3Note that we do not allow the branching program to halt prior to reaching layer
m. This type of program is sometimes referred to as a “strict” width-w program [35].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.4. Viola’s Generator for Low-degree F2-polynomials 43

Lemma 2.11 (Fourier L1 bound for width-2 branching programs). If f is
a width-2 length-m branching program, then L1(f) ≤ m/2 + 1/2.

Proof. Let F (x) = (−1)f(x). For each vertex v in f , let f→v(x) indicate
whether f(x) visits v, and let F→v(x) = (−1)f→v(x). We will prove by
induction on m that L1(F) ≤ m. For the base case m = 1, the function
F is a 1-junta, i.e., F (x) = (−1)xi or F (x) = (−1)1−xi or F (x) = 1 or
F (x) = −1. In each case, L1(F) = 1. Now, for the inductive step, let
Vm−1 = {u, v}. Then there exist 1-juntas ϕu, ϕv : {0, 1}n → {±1} such
that

F (x) = f→u(x) · ϕu(x) + f→v(x) · ϕv(x)

=
(1

2 − 1
2 · F→u(x)

)
· ϕu(x) +

(1
2 + 1

2 · F→u(x)
)

· ϕv(x)

= 1
2 · F→u(x) · (ϕv(x) − ϕu(x)) + 1

2 · (ϕu(x) + ϕv(x)) .

Now, L1(ϕu) = L1(ϕv) = 1, and by induction, L1(F→u) ≤ m − 1.
Furthermore, one can verify that the L1 norm is submultiplicative, i.e.,
L1(g · h) ≤ L1(g) · L1(h). Therefore,

L1(F) ≤ 1
2 · L1(F→u) · (L1(ϕv) + L1(ϕu)) + 1

2(L1(ϕu) + L1(ϕv))

≤ m− 1 + 1
= m,

completing the induction. Finally, f(x) = 1
2 − 1

2F (x), so L1(f) ≤
1
2 + m

2 .

Theorem 2.10 follows by combining Lemmas 2.8 and 2.11 and Theo-
rem 2.4. Analogously to the situation with decision trees, when m < n,
one can improve the seed length to O(log(m/ε) + log logn) using (2m)-
wise δ-biased generators.

2.4 Viola’s Generator for Low-degree F2-polynomials

In Section 2.2 we saw a simple construction of an explicit small-bias
generator, i.e., a PRG that fools all F2-linear functions with logarithmic
seed length. We’ve discussed connections between small-bias generators

The version of record is available at: http://dx.doi.org/10.1561/0400000109

44 Limited Independence and Small-Bias Generators

and coding theory and some simple applications of small-bias generators.
As a natural generalization, let us construct PRGs for quadratic or
higher degree polynomials.

Remark 2.2 (Polynomials over F2 vs. polynomials over R). Over the
reals, every degree-d polynomial is perfectly fooled by d-wise uniform
generators. However, in this section, we are working over F2. Thus, a
low-degree polynomial is a function of the form PARITY ◦ AND where
the AND gates have low fan-in. In this setting, k-wise uniformity is not
a good approach. For instance, the uniform distribution over all strings
with even Hamming weight is (n− 1)-wise uniform, and yet it does not
even fool degree-1 polynomials (parity functions).

The problem of designing PRGs for low-degree F2-polynomials
seemed to be much harder than constructing small-bias generators
or k-wise uniform generators. For a long time, even for constant de-
gree, the best construction known was a PRG by Luby, Veličković, and
Wigderson [164] with seed length 2O(

√
log n). Over a decade later, a new

line of work [32], [157] led to Viola’s elegant proof [242] that simply
summing d independent copies of small-bias generators gives a PRG for
degree-d polynomials.

Theorem 2.12 (PRG for low-degree F2-polynomials [242]). Let Y1, . . . , Yd

be independent δ-biased random variables over Fn
2 where δ ≤ 1/2. Then

Y1 + · · · + Yd fools degree-d F2-polynomials with error 4 · (δ/2)1/2d−1 .
Consequently, for every n, d ∈ N and ε > 0, there is an explicit ε-PRG
for degree-d F2-polynomials in n variables with seed length O(d · logn+
d · 2d · log(1/ε)).

For context, it is easy to show that a sum of independent small-
bias random variables is “more pseudorandom” than a single small-
bias random variable in the sense that it has smaller bias (see below).
Theorem 2.12 says that not only does the sum have smaller bias, it also
fools higher-degree polynomials.

Observation 2.1 (XORing decreases bias). Let Y1, . . . , Yd be independent
δ-biased random variables distributed over Fn

2 . Then
∑d

i=1 Yi is (δd)-
biased.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.4. Viola’s Generator for Low-degree F2-polynomials 45

Proof. For every nonempty S ⊆ [n], we have∣∣∣∣∣E
[
χS

(
d∑

i=1
Yi

)]∣∣∣∣∣ =
∣∣∣∣∣

d∏
i=1

E[χS(Yi)]
∣∣∣∣∣ ≤ δd.

2.4.1 Directional derivatives

The proof of Theorem 2.12 is based on the notion of directional deriva-
tives over F2, defined below.
Definition 2.9 (Directional derivative). Let f : Fn

2 → F2 and y ∈ Fn
2 . The

directional derivative ∂yf is defined by
∂yf(x) = f(x+ y) + f(x).

If F is a class of functions f : Fn
2 → F2, we define

∂F = {∂yf : f ∈ F , y ∈ Fn
2 }.

To fool low-degree polynomials, our strategy will be to show how
to convert PRGs for ∂F into PRGs for F , where F is any “reasonable”
class. Formally, the only requirement on F is that is “closed under
shifts,” as defined below.
Definition 2.10 (Closure under shifts). For a function f on Fn

2 and a
vector y ∈ Fn

2 , we define the shift f+y by the formula f+y(x) = f(x+y).
Let F be a class of functions f on Fn

2 . We say that F is closed under
shifts if for every f ∈ F and every y ∈ Fn

2 , we have f+y ∈ F .
Lemma 2.13 (PRG for ∂F =⇒ PRG for F). Let F be a class of
functions f : Fn

2 → F2 that is closed under shifts. Suppose W fools ∂F
with error γ, Y is δ-biased, and Y is independent of W . Then W + Y

fools F with error
√

2γ + δ/2.
In general, ∂F seems to be “more complicated” than F itself, so

Lemma 2.13 might not sound particularly useful. However, ∂F is “sim-
pler” than F in one respect, namely degree:
Observation 2.2 (Differentiation decreases degree). Let d ≥ 1, let
f : Fn

2 → F2 be a degree-d polynomial, and let y ∈ Fn
2 . Then ∂yf

is a degree-(d− 1) polynomial.
Thus, we will be able to prove Theorem 2.12 by applying Lemma 2.13

inductively.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

46 Limited Independence and Small-Bias Generators

2.4.2 The XOR of two independent copies of an arbitrary Boolean
function

The proof of Lemma 2.13 (the reduction from fooling F to fooling ∂F)
relies on the following lemma, which explains how to use small-bias
distributions to “recycle” randomness and thereby fool a certain class
of functions.

Lemma 2.14 (Using small-bias distributions to fool g(x) · g(y)). Let n
be an even positive integer, let g : {0, 1}n/2 → {±1}, and let f(x, y) =
g(x) · g(y). Let U and Y be independent, where U ∼ Un/2 and Y is an
ε-biased random variable over Fn/2

2 . Then (U,U + Y) fools f with error
ε.

Proof. Define F : {0, 1}n/2 → [−1, 1] by

F (x) = E
U

[g(U) · g(U + x)],

and note that E[F] = E[f]. Let U ′ ∼ Un/2 be independent of U . Then
for any S ⊆ [n], by Equation (2.5),

F̂ (S) = E
U,U ′

[g(U) · g(U + U ′) · χS(U ′)]

= E
U,U ′

[g(U) · g(U ′) · χS(U + U ′)]

=
(
E
U

[g(U) · χS(U)]
)2

= ĝ(S)2.

Therefore, L1(F) =
∑

S ĝ(S)2 ≤ 1 by Parseval’s theorem. Consequently,
Y fools F with error ε by Lemma 2.8, and hence (U,U + Y) fools f
with error ε.

Remark 2.3 (Characterizing small bias). One can show the following
converse to Lemma 2.14: If U ∼ Un/2, Y is independent, and (U,U +Y)
fools all functions of the form f(x, y) = g(x) · g(y) ∈ {±1} with error
ε, then Y is ε-biased. Thus, the condition in Lemma 2.14 gives an
alternative characterization of small-bias distributions.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.4. Viola’s Generator for Low-degree F2-polynomials 47

Remark 2.4 (Connection to expander graphs). The seed length for
sampling the distribution (U,U + Y) that appears in Lemma 2.14
is n/2 + O(log(n/ε)). Lemma 2.14 generalizes to the case that g has
bounded variance, Var[g] ≤ 1, rather than being {±1}-valued. This
generalization is closely related to the notion of a spectral expander. In
Section 3.1.1, we will discuss spectral expanders in more detail, and in
particular we will discuss PRGs for such tests with the improved seed
length n/2 +O(log(1/ε)).

2.4.3 The reduction from fooling F to fooling ∂F

To prove Lemma 2.13, we will consider two cases based on the extent
to which f ∈ F is balanced. For a function f : Fn

2 → F2, define

imbalance(f) =
∣∣∣E [(−1)f(Un)

]∣∣∣ = 2 ·
∣∣∣∣E[f] − 1

2

∣∣∣∣ .
(In the literature, this quantity is often referred to as the “bias” of f .
We use the term “imbalance” instead to avoid confusion with small-bias
distributions.) We begin with the case that f is close to balanced.

Lemma 2.15 (Fooling well-balanced functions). Let F be a class of
functions f : Fn

2 → F2 that is closed under shifts. Suppose W fools ∂F
with error γ, Y is δ-biased, and Y is independent of W . Then W + Y

fools each f ∈ F with error imbalance(f) +
√
γ/2 + δ/2.

Proof. First observe that

|E[f(W + Y)] − E[f(Un)]| = 1
2 ·
∣∣∣E [(−1)f(W +Y)

]
− E

[
(−1)f(Un)

]∣∣∣
≤ 1

2 ·
∣∣∣E [(−1)f(W +Y)

]∣∣∣+ 1
2 · imbalance(f).

Thus, it suffices to bound |E[(−1)f(W +Y)|. By Jensen’s inequality,(
E

W,Y

[
(−1)f(W +Y)

])2
≤ E

W

[(
E
Y

[
(−1)f(W +Y)

])2
]

= E
W,Y,Y ′

[
(−1)f(W +Y)+f(W +Y ′)

]
,

where Y ′ is an independent copy of Y . For any fixed y, the function
f+y(x) def= f(x+y) is in F because F is closed under shifts. Furthermore,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

48 Limited Independence and Small-Bias Generators

for fixed y, y′, the function g(x) def= f(x+y)+f(x+y′) is in ∂F , because
g = ∂y+y′f+y. Therefore, the assumption on W gives

E
W,Y,Y ′

[
(−1)f(W +Y)+f(W +Y ′)

]
≤ E

Y,Y ′,
U∼Un

[
(−1)f(U+Y)+f(U+Y ′)

]
+ 2γ.

Finally, observing that (U + Y,U + Y ′) is identically distributed to
(U,U + Y + Y ′), we have

E
Y,Y ′,
U∼Un

[
(−1)f(U+Y)+f(U+Y ′)

]
= E

Y,Y ′,
U∼Un

[
(−1)f(U)+f(U+Y +Y ′)

]
≤ imbalance(f)2 + δ2,

where the last inequality follows from Lemma 2.14 and the fact that
Y + Y ′ is (δ2)-biased. In summary, we have shown that

|E[f(W + Y)] − E[f(Un)]|

≤ 1
2 ·
∣∣∣∣ EW,Y

[
(−1)f(W +Y)

]∣∣∣∣+ 1
2 · imbalance(f)

≤ 1
2 ·
√

imbalance(f)2 + δ2 + 2γ + 1
2 · imbalance(f)

≤ imbalance(f) + δ

2 +
√
γ

2 .

Now we move on to the case that f is significantly imbalanced. In
this case, W alone (rather than W + Y) already fools f .

Lemma 2.16 (Fooling imbalanced functions). Let F be any class of
functions f : Fn

2 → F2. Suppose W fools ∂F with error γ. Then W fools
each f ∈ F with error γ · imbalance(f)−1.

Proof. Let U and U ′ be two independent copies of Un. Then

imbalance(f) ·
∣∣∣E [(−1)f(W)

]
− E

[
(−1)f(U)

]∣∣∣
=
∣∣∣E [(−1)f(W)+f(U)

]
− E

[
(−1)f(U)+f(U ′)

]∣∣∣
=
∣∣∣E [(−1)f(W)+f(W +U)

]
− E

[
(−1)f(U ′)+f(U ′+U)

]∣∣∣
≤ 2γ,

where the last inequality is due to the fact that for any fixing of U , the
function ∂Uf is fooled by W .

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.4. Viola’s Generator for Low-degree F2-polynomials 49

Now we combine the two cases to complete the proof of the reduction.

Proof of Lemma 2.13. For any f ∈ F and any fixing of Y , the function
f+Y (x) def= f(x + Y) is in F , and imbalance(f+Y) = imbalance(f).
Therefore, Lemma 2.16 implies that W + Y fools f with error γ ·
imbalance(f)−1. Combining with Lemma 2.15 shows that W + Y fools
f with error

min
{
γ · imbalance(f)−1, imbalance(f) +

√
γ/2 + δ/2

}
≤
√

2γ + δ/2,

where the last inequality follows by case analysis based on whether
imbalance(f) ≤

√
γ/2.

2.4.4 Inductive analysis of low-degree polynomials

Proof of Theorem 2.12. By Lemma 2.13 and Observation 2.2, for every
i, the random variable

∑i
j=1 Yj fools degree-i polynomials with error εi,

where ε1 = δ/2 and εi+1 =
√

2εi + δ/2. Since δ ≤ 1/2, we get εi+1 ≤√
2εi +

√
δ/2/2. Since εi ≥ δ/2, we get εi+1 ≤ (

√
2 + 1/2) · √

εi ≤ 2√
εi.

It follows that
εd ≤ 4 · (δ/2)1/2d−1

.

The seed length bound follows by choosing δ = 2 · (ε/4)2d−1 and using
the small-bias generator construction of Theorem 2.4.

When d is constant, the seed length in Theorem 2.12 is optimal.
However, the generator becomes trivial when d = Θ(logn).

Open Problem 2.2 (PRGs for logarithmic-degree polynomials). Design
an explicit nontrivial PRG for F2-polynomials of degree logn.

Open Problem 2.2 is closely related to the challenge of proving
better correlation bounds against polynomials; see Viola’s survey [246].

2.4.5 Application: Width-2 branching programs that read several
bits at a time

Studying low-degree polynomials is natural enough from a mathematical
perspective, but what about from a computing perspective? The reader

The version of record is available at: http://dx.doi.org/10.1561/0400000109

50 Limited Independence and Small-Bias Generators

might find it strange to think of polynomials as a computational model.
However, we will now show that PRGs for low-degree polynomials
imply PRGs for other models of a more “computational” nature, which
demonstrates the importance of Viola’s PRG. In particular, we can fool
compositions with juntas, provided that the outer function has bounded
Fourier L1 norm.

Definition 2.11 (Compositions with juntas). Let f : {0, 1}r → R. For
each n, d ∈ N, we define f ◦ JUNTAn,d to be the class of all functions
g : {0, 1}n → R of the form

g(x) = f(ϕ1(x), . . . , ϕr(x)),

where each ϕi is a d-junta on n bits. If F is a class of functions
f : {0, 1}r → R, then we define F ◦ JUNTAn,d =

⋃
f∈F f ◦ JUNTAn,d.

Lemma 2.17 (PRGs for compositions with juntas). Suppose X is a
distribution over {0, 1}n that fools degree-d polynomials over Fn

2 with
error ε, and let f : {0, 1}r → R. Then X fools f ◦ JUNTAn,d with error
2ε · L1(f).

Proof. If g(x) = f(ϕ1(x), . . . , ϕr(x)), then by the Fourier expansion of
f , we have

g(x) =
∑

S⊆[r]
f̂(S) · (−1)

∑
i∈S

ϕi(x).

The summation in the exponent may be performed modulo 2. If each
ϕi is a d-junta, then each ϕi can be computed by a degree-d polynomial
over F2, hence

∑
i∈S ϕi(x) mod 2 is also a degree-d polynomial over F2.

Therefore, X fools (−1)
∑

i∈S
ϕi(x) with error 2ε. The lemma follows by

the Triangle Inequality for PRG Errors.

Probably the most interesting example is when we take F to be the
class of width-2 length-m branching programs on 2m input bits (see
Definition 2.8). Then F ◦ JUNTAn,d is precisely the class of functions
computable by a variant model of width-2 length-m branching programs
in which the program reads d bits at a time, i.e., each vertex v is labeled
by a set of indices Jv ⊆ [n] with |Jv| = d and has 2d outgoing edges

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.5. Analysis Technique: Sandwiching Approximators 51

corresponding to the possible values of the input substring xJv . For this
model, Theorem 2.12 and Lemmas 2.11 and 2.17 imply a seed length
of O(d · logn + d · 2d · log(m/ε)). This was shown by Bogdanov et al.
[29]. (They assume that the program is “oblivious” in the sense that
Ju = Jv if u and v are in the same layer, but such an assumption is not
necessary: because of the way we defined F , a program in F can query
a distinct variable at each of its 2m vertices.)

2.5 Analysis Technique: Sandwiching Approximators

2.5.1 The sandwiching lemma

Suppose we wish to show that a distribution X fools some class F . A
common approach has two steps:

1. Prove that X fools some “simpler” class Fsimp.

2. Prove a “transfer theorem,” saying that every distribution that
fools Fsimp also fools F (possibly with some loss in the error
parameter).

The second step requires showing that Fsimp can “simulate” F in some
sense. For example, several times, we have shown that every function
in some class of interest in can be written as a linear combination of
“simpler” functions:

• Every depth-k decision tree can be written as a sum of k-juntas
(Proposition 2.1).

• Every Boolean function can be written as a linear combination of
parity functions (Proposition 2.4).

• Every width-2 branching program that reads several bits at a time
can be written as a linear combination of low-degree polynomials
over F2 (Section 2.4.5).

In each case, the Triangle Inequality for PRG Errors gives us our desired
transfer theorem. (The final error depends on the magnitude of the
coefficients in the linear combination.) In this section, we present a

The version of record is available at: http://dx.doi.org/10.1561/0400000109

52 Limited Independence and Small-Bias Generators

second method for proving a “transfer theorem” stating that every
distribution that fools Fsimp also fools F .

Suppose X is a distribution that fools Fsimp, and suppose that Fsimp
approximately simulates F in some sense. For example, suppose that
for every f ∈ F , there is an f ′ ∈ Fsimp such that E[|f − f ′|] is small.
Unfortunately, it does not immediately follow that X fools F : although
f and f ′ behave similarly under the uniform distribution, it isn’t clear
whether they behave similarly under the pseudorandom distribution X.
A technique for getting around this issue is to establish a stronger form
of approximation called sandwiching.

Definition 2.12 (Sandwiching). Let f, fℓ, fu : {0, 1}n → R. We say that
f is δ-sandwiched between fℓ and fu if fℓ ≤ f ≤ fu and E[fu − fℓ] ≤ δ.
In this case, we refer to fℓ and fu as “sandwichers” or “sandwiching
approximators” for f .

Lemma 2.18 (Sandwiching Lemma). Suppose f is δ-sandwiched between
fℓ and fu, and suppose X fools fℓ and fu with error ε. Then X fools f
with error ε+ δ.

Proof.

E[f(X)] ≤ E[fu(X)] ≤ E[fu] + ε ≤ E[f] + ε+ δ

E[f(X)] ≥ E[fℓ(X)] ≥ E[fℓ] − ε ≥ E[f] − ε− δ.

Thus, we have two techniques for showing that every distribution
that fools one class Fsimp also fools another class F : the Triangle
Inequality for PRG Errors and the Sandwiching Lemma. It turns out
that these are the only two techniques that are ever necessary. That is,
if every distribution that fools Fsimp also fools F , then that fact can
be proven by sandwiching each f ∈ F between linear combinations of
functions in Fsimp. See Appendix A for details.

2.5.2 Using k-wise uniform generators to fool size-m decision trees

To illustrate the sandwiching technique, let us return to the decision
tree model. Recall that we showed that k-wise uniform generators fool

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.5. Analysis Technique: Sandwiching Approximators 53

depth-k decision trees (Proposition 2.1), and then later we showed that
small-bias generators fool size-m decision trees (Proposition 2.5). The
latter model generalizes the former by taking m = 2k. We now show
that k-wise uniform generators also fool bounded-size decision trees.

Proposition 2.7 (Limited independence fools bounded-size decision trees).
If X is a k-wise uniform distribution, then X fools size-m decision trees
with error m · 2−k.

Proof. Let f be a size-m decision tree. Define a depth-k decision tree
fℓ by starting with f and replacing each internal node at depth exactly
k with a leaf labeled 0 (and deleting all of its descendants). Similarly,
define fu by replacing each internal node at depth k with a leaf labeled
1. Let us show that f is δ-sandwiched between fℓ and fu, for δ = m ·2−k.

Clearly fℓ ≤ f ≤ fu. For each “new” leaf u of fℓ or fu (i.e., u was
not a leaf in f), the probability of reaching u on a uniform random input
is precisely 2−k. The number of new leaves is the number of internal
nodes of f at depth k, which is at most m. Therefore, by the union
bound, E[fu − fℓ] ≤ m · 2−k.

The Sandwiching Lemma completes the proof, because X fools fℓ

and fu with error 0 (see Section 2.1.3).

Proposition 2.7 implies that using k-wise uniform generators, we
can ε-fool size-m decision trees using a seed of length O(log(m/ε) ·
logn). This seed length is inferior to the seed length that we obtained
previously using small-bias generators, which was O(log(mn/ε)) (see
Proposition 2.5). However, sometimes it is useful to understand the effect
of specific classes of distributions, such as k-wise uniform distributions,
on a given model of computation.

2.5.3 Small-bias distributions fool read-once AC0

For a more sophisticated example of a sandwiching argument, let us con-
sider “AC0 circuits,” i.e., bounded-depth Boolean circuits of unbounded
fan-in.

Definition 2.13 (AC0 circuits). An AC0 circuit is a directed acyclic
graph where every input node is labeled by a literal (xi or ¬xi) or a

The version of record is available at: http://dx.doi.org/10.1561/0400000109

54 Limited Independence and Small-Bias Generators

constant (0 or 1), every internal node (“gate”) is labeled by ∧ or ∨, and
there is exactly one output node. The in-degrees (also called fan-ins)
of ∧ or ∨ gates are not bounded. The size of the circuit is the total
number of its ∧ and ∨ gates. The depth of the circuit is the length of
its longest directed path.

Traditionally, the expression “AC0” refers to the complexity class
consisting of all languages that can be decided by constant-depth poly-
nomial size families of unbounded-fan-in circuits. As suggested by Defini-
tion 2.13, we will instead adopt the convenient convention of speaking of
“size-m depth-d AC0 circuits,” where m is not necessarily poly(n) and
d is not necessarily O(1). That being said, m = poly(n) and d = O(1)
is the parameter regime in which we are most interested.

Later, we will present PRGs for general AC0 circuits (see Sec-
tions 2.6, 4.2, 5.1 and 5.3). For now, let us focus on fooling the read-
once version of AC0, a substantially easier problem. A read-once AC0

formula is an AC0 circuit in which every variable appears at most once
and the underlying graph structure is a tree. See Figure 2.4.

∨

∧ ∧∧

∨ ∨∨ ∨ ∨ ∨

x3 ¬x12 ¬x4 ¬x14x8 ¬x11 ¬x2 ¬x1 x5 ¬x13 ¬x9 x6x10x7

Figure 2.4: A depth-3 read-once AC0 formula.

Theorem 2.19 (Small-bias fools read-once AC0). For every n, d ∈ N
and ε > 0 with d ≥ 2, there is a value δ = exp(−Θ(logn)d−1 · log(1/ε))
such that if X is a δ-biased distribution over {0, 1}n, then X fools
depth-d read-once AC0 formulas with error ε. Consequently, there is an
explicit ε-PRG for depth-d read-once AC0 formulas with seed length
O(logn)d−1 · log(1/ε).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.5. Analysis Technique: Sandwiching Approximators 55

When d = 2 (read-once CNFs and DNFs) and ε is constant, the seed
length of Theorem 2.19 is O(logn), which is optimal. For larger d or
smaller ε, the seed length is not optimal: the optimal seed length would
be O(log(n/ε)), independent of depth (note we always have d ≤ n).
That being said, a benefit of Theorem 2.19 is the simplicity of the PRG
itself. See Section 5.5 for a discussion of more sophisticated PRGs for
read-once AC0 with better seed lengths.

The case d = 2 of Theorem 2.19 was first explicitly stated and
proven by De et al. [75]. It also readily follows [151, Appendix A] from
earlier work by Chari et al. [44]. It seems that the case d > 2 does not
appear in the literature, but the argument for d > 2 is a straightforward
generalization of the argument for d = 2.

The proof of Theorem 2.19 works by repeatedly applying the follow-
ing lemma.

Lemma 2.20 (PRG for depth d =⇒ PRG for depth d + 1). Suppose
a distribution X fools depth-d read-once AC0 formulas with error ε,
where d ≥ 1. Then X fools depth-(d+ 1) read-once AC0 formulas with
error exp

(
−Ω

(
log(1/ε)

log n

))
.

Proof. Let f be a depth-(d+ 1) read-once AC0 formula. By merging
gates and introducing dummy gates of fan-in 1, we may assume that f
alternates between layers of ∧ gates and layers of ∨ gates. Assume for
now that the output gate of f is ∨, so we can write f(x) = f1(x) ∨ · · · ∨
fm(x). Define the weight of such a formula to be the expected number of
terms satisfied on a uniform random input, i.e., Weight(f) =

∑m
i=1 E[fi].

As a first step, we will show that for every even positive integer k, the
distribution X fools f with error

ε · (2m)k + (e · Weight(f)/k)k. (2.6)

To prove it, let us use the inclusion-exclusion principle to compute f(x).
For each positive integer r, define ψr : {0, 1}n → R by

ψr(x) =
r∑

t=1
(−1)t−1 ∑

S⊆[m]
|S|=t

∧
i∈S

fi(x).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

56 Limited Independence and Small-Bias Generators

Since k is even, ψk ≤ f ≤ ψk−1, and we claim that

E[ψk−1 − ψk] ≤ (e · Weight(f)/k)k. (2.7)

Indeed, if k > m, then Equation (2.7) holds because ψk−1 ≡ ψk ≡ f ,
and meanwhile if k ≤ m, then

E[ψk−1 − ψk] =
∑

S⊆[m]
|S|=k

∏
i∈S

E[fi] ≤
(
m

k

)
·
(∑m

i=1 E[fi]
m

)k

≤
(
em

k

)k

·
(Weight(f)

m

)k

= (e · Weight(f)/k)k.

(The first inequality follows from Maclaurin’s inequality.) Thus, f is
sandwiched between ψk and ψk−1. Furthermore, since the top gate
of each fi is ∧, each function

∧
i∈S fi(x) is a depth-d read-once AC0

formula. Therefore, by the Triangle Inequality for PRG Errors, X fools
ψr with error δr where

δr = ε ·
r∑

t=1

(
m

t

)
= ε ·

(
m+ r − 1

r

)
≤ ε · (m+ r)r.

Since ψr = ψm for all r ≥ m, it follows that X fools ψr with error
ε · (2m)r. Therefore, by the sandwiching lemma (Lemma 2.18), X fools
f with the error given by Equation (2.6).

Now let
k∗ = log(1/ε)

2 log(2m) ,

or to be more precise, let k∗ be the smallest even positive integer that
is at least the above value. We split into two cases. For the first case,
suppose Weight(f) ≤ k∗/(2e). Then we achieve error

ε · (2m)k∗ + 2−k∗ = exp
(

−Ω
(log(1/ε)

logm

))
.

Since f is read-once, m ≤ n, so this error value is sufficient to establish
the lemma. For the second case, suppose Weight(f) > k∗/(2e). Let

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.5. Analysis Technique: Sandwiching Approximators 57

f ′(x) = f1(x) ∨ · · · ∨ fm′(x), where m′ is the largest value such that
Weight(f ′) ≤ k∗/(2e). Then f ′ ≤ f ≤ 1, and

E[1 − f ′] =
m′∏
i=1

(1 − E[fi]) ≤ e− Weight(f ′) ≤ e−(k∗
2e

−1).

Therefore, f is δ-sandwiched between f ′ and 1, where

δ = exp
(

−Ω
(log(1/ε)

logm

))
.

Furthermore, X fools f ′ with error

ε · (2m′)k∗ + 2−k∗ ≤ ε · (2m)k∗ + 2−k∗ = exp
(

−Ω
(log(1/ε)

logm

))
,

and obviously X fools 1 with error 0, so another application of the
sandwiching lemma completes the proof in this case.

Finally, suppose the output gate of f is ∧. Then ¬f can be computed
by a depth-(d + 1) read-once formula where the output gate is ∨.
Therefore, X fools ¬f , and hence it fools f with the same error.

Remark 2.5. More generally, we can consider any class F of Boolean
functions on n bits. (The interesting case is when F is not closed
under complement.) Let AND ⋄ F denote the “read-once composition”
of AND with F , i.e., the class of functions of the form f(x) =

∧t
i=1 fi(x)

where f1, . . . , ft ∈ F and f1, . . . , ft depend on disjoint parts of the
input. Define OR ⋄ F similarly. The proof of Lemma 2.20 shows that
if X fools AND ⋄ F with error ε, then X fools OR ⋄ F with error
exp(−Ω(log(1/ε)/ logn)).

Proof of Theorem 2.19. By Proposition 2.6, if f is a depth-1 read-once
AC0 formula, then either L1(f) ≤ 1 or L1(¬f) ≤ 1. Either way, every
δ-biased distribution fools f with error δ. This is the base case of an
induction on d, where Lemma 2.20 is the inductive step.

We can also consider read-k depth-d AC0 circuits for k > 1. Servedio
and Tan studied the case d = 2 [210], improving on previous work by
Klivans et al. [143]. Both works show that small-bias distributions fool
read-k CNFs and DNFs; in the case of polynomial-size DNFs, Servedio
and Tan’s analysis [210] leads to a seed length of poly(k, log(1/ε)) · logn.
The case of larger depth d > 2 is open.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

58 Limited Independence and Small-Bias Generators

Open Problem 2.3 (PRGs for read-twice AC0 circuits). Design an ex-
plicit PRG for read-twice depth-d AC0 circuits with a better seed length
than the state-of-the-art PRG for general depth-d AC0 circuits [166].

2.6 Braverman’s Theorem: Limited Independence Fools AC0

In Section 2.5.3, we presented a PRG for read-once AC0 formulas.
In this section, we will present a PRG for general (read-many) AC0

circuits (see Figure 2.5). In particular, we will show that every k-wise
uniform generator fools constant-depth polynomial-size AC0 circuits
for a suitable k = polylog(n). This was first conjectured by Linial and
Nisan [156]. Two decades later, it was proved to be true for depth-2
circuits by Bazzi [20] and a simpler proof of this was discovered by
Razborov [200]. Building on this line of work, Braverman [36] proved
that k-wise independence for polylogarithmic k fools AC0 circuits. The
parameters were subsequently improved by Tal [228] and Harsha and
Srinivasan [114], leading to the following.

∨

∧∧

x2 ¬x1x1 ¬x2 x3 ¬x4 x4 ¬x3

∧ ∧

∨

∧ ∧

∨

x5 ¬x6 x6 ¬x5

∧ ∧ ∧

∨

Figure 2.5: A depth-4 size-13 AC0 circuit computing the function f(x) = MAJ(x1 ⊕
x2, x3 ⊕ x4, x5 ⊕ x6).

Theorem 2.21 (Braverman’s theorem [36], [114], [228]). For every n,m, d
∈ N and ε > 0, there is a value k = (logm)O(d) · log(1/ε) such that if
X is a k-wise uniform distribution over {0, 1}n, then X fools size-m

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.6. Braverman’s Theorem: Limited Independence Fools AC0 59

depth-d AC0 circuits with error ε. Consequently, there is an explicit
ε-PRG for depth-d size-m AC0 circuits with seed length

(logm)O(d) · logn · log(1/ε).

For context, Braverman’s theorem represents neither the first nor
the best unconditional PRG for AC0 known. Instead, the advantage of
Braverman’s theorem is that k-wise uniformity is a particularly simple
and general PRG construction. That being said, the analysis is quite
nontrivial, as we will see.

We will present two proofs of Braverman’s theorem. First, we present
a novel proof that is arguably simpler4 than previous proofs, but it
does not give the best parameters – the value of k will be slightly worse
than what Theorem 2.21 promises. Then, we will present the known
state-of-the-art proof [36], [114], [228].

2.6.1 LMN polynomials

Observe that every degree-k polynomial over the reals is perfectly
fooled by k-wise uniform generators. To prove that k-wise uniform
generators fool AC0 circuits, our approach will be to show that AC0

circuits are sandwiched between degree-k polynomials. Our starting
point is the Linial-Mansour-Nisan theorem [155] and its subsequent
improvements [33], [117], [228], which show that AC0 circuits can indeed
be approximated by bounded low-degree polynomials in the L2 norm.

Theorem 2.22 (LMN polynomials [228]). Let f : {0, 1}n → {0, 1} be
computable by a size-m depth-d AC0 circuit and let γ > 0. There exists
f̃ : {0, 1}n → R such that:

1. (L2 approximation) We have∥∥∥f − f̃
∥∥∥2

2
def= E

x∼Un

[∣∣∣f(x) − f̃(x)
∣∣∣2] ≤ γ. (2.8)

2. (Low-degree) The degree of f̃ as a polynomial over R is bounded
by

deg(f̃) ≤ O(logm)d−1 · log(1/γ).
4In particular, the new proof does not require “probabilistic polynomials” for

AC0 circuits.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

60 Limited Independence and Small-Bias Generators

3. (Bounded) For every x ∈ {0, 1}n, we have∣∣∣f̃(x)
∣∣∣ ≤ 2O(log m)d−1·log(1/γ)·log log m. (2.9)

The proof of Theorem 2.22 uses random restrictions and switching
lemmas to analyze the Fourier spectrum of AC0 circuits.5 We will not
study the proof of Theorem 2.22 here. Instead, we will take Theorem 2.22
for granted, and use it to show that AC0 circuits are sandwiched by
low-degree polynomials.

2.6.2 Operations on functions with low-degree sandwichers

We begin with a couple of lemmas about sandwiching by low-degree
polynomials.

Lemma 2.23 (If f and g have low-degree sandwichers, then f + g has
low-degree sandwichers). Suppose that f : {0, 1}n → R is ε-sandwiched
by polynomials of degree k and g : {0, 1}n → R is δ-sandwiched by
polynomials of degree k. Then the sum f + g is (ε+ δ)-sandwiched by
polynomials of degree k.

We omit the simple proof.

Lemma 2.24 (If f has low-degree sandwichers and g is a bounded
low-degree polynomial, then f · g has low-degree sandwichers). Suppose
that f : {0, 1}n → R is ε-sandwiched by polynomials of degree k. Let
g : {0, 1}n → [−L,L], and let h(x) = f(x) · g(x). Then h is O(ε · L)-
sandwiched by polynomials of degree k + deg(g).

Proof. Let fℓ, fu be the sandwichers for f . Suppose first that g is [0, L]-
valued. In this case, for every x ∈ {0, 1}n,

fℓ(x) · g(x) ≤ h(x) ≤ fu(x) · g(x),

and
(fu(x) − fℓ(x)) · g(x) ≤ L · (fu(x) − fℓ(x)),

5The polynomial f̃ is defined by dropping all but the lowest-degree Fourier
coefficients of f . The bounds Equations (2.8) and (2.9) follow from a bound on the
L2 tail of f [228, Theorem 1] and a bound on the L1 growth of f [228, Theorem 37].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.6. Braverman’s Theorem: Limited Independence Fools AC0 61

showing that h is (ε · L)-sandwiched between fℓ · g and fu · g, each of
which has degree k + deg(g).

Next, suppose that g is [−L, 0]-valued. The previous argument shows
that −fg is (ε ·L)-sandwiched by polynomials of degree k+ deg(g), and
therefore so is fg by negating and swapping the sandwichers.

Finally, consider the general case that g is [−L,L]-valued. Write
g = −L+ g′, where g′ is [0, 2L]-valued. Then

h = −L · f + f · g′.

By our previous analyses, −L · f is (ε · L)-sandwiched by polynomials
of degree k, and f · g′ is (2ε · L)-sandwiched by polynomials of degree
k + deg(g′) = k + deg(g). By Lemma 2.23, it follows that h is (3ε · L)-
sandwiched by polynomials of degree k + deg(g).

2.6.3 Low-degree sandwichers for AC0 circuits

We are now prepared to show that AC0 circuits are sandwiched by
low-degree polynomials, and hence they are fooled by k-wise uniform
distributions.

Theorem 2.25 (AC0 circuits are sandwiched by low-degree polynomials).
Let m, d ∈ N and ε > 0. Every size-m depth-d AC0 circuit f is ε-
sandwiched by polynomials of degree (logm)O(d2) · log(1/ε).

By the Sandwiching Lemma, Theorem 2.25 implies Braverman’s
Theorem (Theorem 2.21), albeit with k = (logm)O(d2) · log(1/ε) instead
of k = (logm)O(d) · log(1/ε).

Proof of Theorem 2.25. We will show by induction on d that f has
ε-sandwiching polynomials of degree

(c logm)(d2−d)/2 · (log logm)d−1 · ⌈log(m/ε)⌉

for a suitable constant c. First, consider the base case d = 1, and assume
without loss of generality that f is an AND of m literals.

• If m < log(1/ε), then f can be computed exactly by a polynomial
of degree m, so we are done.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

62 Limited Independence and Small-Bias Generators

• If m ≥ log(1/ε), then our upper sandwicher is the product of the
first ⌈log(1/ε)⌉ literals and our lower sandwicher is the constant
0 function.

Now, for the inductive step, suppose f has depth d > 1. Assume without
loss of generality that the top gate of f is OR, say f =

∨m
i=1 fi. We

reason similarly to Bazzi [20] and Razborov [200]. For each i ∈ [m], let
gi =

∧i−1
j=1(¬fi), so that

f =
m∑

i=1
fi · gi.

Each function gi can be computed by a size-m depth-d AC0 circuit; let
g̃i be the corresponding polynomial approximation from Theorem 2.22
with error parameter γ = ε/(2m3). We define

h =
m∑

i=1
fi · g̃i

fℓ = f − (f − h)2 (2.10)

fu = f + (f − h)2 ·
((

m∑
i=1

fi

)
− f

)
. (2.11)

The plan is, we will show that f is sandwiched between fℓ and fu,
and then we will use our induction hypothesis to show that fℓ and fu

are sandwiched by low-degree polynomials. Consequently, f itself is
sandwiched by low-degree polynomials.

From the definitions, clearly fℓ ≤ f ≤ fu. Furthermore,

E[fu − fℓ] = E
[
(f − h)2 ·

(
1 − f +

m∑
i=1

fi

)]
≤ m · E[(f − h)2]

= m · E

(m∑
i=1

fi · (gi − g̃i)
)2

≤ m2 ·
m∑

i=1
E[f2

i · (gi − g̃i)2]

≤ m3 · γ = ε/2.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.6. Braverman’s Theorem: Limited Independence Fools AC0 63

Now we turn to showing that fℓ and fu are themselves sandwiched by
low-degree polynomials. For the first step, we claim that

fℓ = 1 − (1 − h)2 (2.12)

fu = 1 + (1 − h)2 ·
((

m∑
i=1

fi

)
− 1

)
. (2.13)

Indeed, when f(x) = 1, this is clear, since we have simply substituted
1 for each appearance of f in Equations (2.10) and (2.11). Meanwhile,
when f(x) = 0, Equations (2.12) and (2.13) still hold, because fi(x) = 0
for every i and therefore

∑m
i=1 fi(x) = 0 and h(x) = 0.

Next, we will plug the definition of h into Equations (2.12) and (2.13)
and expand. For convenience, define f0 = g̃0 = 1. That way, we get

fℓ =
m∑

i=0

m∑
j=0

ci,j · fi · fj · g̃i · g̃j

fu =
m∑

i=0

m∑
j=0

m∑
k=0

ci,j,k · fi · fj · fk · g̃j · g̃k,

where |ci,j | ≤ 1 and |ci,j,k| ≤ 1. For simplicity, let us focus on a single
term from the expansion of fu, namely a term of the form ci,j,k ·fi ·fj ·fk ·
g̃j · g̃k. By Equation (2.9), for every x, we have |ci,j,k · g̃j(x) · g̃k(x)| ≤ L

where
L = 2O(log m)d−1·log(m/ε)·log log m.

Now, each subcircuit fi has an AND gate on top, so the product fi ·fj ·fk

can be computed by a size-m depth-(d− 1) AC0 circuit. Therefore, by
induction, for every δ > 0, the product fi · fj · fk is δ-sandwiched by
polynomials of degree D where

D = (c logm)((d−1)2−(d−1))/2 · (log logm)d−2 · ⌈log(m/δ)⌉.

We select δ = Θ(ε
Lm3). That way, Lemma 2.24 ensures that the term

ci,j,k ·fi ·fj ·fk · g̃j · g̃k is
(

ε
4(m+1)3

)
-sandwiched by polynomials of degree

D+deg(g̃j · g̃k). Therefore, by Lemma 2.23, fu as a whole (and similarly
fℓ as well) is (ε/4)-sandwiched by polynomials of degree D+deg(g̃j · g̃k).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

64 Limited Independence and Small-Bias Generators

Consequently, f is ε-sandwiched by polynomials of degree D+deg(g̃j ·g̃k).
All that remains is to simplify the degree bound:

D + deg(g̃j · g̃k)

= (c logm)((d−1)2−(d−1))/2 · (log logm)d−2 · ⌈log(m/δ)⌉
+O(logm)d−1 · log(1/γ)

= (c logm)((d−1)2−(d−1))/2 ·O(logm)d−1 · (log logm)d−1 · log(m/ε)

≤ (c logm)(d2−d)/2 · (log logm)d−1 · ⌈log(m/ε)⌉,

provided that we choose the constant c large enough. (Note that
(d−1)2−(d−1)

2 + d− 1 = d2−d
2 .)

2.6.4 Improved parameters via probabilistic polynomials

So far, we have shown that k-wise uniform generators fool size-m depth-
d AC0 circuits where k = (logm)O(d2) · log(1/ε). Next, we will show
how to improve the exponent from O(d2) to O(d).6 The improvement
relies on a line of work constructing probabilistic real polynomials for
AC0 circuits [23], [36], [114], [230], starting with two independent
papers by Beigel et al. [23] and Tarui [230] (see also, e.g., work by
Razborov [198], Smolensky [223], and Toda and Ogiwara [231]). These
works show that for every AC0 circuit f , there is a distribution F over
low-degree polynomials such that for each fixed input x ∈ {0, 1}n, with
high probability over f̃ ∼ F , we have the exact equality f̃(x) = f(x).
In our setting, we will actually be thinking of the input x as random,
which allows us to fix some f̃ ∈ Supp(F) that agrees with f with high
probability over the choice of input. Furthermore, even in the “bad case”
that f(x) ̸= f̃(x), the constructions still have some guarantees. The
best parameters known are achieved by Harsha and Srinivasan [114],
who prove the following:

Theorem 2.26 (BRS-Tarui polynomials [114]). Let f : {0, 1}n → {0, 1}
be computable by a depth-d size-m AC0 circuit, let δ > 0, and let D

6Note that for certain small values of d such as d = 3, the parameters from the
first proof are actually superior to the parameters from the second proof. We thank
Avishay Tal for pointing this out (personal communication).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.6. Braverman’s Theorem: Limited Independence Fools AC0 65

be a distribution over {0, 1}n. There exist a polynomial f̃ : {0, 1}n → R
and an “error function” E : {0, 1}n → {0, 1} such that

• E[E(D)] ≤ δ, and if E(x) = 0, then f(x) = f̃(x). (Hence,
Prx∼D

[
f(x) ̸= f̃(x)

]
≤ δ.)

• deg(f̃) ≤ (logm)O(d) log(1/δ).

•
∥∥f̃∥∥∞

def= maxx

∣∣f̃(x)
∣∣ satisfies the bound∥∥f̃∥∥∞ ≤ exp

(
(logm)O(d) log(1/δ)

)
.

• E can be computed by an AC0 circuit of size7 mO(1) and depth
d+O(1).

Note that Theorem 2.26 provides a low-degree approximation over
an arbitrary input distribution, unlike LMN polynomials (Theorem 2.22)
which are specific to the uniform distribution. The constructions of
probabilistic polynomials for AC0 [23], [36], [114], [230] rely on Valiant
and Vazirani’s isolation lemma [239].

Braverman’s original proof that k-wise uniformity fools AC0 cir-
cuits for polylogarithmic k was based on a clever combination of LMN
polynomials and BRS-Tarui polynomials. We present (a version of) that
proof below to prove Theorem 2.21.

Lemma 2.27 (Sandwichers for AC0 with better parameters). Let f : {0,
1}n → {0, 1} be computable by a depth-d size-m AC0 circuit, let
δ > 0, and let D be a distribution over {0, 1}n. There exist polyno-
mials pℓ, pu : {0, 1}n → R of degree (logm)O(d) log(1/δ) and a function
E : {0, 1}n → {0, 1} such that f is δ-sandwiched between pℓ − E and
pu + E, and furthermore,

E[E(Un)] ≤ δ and E[E(D)] ≤ δ. (2.14)

7In Harsha and Srinivasan’s work [114], the size bound is stated as
(m log(1/δ))O(1). We may assume without loss of generality that log(1/δ) < m,
because f can be computed exactly by a degree-m polynomial (namely its Fourier
expansion).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

66 Limited Independence and Small-Bias Generators

To be clear, f is sandwiched between pℓ −E and pu +E with respect
to the uniform distribution (see Definition 2.12). The only part of the
conclusion that says something about the arbitrary distribution D is
the bound E[E(D)] ≤ δ.

Proof. Let D′ = 1
2(D + Un), i.e., D′ is D with probability 1/2 and

Un with probability 1/2. Let f̃ be the BRS-Tarui polynomial for f
from Theorem 2.26 and let E be the corresponding error function with
respect to the distribution D′ with error E[E(D′)] ≤ δ/24. Note that

E[E(D′)] = 1
2 E[E(D)] + 1

2 E[E(Un)] ≤ δ

24 ,

so E[E(D)] ≤ δ/12 and E[E(Un)] ≤ δ/12, proving Equation (2.14).
Recall that the error function E can be computed by an AC0 circuit

of size mO(1) and depth d + O(1) (see Theorem 2.26). Therefore, we
may apply Theorem 2.22 to get an LMN polynomial Ẽ that satisfies
∥E − Ẽ∥2

2 ≤ γ for an error parameter γ that will be specified later.
Define three more approximations to f by the formulas

ϕ = 1 − (1 − f) · (1 − E) = f ∨ E (2.15)
ϕ̃ = 1 − (1 − f̃) · (1 − Ẽ)

pu =
(
1 − (1 − f̃) · (1 − Ẽ)

)2
=
(
ϕ̃
)2
.

We must show that pu + E is an upper sandwicher for f . By a case
analysis, let us prove that the following two bounds hold (pointwise):

f ≤ pu + E (2.16)

pu ≤ f + 2E + 2 ·
(
ϕ̃− ϕ

)2
. (2.17)

• (Case 1) Suppose f(x) > E(x), i.e., E(x) = 0 and f(x) = 1.
Then f̃(x) = f(x) = 1, so pu(x) = 1 as well, which implies
Equations (2.16) and (2.17).

• (Case 2) Suppose f(x) ≤ E(x), i.e., E(x) = 1 or f(x) = 0. Then
Equation (2.16) holds because pu is non-negative. Furthermore,
ϕ(x) = E(x) in this case, so

pu(x) =
(
E(x) + ϕ̃(x) − ϕ(x)

)2
≤ 2E(x)2 + 2 ·

(
ϕ̃(x) − ϕ(x)

)2
,

which implies Equation (2.17) because E(x)2 = E(x).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

2.6. Braverman’s Theorem: Limited Independence Fools AC0 67

Now, because of the factor of 1 − E in Equation (2.15), we have the
identity ϕ = 1 − (1 − f̃) · (1 − E), so Equation (2.17) becomes

pu ≤ f + 2E + 2 ·
(
(1 − f̃) · (E − Ẽ)

)2
.

Therefore,

E[pu + E − f] ≤ 3E[E] + 2E
[(

(1 − f̃) · (E − Ẽ)
)2
]

≤ δ/4 + 2 · (1 + ∥f̃∥∞)2 · ∥E − Ẽ∥2
2

≤ δ/4 + 2 · (1 + ∥f̃∥∞)2 · γ.

By choosing γ = δ/(8 · (1 + ∥f̃∥∞)2), we get E[pu + E − f] ≤ δ/2.
Next, let us bound the degree of pu. Recall that Theorems 2.22

and 2.26 give the bounds

deg(f̃) ≤ (logm)O(d) log(1/δ)

∥f̃∥∞ ≤ exp
(
(logm)O(d) log(1/δ)

)
deg(Ẽ) ≤ O(logm)d+O(1) log(1/γ) = (logm)O(d) log(1/δ).

Therefore, deg(pu) ≤ 2 deg(f̃) + 2 deg(Ẽ) ≤ (logm)O(d) log(1/δ).
To summarize, we have shown that every size-m depth-d AC0

circuit f can be upper-sandwiched by pu + E where pu is a low-degree
polynomial and E is a Boolean function with low expectation under
both Un and D. The class of size-m depth-d AC0 circuits is closed under
complementation, so 1 − f has an upper sandwicher of the same form.
Therefore, f can be lower-sandwiched by pℓ−E′ where pℓ is a low-degree
polynomial and E′ is a Boolean function with low expectation under
both Un and D. If we use 1 − f̃ as our BRS-Tarui polynomial for 1 − f

in the above argument, then we can furthermore ensure E′ ≡ E.

Braverman’s theorem follows readily from Lemma 2.27:

Proof of Theorem 2.21. Let D be a k-wise independent distribution,
where k is the bound on the degrees of the low-degree polynomials pu

and pℓ from Lemma 2.27 with δ = ε/2. By Lemma 2.27, the circuit f is
(ε/2)-sandwiched between pℓ −E and pu +E, where E is (ε/2)-fooled by
D. Since pu and pℓ are degree-k polynomials, they are perfectly fooled
by D. Therefore, by the sandwiching lemma, f is ε-fooled by D.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

68 Limited Independence and Small-Bias Generators

Intriguingly, although the proof of Theorem 2.21 is a sandwiching
argument, the sandwichers are apparently not low-degree polynomials.
They are of the form pℓ − E and pu + E, where pℓ and pu are low-
degree polynomials, but the “error function” E does not seem to be a
low-degree polynomial. (Furthermore, the sandwichers depend on the
pseudorandom distribution D.)

In a formal sense, sandwiching polynomials are the only tool one
ever needs to prove that k-wise uniform generators fool some class
of functions (see Appendix A). However, the proof of Braverman’s
theorem demonstrates that in practice, it is wise to “think outside the
box” and consider other, more creative arguments. The technique of
designing low-complexity error indicator functions, along the lines of
Theorem 2.26, has turned out to be useful in other PRG problems [81],
[120], [171].

It is an open problem to improve the parameters of Braverman’s
theorem even further. What is the optimal k such that every k-wise
uniform generator fools depth-d size-m AC0 circuits with error ε? There
are counterexamples showing that k = Ω((logm)d−1 log(1/ε)) [163], but
that still leaves a significant gap between the lower and upper bounds.

Open Problem 2.4 (Improved parameters for Braverman’s theorem).
Show that for every m, d ∈ N and ε > 0, there exists a value

k = (logm)d+O(1) log(1/ε)

such that every k-wise uniform distribution fools depth-d size-m AC0

circuits with error ε.

Explicit PRGs for AC0 circuits with seed length (logm)d+O(1)

log(1/ε) are already known (see Section 5.3); the question is whether a
generic k-wise uniform generator does the job.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3
Recycling Random Bits

In this section, we will present a few PRG constructions based on the
paradigm of recycling random bits. In its simplest form, the idea is that
we start by sampling n/2 truly random bits X. Then we “mix in” a few
more truly random bits in some way, producing n/2 additional bits Y .
Our final output is the concatenation (X,Y).

This type of approach tends to make the most sense if there is a
“communication bottleneck” between the part of the computation that
processes X and the part of the computation that processes Y . Indeed,
our first instantiation of this paradigm will be a PRG for two-party
communication protocols in the next section.

3.1 PRGs for Two-party Communication Protocols

In this section, we will present a PRG that fools two-party interactive
communication protocols.

Definition 3.1 (Two-party communication protocol). Let n be an even
positive integer. In a two-party protocol on n bits with communication
cost m, Alice holds x ∈ {0, 1}n/2 and Bob holds y ∈ {0, 1}n/2. They
communicate interactively; in each round, the identity of the speaker

69

The version of record is available at: http://dx.doi.org/10.1561/0400000109

70 Recycling Random Bits

is a function of all the bits transmitted so far, and the content of the
message is a function of the bits transmitted and that party’s input (x
or y). After at most m bits have been transmitted in total, the protocol
terminates, and both parties output the same bit f(x, y).

Are these protocols deterministic, or are they randomized? Both, in
a sense: the protocol is deterministic after fixing x and y, but we are
thinking of x and y as random bits and seeking to replace them with
pseudorandom bits. The seed length in the following theorem, due to
Impagliazzo et al. [131], is optimal.

Theorem 3.1 ([131]). For every n,m ∈ N and every ε > 0, there is an
explicit ε-PRG for two-party protocols on n bits with communication
cost m with seed length n

2 +O(m+ log(1/ε)).

It is worth noting that the above theorem depends only on the total
cost of communication and holds regardless of the number or structure
of the rounds of communication in the protocol.

We will prove Theorem 3.1 by using one of the most useful facts
about communication protocols, which is that the leaves of a protocol
correspond to two-dimensional combinatorial rectangles. This will allow
us to reduce the task of fooling communication protocols to fooling
combinatorial rectangles, and we will achieve the latter task via known
constructions of expander graphs. We begin by discussing expander
graphs.

3.1.1 Expander graphs from a PRG perspective

Doing justice to the topic of expanders is beyond the scope of this
work. For a thorough treatment, see, e.g., Hoory et al.’s survey [123],
Goldreich’s survey [98], Lubotzky’s survey [162], or Vadhan’s monograph
[238]. That being said, let us at least review the definition.

Definition 3.2 (Spectral expanders). Let G be a regular undirected
graph on N vertices with transition probability matrix M ∈ [0, 1]N×N .
Let the eigenvalues of M be 1 = λ1 ≥ λ2 ≥ · · · ≥ λN . We say G is an
ε-spectral expander if |λi| ≤ ε for i = 2, 3, . . . , N .

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.1. PRGs for Two-party Communication Protocols 71

As mentioned earlier, the reason we are discussing expanders is so
we can use them to construct PRGs. Looking at Definition 3.2, it is not
necessarily obvious that there is any connection between expanders and
PRGs. However, it turns out that there is an alternative and equivalent
definition of expanders in the language of PRGs. We focus on the
special case that the number of vertices is a power of two, because
that’s the most natural scenario from the PRG perspective, but the
following lemma generalizes in the natural way to an arbitrary number
of vertices.

Lemma 3.2 (PRG characterization of spectral expander graphs). Let n be
an even positive integer, and let F be the class of functions f : {0, 1}n →
R of the form f(x, y) = g(x) · h(y) where g, h : {0, 1}n/2 → R satisfy
Var[g] ≤ 1 and Var[h] ≤ 1. Let G be a regular undirected graph on
the vertex set {0, 1}n/2, sample a uniform random vertex X in G, and
sample a uniform random neighbor Y of X. For every ε > 0, the
following are equivalent.

1. G is an ε-spectral expander (see Definition 3.2).

2. The distribution (X,Y) fools F with error ε.

Proof. Let M be the transition probability matrix of G. We will identify
functions mapping {0, 1}n/2 → R with column vectors in the space R2n/2

endowed with the inner product ⟨g, h⟩ = EU∼Un/2 [g(U) · h(U)] and the
norm ∥g∥ =

√
⟨g, g⟩.

(1 =⇒ 2) Fix an arbitrary f ∈ F , say f(x, y) = g(x) · h(y) where
Var[g] ≤ 1 and Var[h] ≤ 1. First, suppose E[g] = E[h] = 0. Then

|E[f(X,Y)]| = |⟨g,Mh⟩| ≤ ∥g∥ · ∥Mh∥

by the Cauchy-Schwarz inequality. Since G is regular, the all-ones vector
is an eigenvector of M with eigenvalue λ1 = 1. Since E[h] = 0, the
vector h is orthogonal to the all-ones vector. By the spectral theorem
for real symmetric matrices, it follows that h is a linear combination
of eigenvectors other than the all-ones vector, so by Definition 3.2,
∥Mh∥ ≤ ε · ∥h∥. Therefore,

|E[f(X,Y)]| ≤ ε · ∥g∥ · ∥h∥ = ε ·
√

Var[g] ·
√

Var[h] ≤ ε.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

72 Recycling Random Bits

Now for the general case, write g = E[g] + g and h = E[h] + h, so

f(x, y) = E[g] · E[h] + g(x) · h(y) + E[g] · h(y) + E[h] · g(x).

Since G is regular, each marginal distribution X and Y is uniform over
{0, 1}n/2. Therefore, E[g(X)] = E[h(Y)] = 0. Furthermore, Var[g] =
Var[g] ≤ 1 and Var[h] = Var[h] ≤ 1, so

|E[f(X,Y)] − E[f]| = |E[g(X) · h(Y)]| ≤ ε.

(2 =⇒ 1) Let g be a unit eigenvector of M with eigenvalue λ and
assume that g is not parallel to the all-ones vector. By the spectral
theorem for symmetric matrices, it follows that g is orthogonal to the
all-ones vector, i.e., E[g] = 0. Since g has unit norm as a vector, we
have Var[g] = 1. Therefore,

|λ| = |⟨Mg, g⟩| = |E[g(X) · g(Y)]| ≤ ε.

The seed length required to sample the distribution (X,Y) in
Lemma 3.2 is governed by the degree of the expander graph. There exist
explicit expanders with degree poly(1/ε):

Theorem 3.3 (Explicit expanders). For every n ∈ N and every ε > 0,
there exists an ε-spectral expander with vertex set {0, 1}n and degree
D = poly(1/ε). The expander is “strongly explicit,” i.e., given a vertex
x and a value i ∈ [D], the ith neighbor of x can be computed in time
poly(n, log(1/ε)).

To learn about various approaches for proving Theorem 3.3, see the
expository works on expander graphs mentioned previously [98], [123],
[162], [238]. In this text, we will simply take Theorem 3.3 for granted.

Theorem 3.3 translates to a seed length of n/2 + O(log(1/ε)) in
Lemma 3.2. Pushing to the extreme, a “Ramanujan graph” is an ε-
spectral expander of degree D where ε = 2

√
D − 1, which is essentially

the best possible [6], [92], [179] and which translates to a seed length
of n/2 + 2 log(1/ε) + O(1). There is a lot of work on the problems of
proving existence of and explicitly constructing Ramanujan graphs and
“near-Ramanujan” graphs [7], [25], [34], [67], [73], [93], [161], [167], [168],
[176], [177].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.1. PRGs for Two-party Communication Protocols 73

Lemma 3.2 analyzes the distribution (X,Y), where X is a uniform
random vertex in an expander and Y is a uniform random neighbor
of X. More generally, we can consider taking a random walk through
an expander graph, starting from a uniform random vertex. The pseu-
dorandomness properties of such walks have been intensively studied
in many works, including many recent works [10], [64], [71], [72], [102],
[103], [108], [217]. For an introduction to these topics, see the expository
works mentioned previously [98], [123], [162], [238].

3.1.2 Combinatorial rectangles and the Expander Mixing Lemma

One of the most famous facts about expander graphs is the Expander
Mixing Lemma. In the language of PRGs, the Expander Mixing Lemma
is the “1 =⇒ 2” direction of Lemma 3.2, specialized to the case that g
and h are Boolean-valued. That is, the Expander Mixing Lemma explains
how to use expander graphs to fool two-dimensional combinatorial
rectangles, defined next.

Definition 3.3 (Combinatorial rectangles). Let n be a multiple of d and
let f : {0, 1}n → {0, 1}. We say that f is a d-dimensional combinatorial
rectangle if there are functions f1, . . . , fd : {0, 1}n/d → {0, 1} such that

f(x(1), . . . , x(d)) =
d∏

i=1
fi(x(i)).

Lemma 3.4 (Expander Mixing Lemma). Let n be an even positive integer
and let G be an ε-spectral expander on vertex set {0, 1}n/2. Sample a
uniform random vertex X, then sample a uniform random neighbor Y
of X. Then the distribution (X,Y) fools two-dimensional combinatorial
rectangles with error ε/4.

The proof uses the following elementary bound.

Fact 3.1 (Popoviciu’s inequality on variances). Let a < b be real numbers
and let X be an [a, b]-valued random variable. Then Var[X] ≤ (b−a)2/4.

Proof of Lemma 3.4. Let f be a two-dimensional combinatorial rect-
angle, say f(x, y) = g(x) · h(y). We apply Lemma 3.2 to the functions
g/
√

Var[g] and h/
√

Var[h] (each of which has variance 1). This shows

The version of record is available at: http://dx.doi.org/10.1561/0400000109

74 Recycling Random Bits

that (X,Y) fools f with error ε ·
√

Var[g] ·
√

Var[h]. Finally, by Fact 3.1,
we have

√
Var[g] ·

√
Var[h] ≤

√
1/4 ·

√
1/4 = 1/4.

Corollary 3.5 (Optimal PRG for two-dimensional combinatorial rectangles).
For every n ∈ N and every ε > 0, there is an explicit ε-PRG for
two-dimensional combinatorial rectangles on n bits with seed length
n
2 +O(log(1/ε)).

Proof. Immediate from Lemma 3.4 and Theorem 3.3.

There is a large body of work designing PRGs for high-dimensional
combinatorial rectangles [14], [86], [105], [106], [113], [148], [154], [159],
[243]. Near-optimal constructions are known [105], [106], [148], but it is
still an open problem to get the optimal seed length.

Open Problem 3.1 (Optimal PRGs for high-dimensional combinatorial
rectangles). Design an explicit PRG for d-dimensional combinatorial
rectangles with seed length O(n/d+ log(1/ε) + log logn).

For this section, however, it suffices to focus on the two-dimensional
case. A two-dimensional combinatorial rectangle f can be computed by
a communication protocol with a particularly simple structure: Alice
computes g(x) and sends it to Bob, and then Bob computes h(x) and
multiplies. Given Corollary 3.5, we are now ready to fool general two-
party communication protocols by using the standard decomposition of
communication protocols into combinatorial rectangles.

Proof of Theorem 3.1. Without loss of generality, we may assume that
the parties always transmit exactly m bits in total. Define π : {0, 1}n →
{0, 1}m by letting π(x, y) be the sequence of bits transmitted when
Alice holds x and Bob holds y. For each possible transcript z ∈ {0, 1}m,
define functions gz, hz : {0, 1}n/2 → {0, 1} by the rule

gz(x) = 1 ⇐⇒ ∃y, π(x, y) = z

hz(y) = 1 ⇐⇒ ∃x, π(x, y) = z.

Clearly if π(x, y) = z, then gz(x) = hz(y) = 1. Conversely, we claim
that if gz(x) = hz(y) = 1, then π(x, y) = z. To see why, assume by
induction that the first i bits of π(x, y) agree with z, and without loss

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.2. The INW Generator for Standard-order ROBPs 75

of generality assume that Alice is the next speaker after those i bits
have been transmitted. Since gz(x) = 1, there is some y′ such that
π(x, y′) = z. Alice chooses which bit to speak based only on her private
input (x) and the partial transcript so far (which agrees with z). All of
this data is the same regardless of whether Bob holds y or y′. Therefore,
since Alice would transmit zi+1 if Bob held y′ (π(x, y′) = z), she must
transmit zi+1 when Bob holds y.

Since both parties output f(x, y), there is some set A ⊆ {0, 1}m

such that f(x, y) = 1 ⇐⇒ π(x, y) ∈ A. Therefore,

f(x, y) =
∑
z∈A

gz(x) · hz(y),

a linear combination of two-dimensional combinatorial rectangles. There-
fore, by the Triangle Inequality for PRG Errors, every δ-PRG for two-
dimensional combinatorial rectangles fools f with error |A|δ ≤ 2mδ.
Picking δ = 2−mε and applying Corollary 3.5 completes the proof.

3.2 The INW Generator for Standard-order ROBPs

Recall that in Section 1.5, we defined the standard-order ROBP model
(Definition 1.5). We showed that PRGs for standard-order ROBPs
can be used to simulate randomized space-bounded computation. In
this section, we will present the Impagliazzo-Nisan-Wigderson (INW)
generator [131], which is one of the most influential unconditional PRG
constructions, and we will prove that it fools standard-order ROBPs,
albeit with a non-optimal seed length.

The INW PRG is based on recycling seeds recursively. After con-
structing a PRG with output length n/2, we will use two correlated seeds
to generate two pseudorandom strings of length n/2 and concatenate
them to get a string of length n. To argue that the INW PRG works,
first we argue that two independent seeds would work well, and then we
argue that two correlated seeds is almost as good as two independent
seeds.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

76 Recycling Random Bits

3.2.1 Concatenating two independent pseudorandom strings

In this section, we show that the concatenation of two independent
pseudorandom strings is itself pseudorandom. This argument is generic
and applies to many different models of computation, not just ROBPs.

Lemma 3.6 (Concatenating independent pseudorandom strings). Let n
be an even positive integer, let f : {0, 1}n → R, and let XL, XR be
independent random variables distributed over {0, 1}n/2. Let F be the
class of all restrictions of f to n/2 bits. If XL and XR fool F with error
ε, then (XL, XR) fools f with error 2ε.

Proof. Sample U ∼ Un/2 so that XL, XR, U are mutually independent.
Then

E
XL,XR

[f(XL, XR)] = E
XL

[
E

XR

[f(XL, XR)]
]

= E
XL

[
E
U

[f(XL, U)] ± ε
]

= E
U

[
E

XL

[f(XL, U)]
]

± ε

= E[f] ± 2ε.

3.2.2 Recycling seeds using a PRG for two-dimensional rectangles

The main lemma of the INW generator allows us to double the output
length of a PRG by paying a small additive penalty in terms of the seed
length.

Lemma 3.7 (Recycling seeds for standard-order ROBPs). Let n be an
even positive integer. Suppose G : {0, 1}s → {0, 1}n/2 is an ε-PRG
for width-w length-(n/2) standard-order ROBPs. Let (YL, YR) be a
distribution over {0, 1}2s that δ-fools two-dimensional combinatorial
rectangles. Then (G(YL), G(YR)) fools width-w length-n standard-order
ROBPs with error 2ε+ wδ.

To prove Lemma 3.7, we introduce some convenient standard nota-
tion for subprograms of ROBPs.

Definition 3.4 (Subprograms of ROBPs). Let f be a standard-order
ROBP with layers V0, . . . , Vn. Let u ∈ Vi and S ⊆ Vj where i ≤ j. We let
fu→S denote the subprogram from u to S, i.e., the standard-order ROBP

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.2. The INW Generator for Standard-order ROBPs 77

on layers Vi, . . . , Vj with start vertex u and accept vertices S. We use
the shorthand fu→v = fu→{v}, f→v = fvstart→v, and fu→ = fu→Vaccept .

Proof of Lemma 3.7. Let f be a width-w length-n standard-order
ROBP. Define g : {0, 1}2s → {0, 1} by composing f with two inde-
pendent copies of G, i.e.,

g(yL, yR) = f(G(yL), G(yR)).

By Lemma 3.6, using two independent seeds fools f with error 2ε, i.e.,
|E[f] − E[g]| ≤ 2ε. Now let us compare two independent seeds to the
two correlated seeds (YL, YR). For any xL, xR ∈ {0, 1}n/2, we can write

f(xL, xR) =
∑

v∈Vn/2

f→v(xL) · fv→(xR).

Consequently, if we define gv(yL, yR) = f→v(G(yL)) · fv→(G(yR)), then

g(yL, yR) =
∑

v∈Vn/2

gv(yL, yR).

Each function gv is a two-dimensional combinatorial rectangle on 2s bits.
Therefore, (YL, YR) fools gv with error δ, so by the Triangle Inequality
for PRG Errors, (YL, YR) fools g with error wδ. Therefore,

|E[f] − E[g(YL, YR)]| ≤ 2ε+ wδ.

Remark 3.1 (ROBPs and communication protocols). The proof of
Lemma 3.7 can be understood as a special case of our analysis of commu-
nication protocols in Section 3.1. If Alice is given yL ∈ {0, 1}s and Bob is
given yR ∈ {0, 1}s, then they can compute g(yL, yR) := f(G(yL), G(yR))
using logw bits of communication. This implies that (YL, YR) fools f
by the same argument we used to prove Theorem 3.1.

Theorem 3.8 (The INW generator for standard-order ROBPs [131]). For
every n,w ∈ N and every ε > 0, there is an explicit ε-PRG for width-w
length-n standard-order ROBPs with seed length O(log(wn/ε) · logn).

Proof. Assume for simplicity that n is a power of two. Let δ = ε
wn . We

inductively construct a sequence of PRGs Gi : {0, 1}si → {0, 1}2i for
i = 0, 1, . . . , logn. We start with the trivial PRG G(y) = y where |y| = 1.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

78 Recycling Random Bits

Now let i > 0 and suppose we have constructed G1, . . . , Gi−1. The PRG
Gi uses its seed to sample YL, YR ∈ {0, 1}si−1 such that (YL, YR) fools
two-dimensional combinatorial rectangles with error δ. Then Gi outputs
(Gi−1(YL), Gi−1(YR)).

By Lemma 3.7, Gi fools width-w standard-order ROBPs with error
εi for every i, where ε0 = 0 and εi = 2εi−1 + ε

n for i > 0. This implies
that εi = (2i − 1) · ε

n for every i, and hence εlog n < ε. Meanwhile,
by Corollary 3.5, we have si = si−1 +O(log(1/δ)). Therefore, slog n =
O(log(1/δ) · logn) = O(log(wn/ε) · logn).

The seed length in Theorem 3.8 was actually already achieved by
Nisan [181] prior to Impagliazzo et al.’s work [131]. Nisan’s PRG [181]
follows a fairly similar intuition as the INW generator, but the details
are different. The INW generator has some advantages over Nisan’s
generator; most importantly, the INW generator has turned out to be
more flexible and amenable to analysis in other models. (We will see an
example in Section 3.3.)

The optimal seed length for fooling width-w length-n standard-order
ROBPs would be O(log(wn/ε)). Designing optimal or near-optimal
PRGs for standard-order ROBPs is one of the biggest open problems in
the unconditional theory of PRGs. Some of the work on this problem
focuses on the case that the width of the program is very small. In Sec-
tion 2.3.4, we saw that small-bias generators fool width-2 branching pro-
grams with seed lengthO(log(n/ε)). Explicit PRGs for width-3 standard-
order ROBPs are known with seed length Õ(logn · log(1/ε)) [171]. How-
ever, for width-4 ROBPs, no PRG constructions are known with a seed
length better than that of the INW generator.

Open Problem 3.2 (Better PRGs for width-4 ROBPs). Design an explicit
0.1-PRG for width-4 length-n standard-order ROBPs with seed length
o(log2 n).

A candidate PRG for ROBPs, suggested by Reingold and Vad-
han [151], [172], is to take a sum (i.e., bitwise XOR) of a few independent
small-bias distributions. Recall Viola’s proof that a sum of d small-bias
distributions fools degree-d polynomials over F2 (see Section 2.4). Per-
haps a similar PRG can work for constant-width ROBPs.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.3. The BRRY Generator for Standard-order Regular ROBPs 79

Open Problem 3.3 (ROBPs and sums of small-bias distributions). Prove
or disprove the suggestion that a sum of O(1) small-bias distributions
fools constant-width standard-order ROBPs with near-logarithmic seed
length.

Amazingly, it is consistent with current knowledge that simply
summing two small-bias distributions fools polynomial-width standard-
order ROBPs with optimal seed length O(log(n/ε)).

Due to the difficulty of constructing improved PRGs, much of the
recent research on pseudorandomness for ROBPs has focused on con-
structing relaxations of PRGs such as HSGs and WPRGs (defined in
Section 1.6) [37], [52]–[54], [70], [105], [124], [128], [193], [220]. Another
line of work seeks PRGs for restricted classes of ROBPs; we will discuss
an example in the next section.

3.3 The BRRY Generator for Standard-order Regular ROBPs

As discussed in the previous section, it is still an open problem to design
an explicit PRG for constant-width standard-order ROBPs with seed
length o(log2 n). However, we can get a better seed length for many
interesting special cases, including regular programs. A standard-order
ROBP is called regular if every vertex of the program (except those in
the first layer) has in-degree 2; see Figure 3.1.

3.3.1 Reduction from the general case to the regular case

Before presenting the PRG for regular programs, let us discuss the
motivation behind trying to fool this particular class of branching
programs. One compelling reason to study regular programs is that
there is a reduction from the general case to the regular case. We will
prove the following version of this reduction, which is a special case
of a recent result by Lee et al. [150] and an improvement over prior
reductions [30], [203].

Proposition 3.1 (Regular programs can simulate non-regular programs).
Let n,w ∈ N and let f : {0, 1}n → {0, 1}. If f can be computed by
a standard-order ROBP of width w, then f can be computed by a
standard-order regular ROBP of width O(wn).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

80 Recycling Random Bits

vstart reject

accept

reject

accept

0

x1

1

0

1

1

0

1

0

0

x3

1

0

1

1

0

1

0

0

x2

0

1
0

1

0

1

0

1

0

x4

0

1
0

1

0

1

0

1

Figure 3.1: Let n be an even positive integer. The function f(x) = x1x2 ⊕ x3x4 ⊕
· · · ⊕ xn−1xn can be computed by a width-4 standard-order regular ROBP. The case
n = 4 is shown above.

Proof. We will make the layers regular one at a time, starting at the
beginning of the program and finishing at the end. To be precise, we will
show by induction on i ∈ {0, . . . , n} that there exists a standard-order
ROBP gi with layers V i

0 , . . . , V
i

n such that the following hold.

1. The program gi computes the function f .

2. Every vertex in V i
1 ∪ · · · ∪ V i

i has precisely two incoming edges.

3. We have |V i
0 | = |V i

1 | = · · · = |V i
i | ≤ w · (i+ 1).

4. We have |V i
i+1| = |V i

i+2| = · · · = |V i
n| = w.

In the base case i = 0, this is trivial, because we can take g0 to be the
width-w standard-order ROBP computing f . Now, for the inductive
step, let i ∈ [n], assume that we have constructed gi−1, and let us
modify it to construct gi.

For each vertex v ∈ V i−1
i , let ev be the number of edges leading into

v. To construct gi, we replace v with a collection Sv of ⌈ev/2⌉ vertices.
We distribute the incoming edges of v among the vertices in Sv in such

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.3. The BRRY Generator for Standard-order Regular ROBPs 81

a way that each has at most two incoming edges, and we duplicate the
outgoing edges of v at each vertex in Sv.

Due to rounding, each set Sv might have one vertex that only has
one incoming edge at this point. To deal with these “leftover vertices,”
observe that the total number of edges leading into V i−1

i (i.e.,
∑

v ev)
is even, so the total number of leftover vertices must also be even. We
can therefore introduce dummy vertices in V i

0 , V
i

1 , . . . , V
i

i−1 with dummy
outgoing edges in such a way that every vertex in V i

1 ∪ · · · ∪ V i
i has

exactly two incoming edges.
By this construction, we have

|V i
i | =

∑
v∈V i−1

i

⌈ev/2⌉ ≤
∑

v∈V i−1
i

(ev/2 + 1)

= |V i−1
i | + |V i−1

i−1 |
≤ w + w · i
= w · (i+ 1).

Furthermore, the fact that every vertex in V i
1 ∪ · · · ∪ V i

i has exactly two
incoming edges implies that |V i

0 | = · · · = |V i
i |.

3.3.2 Improved analysis of the INW PRG for low-weight programs

Having demonstrated the importance of standard-order regular ROBPs,
we now present the following result by Braverman et al. [38], which
shows how to fool this model with a seed length of Õ(logn) in the
constant-width regime.

Theorem 3.9 (The BRRY generator for standard-order regular ROBPs
[38]). For every w, n ∈ N and ε > 0, there is an explicit ε-PRG for
width-w length-n standard-order regular ROBPs with seed length

O (logn · (logw + log logn+ log(1/ε))) .

As we will see, the PRG construction is actually the same INW gen-
erator that we discussed in Section 3.2 (albeit with different parameters).
The improvement comes from a better analysis.

For intuition, let us briefly summarize the INW analysis that we seek
to improve (see Section 3.2). In each round of the INW construction,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

82 Recycling Random Bits

we use a δ-spectral expander to recycle the seed from the previous
round. The analysis essentially argues that we pay an error δ at each
vertex in the program, so the total error is δwn. We therefore chose
δ = ε

wn . In each of the logn rounds of the construction, the seed length
increases by an additive O(log(1/δ)), leading to the final seed length of
O(log(wn/ε) · logn).

Braverman et al. [38] had the insight that this analysis is overly
pessimistic in some cases, because it treats every vertex in the program
as “important.” In reality, sometimes a vertex v is “unimportant,” in
the sense that its two out-neighbors v[0], v[1] have almost the same
acceptance probabilities: E[fv[0]→] ≈ E[fv[1]→]. After reaching such a v,
it doesn’t matter much whether we read a high-quality random bit or a
low-quality random bit, because it doesn’t matter much whether we go
to v[0] or v[1]. Rather than contributing a penalty of δ to the overall
error bound, intuitively we might hope that the error at such a vertex
is closer to δ · |E[fv[0]→] − E[fv[1]→]|.

To formalize this intuition, we rely on a generalization of ROBPs that
output real values instead of Boolean ones, called read-once evaluation
programs (ROEPs).

Definition 3.5 (Read-once evaluation programs). A length-n standard-
order read once evaluation program (standard-order ROEP) f has the
same graph structure as a length-n standard-order ROBP, but in the
final layer, instead of a set of accept vertices Vaccept ⊆ Vn, it has a
value qv ∈ R assigned to each vertex v ∈ Vn. Each input x ∈ {0, 1}n

defines a path from vstart to a vertex v ∈ Vn as usual, which determines
the output of the program f(x) = qv. Thus, f computes a function
f : {0, 1}n → R.

Standard-order ROBPs are a special case of standard-order ROEPs,
where qv = 1 if v ∈ Vaccept and qv = 0 if v ∈ Vn \ Vaccept. If v is a
vertex in an ROEP f , then the subprogram f→v is an ROBP while the
subprogram fv→ is an ROEP. We extend the notation qv to the case
that v ̸∈ Vn by the rule qv = E[fv→], i.e., qv is the expected label of
the vertex reached by starting at v and taking a random walk to Vn.
The “importance” of a vertex in an ROEP is captured by the following
definition.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.3. The BRRY Generator for Standard-order Regular ROBPs 83

Definition 3.6 (Weight in an ROEP). Let f be a standard-order ROEP
with layers V0, . . . , Vn. Let v ∈ Vi with i < n. Let v[0] and v[1] be the
two out-neighbors of v. The weight of v, denoted Weight(v), is defined
to be

Weight(v) = |qv[0] − qv[1]|.

The weight of f is the sum of the weights of the vertices,1 i.e.,

Weight(f) =
n−1∑
i=0

∑
v∈Vi

Weight(v).

In Fourier-analytic terms, we have the following formula2 [202]:

Weight(f) = 2
n∑

i=1

∑
v∈Vi−1

∣∣∣f̂v→({i})
∣∣∣ .

Clearly, we always have Weight(v) ≤ 1 and hence Weight(f) ≤ wn.
Now let us show that the INW generator fools low-weight programs
with a shorter seed.

Theorem 3.10 (The BRRY generator for low-weight ROEPs [38]). For
every w, n,m ∈ N and ε > 0, there is an explicit ε-PRG for width-w
length-n standard-order ROEPs f that satisfy Weight(f) ≤ m with
seed length

O(logn · (log(wm/ε) + log logn)).

In the original paper, to prove Theorem 3.10, Braverman et al. [38]
analyzed the INW generator in terms of randomness extraction, similar
to the analysis of the Nisan-Zuckerman generator (see Section 3.4).
Here, we will show how to carry out the analysis more directly, using
the PRG characterization of spectral expanders (Lemma 3.2). The first
step, like the original INW analysis, is to analyze two independent seeds.
We use the following refinement of Lemma 3.6.

1In the original paper, Braverman et al. [38] considered edge weights instead of
vertex weights. The two definitions are equivalent.

2To properly interpret the formula, we should think of the variables of fv→

as being numbered i, i + 1, i + 2, . . . , n, so its Fourier coefficients are f̂v→(S) for
S ⊆ {i, i + 1, . . . , n}.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

84 Recycling Random Bits

Lemma 3.11 (Refined analysis of the concatenation of independent pseu-
dorandom strings). Let n be an even positive integer, let f : {0, 1}n → R,
and let XL, XR be independent random variables distributed over
{0, 1}n/2. Define fL : {0, 1}n/2 → R by

fL(x) = E[f(x, Un/2)],

and let FR be the class of all functions fR : {0, 1}n/2 → R of the form

fR(x) = f(a, x)

where a ∈ {0, 1}n/2. If XL fools fL with error εL and XR fools FR with
error εR, then (XL, XR) fools f with error εL + εR.

Proof. Sample U ∼ Un/2 so that XL, XR, U are mutually independent.
Then

E
XL,XR

[f(XL, XR)] = E
XL

[
E

XR

[f(XL, XR)]
]

= E
XL

[
E
U

[f(XL, U)] ± εR

]
= E

XL

[fL(XL)] ± εR

= E[fL] ± (εL + εR)
= E[f] ± (εL + εR).

Next, we argue that the outputs of a very-low-weight ROEP fall in
a small interval.

Lemma 3.12 (Low weight =⇒ bounded range). For every standard-
order ROEP f and every input x, we have

|f(x) − E[f]| ≤ Weight(f)/2.

Proof. Let vstart = v0, v1, . . . , vn be the sequence of vertices visited in
the computation f(x). Then

|f(x) − E[f]| = |qvn − qv0 | ≤
n∑

i=1
|qvi − qvi−1 | =

n∑
i=1

Weight(vi−1)/2

≤ Weight(f)/2.

Finally, we are ready to analyze two correlated seeds. Recall that
the INW generator is based on a key lemma (Lemma 3.7) that says,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.3. The BRRY Generator for Standard-order Regular ROBPs 85

if G fools width-w length-(n/2) ROBPs with error ε and (X,Y) is a
random edge in a δ-spectral expander, then (G(X), G(Y)) fools width-w
length-n ROBPs with error 2ε+wδ/4. We will prove the following more
refined lemma that allows us to avoid the critical factor of two.

Lemma 3.13 (Recycling randomness for low-weight programs). Suppose
G : {0, 1}s → {0, 1}n/2 fools every width-w length-(n/2) ROEP f with
error ε · Weight(f). Fix some δ-spectral expander on the vertex set
{0, 1}s, and sample a uniform random vertex X and a uniform random
neighbor Y . Then the distribution (G(X), G(Y)) fools every width-w
length-n ROEP f with error (ε+ wδ/4) · Weight(f).

Proof. Let f be a width-w length-n ROEP. Let WeightL and WeightR

denote the weights of the left half and right half of f , respectively, so
Weight(f) = WeightL + WeightR. Similarly to the proof of Lemma 3.7,
we can write

f(x, y) =
∑

v∈Vn/2

f→v(x) · fv→(y).

Fix a vertex v ∈ Vn/2. Define g(a) = f→v(G(a)) ∈ {0, 1} and h(b) =
fv→(G(b)) ∈ R. By Lemma 3.12, the outputs of h fall in an interval of
length Weight(fv→) = WeightR. Therefore, by Lemma 3.2 and Fact 3.1,
we have

|E[g(X) · h(Y)] − E[g]E[h]| ≤ δ ·
√

Var[g] ·
√

Var[h]

≤ δ · 1
2 · WeightR

2 .

Therefore, if we let U,U ′ be independent uniform seeds, then by the
triangle inequality,

|E[f(G(U), G(U ′))] − E[f(G(X), G(Y))]| ≤
∑

v∈Vn/2

δ · WeightR

4

= wδ · WeightR

4 .

To bound |E[f(G(U), G(U ′))]−E[f]|, we use Lemma 3.11. The function
fL that appears in that lemma is precisely the left half of f , a standard-
order ROEP of weight WeightL. Therefore, G fools fL with error ε ·

The version of record is available at: http://dx.doi.org/10.1561/0400000109

86 Recycling Random Bits

WeightL. Meanwhile, each function fR considered in that lemma is a
subprogram of the form fv→ for some v ∈ Vn/2, hence a standard-order
ROEP of weight WeightR. Therefore, G fools fR with error ε · WeightR.
Thus, Lemma 3.11 guarantees that

|E[f(G(U), G(U ′))] − E[f]| ≤ ε · WeightL +ε · WeightR .

Therefore,

|E[f(G(X), G(Y))] − E[f]| ≤ ε · Weight(f) + wδ · WeightR

4
≤ (ε+ wδ/4) · Weight(f).

Just like the original INW generator, we can use Lemma 3.13 to in-
ductively construct a PRG for width-w length-n standard-order ROEPs.
We start with a trivial PRG outputting a single bit. Then, in each of
logn steps, we use a δ-spectral expander to recycle the seed and thereby
double the output length. The final error is 1

4 ·wδ ·Weight(f) · logn. To ε-
fool standard-order ROEPs of weight at most m, we may set δ = 4ε

wm log n .
If we use a sparse expander (see Theorem 3.3), then in each step, the
seed length of our PRG increases by an additive O(log(1/δ)) bits. Thus,
the final seed length is O(logn · log(1/δ)), which is

O(logn · (log(wm/ε) + log logn)),

completing the proof of Theorem 3.10.

3.3.3 Regular programs have low weight

Recall that our original goal was to design an improved PRG for
standard-order regular ROBPs (Theorem 3.9). To apply the analysis
of low-weight programs, Braverman et al. [38] showed that width-w
standard-order regular ROBPs have weight at most O(w2).3 The original

3In Braverman et al.’s definition of a regular ROBP [38], they only allowed a
single accept vertex (|Vaccept| = 1), hence their weight bound was O(w) rather than
O(w2). For the purpose of Theorem 3.9, it makes no difference whether we allow
multiple accept vertices, because an ε-PRG for the single-accept-vertex model is also
an (εw)-PRG for the multiple-accept-vertex model. However, there are other contexts
in which bounding the number of accept vertices makes a huge difference [30], [127],
[149], [192]–[194].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.3. The BRRY Generator for Standard-order Regular ROBPs 87

proof has a “combinatorial” flavor and is based on studying a certain
pebble game. Here we present a more “analytic” interpretation of their
argument.

Lemma 3.14 (Regular programs have bounded weight). If f is a length-n
standard-order regular ROEP, then

Weight(f) ≤ 2
∑

u,v∈Vn

|qu − qv|.

In particular, if f is a width-w standard-order regular ROBP, then
Weight(f) ≤ 2w2.

Proof. Recall that for a vertex v ∈ Vi, where i ≤ n, we defined qv =
E[fv→]. For each i, let Di =

∑
u,v∈Vi

|qu − qv|. For i < n, let Weighti =∑
u∈Vi

Weight(u). For a vertex u, we let u[0] and u[1] denote the two
out-neighbors of u. If we sample X,Y ∈ {0, 1} uniformly at random,
then

1
2 Weighti +Di = 1

2
∑
u∈Vi

|qu[0] − qu[1]| +
∑

u,v∈Vi
u̸=v

|qu − qv|

=
∑
u∈Vi

E
X,Y

[
|qu[X] − qu[Y]|

]
+

∑
u,v∈Vi

u̸=v

∣∣∣∣EX [qu[X]
]

− E
Y

[
qv[Y]

]∣∣∣∣
≤
∑
u∈Vi

E
X,Y

[
|qu[X] − qu[Y]|

]
+

∑
u,v∈Vi

u̸=v

E
X,Y

[
|qu[X] − qv[Y]|

]

=
∑

u,v∈Vi

E
X,Y

[
|qu[X] − qv[Y]|

]

=
∑

u,v∈Vi+1

deg−(u) · deg−(v)
4 · |qu − qv|

= Di+1,

where the inequality follows from the triangle inequality and the fi-
nal step uses the fact that f is regular. Rearranging, we have shown
1
2 Weighti ≤ Di+1 −Di. Summing over i < n completes the proof.

Combining Lemma 3.14 and Theorem 3.10 completes the proof of
Theorem 3.9.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

88 Recycling Random Bits

Besides regular ROBPs, another well-studied class of branching
programs is permutation ROBPs, which are regular ROBPs with the
additional assumption that for each vertex v, the two incoming edges
of v have distinct labels. Braverman et al.’s paper [38] is one of a
great number of papers studying pseudorandomness for regular and
permutation ROBPs [2], [30], [38], [39], [49], [53], [54], [56], [74], [127],
[145], [149], [192]–[194], [202], [224]. We will revisit permutation ROBPs
in Section 5.2.

Let us highlight one open problem regarding these topics. As men-
tioned in Section 3.2, Meka et al. [171] designed a PRG for width-3
standard-order ROBPs with seed length Õ(logn · log(1/ε)). Roughly
speaking, their approach involves reducing to the permutation case
and then applying the INW generator. The INW generator has a
logn · log(1/ε) term in its seed length (even for permutation branching
programs [192]), so Meka et al. [171] get no improvement over Nisan’s
PRG when the error is 1/n. This motivates the following problem.

Open Problem 3.4 (Low-error PRGs for width-3 standard-order permu-
tation ROBPs). Design an explicit PRG for width-3 standard-order
permutation ROBPs with error 1/n and seed length o(log2 n).

Although Open Problem 3.4 is unsolved, we do at least have good
explicit constructions of low-error hitting set generators and weighted
PRGs for permutation ROBPs, regular ROBPs, and width-3 ROBPs [30],
[53], [54], [105], [193].

3.4 The Nisan-Zuckerman Generator for Short, Wide ROBPs

In the previous section, we focused on width-w length-n standard-order
ROBPs where w ≪ n. In this section, let us study the opposite regime,
i.e., w ≫ n. One reason to study this regime is that it corresponds to
derandomizing space-bounded algorithms that only use a little bit of
randomness in the first place.

Nisan and Zuckerman designed a PRG with optimal seed length
O(logw) for the case that n = polylogw and the error parameter
is moderate [184]. In contrast, the INW generator’s seed length is
Θ(logw · log logw) for such parameters.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.4. The Nisan-Zuckerman Generator for Short, Wide ROBPs 89

Theorem 3.15 (The Nisan-Zuckerman generator). Let ν > 0 and c ≥ 1
be constants. For all w ∈ N, there is an explicit PRG for width-w
length-(logcw) standard-order ROBPs with seed length O(logw) and
error 2− log1−ν w.

Recall that when we say the PRG is “explicit,” we mean that its
time complexity is polynomial in its output length (Definition 1.4). In
the case of Theorem 3.15, this means that the time complexity of the
PRG is polylog(w). As usual in this text, we will refrain from carefully
verifying this time complexity bound. However, it will turn out to be
useful to analyze the space complexity of the PRG. As we will see, the
Nisan-Zuckerman PRG can be computed using O(logw) bits of space.
Using the connection between randomized space-bounded algorithms
and ROBPs (Claims 1.3 and 1.4), one can show the following striking
corollary: If a decision problem can be solved by a randomized algorithm
using S bits of space and poly(S) random bits, then it can also be solved
by a deterministic algorithm using O(S) bits of space [184].

3.4.1 Randomness extractors

The proof of Theorem 3.15 uses seeded randomness extractors (intro-
duced by Nisan and Zuckerman [184]) to recycle randomness. Informally,
a randomness extractor is a tool for converting an “imperfect” source
of randomness into near-uniform random bits. The following definition
specifies our model of imperfect randomness.

Definition 3.7 (k-Source [65], [252]). The min-entropy of a distribution
X, denoted Hmin(X), is defined by

Hmin(X) = min
x∈supp(X)

log
(1

Pr[X = x]

)
.

We say that a random variable X on {0, 1}t is a k-source if Hmin(X) ≥ k,
that is, for every x ∈ {0, 1}t, Pr[X = x] ≤ 2−k.

(Min-entropy is also sometimes denoted H∞(X).) And how shall
we define extractors? It would be natural to define an extractor to
be a function Ext : {0, 1}t → {0, 1}m such that for every k-source X,
the distribution Ext(X) is statistically close to Um. Unfortunately, that

The version of record is available at: http://dx.doi.org/10.1561/0400000109

90 Recycling Random Bits

natural definition would be too strong, because of the following simple
impossibility proof.

Proposition 3.2 (Impossibility of seedless randomness extraction). Let
Ext : {0, 1}t → {0, 1} be any function. There exists a (t− 1)-source X
and a value b ∈ {0, 1} such that Pr[Ext(X) = b] = 1.

Proof. Since {0, 1}t = Ext−1(0) ∪ Ext−1(1), there is some b such that
|Ext−1(b)| ≥ 2t−1. Let X be uniformly distributed over Ext−1(b).

There are multiple approaches for evading Proposition 3.2. Our
approach will be to allow the extractor to use a small truly random
seed, in addition to the k-source X. To make this precise, let dTV(·, ·)
denote total variation distance.

Definition 3.8 (Seeded Randomness Extractor). A function Ext : {0, 1}t ×
{0, 1}d → {0, 1}m is a (k, ε)-extractor if for every k-source X,

dTV(Ext(X,Ud), Um) ≤ ε,

where Ud is independent of X.

Intuitively, extractors and PRGs both produce some type of random
bits, but they are incomparable:

• The output of an extractor fools all tests f : {0, 1}m → {0, 1} (this
is equivalent to being close to uniform in total variation distance),
whereas the output of a PRG only fools some tests.

• On the other hand, an extractor requires a seed and an imperfect
source of randomness, whereas a PRG only requires a seed.

It is also possible to view extractors as a special case of PRGs,4 but we
will not use that connection in this text.

4Let Ext : {0, 1}t × {0, 1}d → {0, 1}m be a function, sample X ∼ Ut, and let
Y = Ext(X, Ud), where X and Ud are independent. Let 2k be a positive integer and
let F be the class of functions f : {0, 1}t+m → {0, 1} of the form f(x, y) = g(x) · h(y),
where g : {0, 1}t → {0, 1}, h : {0, 1}m → {0, 1}, and E[g] = 2k−t. Then Ext is a
(k, ε)-extractor if and only if (X, Y) fools F with error ε · 2k−t [238, Proposition
6.21].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.4. The Nisan-Zuckerman Generator for Short, Wide ROBPs 91

There is a rich and beautiful theory of seeded randomness extractors
that goes beyond the scope of this text. See, for example, Nisan and
Ta-Shma’s survey [182], Shaltiel’s surveys [211], [212], or Vadhan’s
monograph [238]. We will take for granted an explicit construction due
to Guruswami et al. [109], or rather a space-optimized version by Kane
et al. [140].

Theorem 3.16 ([109], [140]). For every k ≤ t and ε > 0, there is an
(k, ε)-extractor Ext : {0, 1}t × {0, 1}d → {0, 1}m with m ≥ k/2 and
d = O(log(t/ε)). Furthermore, given (x, y, k) as input, Ext(x, y) can be
computed in space O(t+ log(1/ε)).

Toward proving Theorem 3.15, we will first study a PRG of the
following form:

G(x, y1, . . . , yℓ) = (Ext(x, y1), . . . ,Ext(x, yℓ)). (3.1)

We will then compose this PRG with itself to prove Theorem 3.15.
Here’s the intuition behind Equation (3.1). Let (X,Y1, . . . , Yℓ) be a uni-
form random seed. After the ROBP reads some prefix (Ext(X,Y1), . . . ,
Ext(X,Yi)), it only “remembers” logw bits of information about what
it has seen. We will set |X| = 3 logw. Since the ROBP only “knows”
logw bits about X, the random variable X should still have 2 logw
bits of entropy “from the ROBP’s perspective.” Therefore, Ext(X,Yi+1)
should appear nearly uniform to the ROBP.

The most elegant way to formalize this intuition is to use the concept
of conditional min-entropy introduced by Dodis et al. [79].

Definition 3.9 (Conditional min-entropy). Let X and A be jointly dis-
tributed random variables. The conditional min-entropy of X given A

is

H̃min(X | A) = log
(

1
Ea∼A[maxx∈supp(X) Pr[X = x | A = a]]

)
.

Conditional min-entropy can be interpreted in terms of strategies for
guessing X after seeing A [238, Problem 6.7]. Conditional min-entropy
satisfies the following intuitive “chain rule” first proven by Dodis et al.
[79, Lemma 2.2].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

92 Recycling Random Bits

Lemma 3.17 (Chain rule for min-entropy). If | supp(A)| ≤ w, then

H̃min(X | A) ≥ Hmin(X) − logw.

If X has a lot of min-entropy given A, then intuitively, we should
expect that Ext(X,Ud) looks uniform even given A. This intuition is
correct, as expressed by the following lemma, by Vadhan [238]. (See
also a similar earlier lemma by Dodis et al. [79, Lemma 2.3].)

Lemma 3.18 (Extracting from sources with high conditional min-entropy
[238, Problem 6.8]). Let Ext : {0, 1}t × {0, 1}d → {0, 1}m be a (k, ε)-
extractor. If H̃min(X | A) ≥ k, then

dTV
(
(Ext(X,Ud), A), (Um, A)

)
≤ 3ε.

(Here Ud is independent of (X,A) and Um is independent of A.)

Finally, we will need the following standard “data processing in-
equality,” which says that applying a function – even a randomized
function – can only make two distributions closer.

Lemma 3.19 (Data processing inequality for total variation distance). Let
A and Ã be random variables over the same space. Let R be independent
of both A and Ã, and let f be any function. Then

dTV
(
f(A,R), f(Ã, R)

)
≤ dTV

(
A, Ã

)
.

3.4.2 Using extractors to fool standard-order ROBPs

We are now ready to analyze the PRG of Equation (3.1). We will show
that it achieves the following parameters.

Lemma 3.20 (One iteration of the Nisan-Zuckerman generator). Let
w, n ∈ N with n ≥ logw, and let ε > 0. There is an explicit ε-PRG for
width-w length-n standard-order ROBPs with seed length

O

(
logw + n log(n/ε)

logw

)
.

Furthermore, the generator can be computed by an algorithm that reads
the seed once from left to right and runs in space O(log(wn/ε)).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.4. The Nisan-Zuckerman Generator for Short, Wide ROBPs 93

Proof. Let ℓ = n
log w . Let ε′ = ε

3ℓ , and let Ext : {0, 1}3 log w × {0, 1}d →
{0, 1}log w be the (2 logw, ε′)-extractor of Theorem 3.16, so d =
O(log(n/ε)). The PRG G is given by Equation (3.1), which we repeat
below for convenience:

G(x, y1, . . . , yℓ) = (Ext(x, y1), . . . ,Ext(x, yℓ)).

The seed length and efficiency claims are clear.
As for correctness, our job is to show that G fools every width-w

length-n standard-order ROBP. It will be convenient to group the n
layers into ℓ blocks of logw layers each. This can be viewed as a width-
w length-ℓ ROBP over the alphabet {0, 1}log w, i.e., each vertex has w
outgoing edges labeled with all strings in {0, 1}log w. Let f be such a
program, with layers V0, . . . , Vℓ. For i < n, a ∈ Vi, and r ∈ {0, 1}log w,
let a[r] denote the vertex reached from a by traversing the outgoing
edge with label r.

Sample X,Y1, . . . , Yℓ, R1, . . . , Rℓ independently and uniformly at
random, where X ∈ {0, 1}3 log w, Yi ∈ {0, 1}d, and Ri ∈ {0, 1}log w. Let
A0, . . . , Aℓ be the sequence of vertices reached when f reads the truly
random bits R1, . . . , Rℓ, i.e., A0 = vstart and

Ai = Ai−1[Ri].

Similarly, let R̃i = Ext(X,Yi), and let Ã0, . . . , Ãℓ be the sequence of
vertices reached when f reads the pseudorandom bits R̃1, . . . , R̃ℓ, i.e.,
Ã0 = vstart and

Ãi = Ãi−1
[
R̃i
]
.

We will prove by induction on i that dTV
(
Ai, Ãi

)
≤ 3ε′i. The base case

i = 0 is trivial. Now fix i > 0. By the triangle inequality, we have

dTV
(
Ai, Ãi

)
= dTV

(
Ai−1[Ri], Ãi−1

[
R̃i
])

≤ dTV
(
Ai−1[Ri], Ãi−1[Ri]

)
+ dTV

(
Ãi−1[Ri], Ãi−1

[
R̃i
])
.

Applying the data processing inequality (Lemma 3.19) to each term,
we get

dTV
(
Ai, Ãi

)
≤ dTV

(
Ai−1, Ãi−1

)
+ dTV

(
(Ãi−1, Ri), (Ãi−1, R̃i)

)
.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

94 Recycling Random Bits

The first term is at most 3ε′ · (i− 1) by induction. As for the second
term, the chain rule for min-entropy (Lemma 3.17) implies that

H̃min(X | Ãi−1) ≥ 2 logw.

Therefore, Lemma 3.18 guarantees that the second term is at most
3ε′. Summing up, we get dTV

(
Ai, Ãi

)
≤ 3ε′i as claimed. Therefore,

|E[f] − E[f(G(U3 log w+ℓd)]| =
∣∣Pr[Aℓ ∈ Vaccept] − Pr

[
Ãℓ ∈ Vaccept

]∣∣
≤ dTV

(
Aℓ, Ãℓ

)
≤ ε.

Lemma 3.20 implies Theorem 3.15 when c is small, such as c = 1.5.
To handle larger c, we compose the generator of Lemma 3.20 with itself.
More details are below.

Proof of Theorem 3.15. Let ε = 2− log1−ν w. Let w1 = w and n1 =
logcw, and let G1 be the ε-PRG of Lemma 3.20 for width-w1 length-n1
ROBPs. This generator G1 has seed length n2 = O(logc−ν w). Further-
more, G1 can be computed by an algorithm that reads the seed once
from left to right and runs in space O(logw). It follows that for any
width-w standard-order ROBP f , the function f2(x) def= f(G1(x)) can
be computed by an ROBP of width w2 = poly(w). Therefore, let G2
be the ε-PRG of Lemma 3.20 for width-w2 length-n2 standard-order
ROBPs, with seed length n3 = O(logc−2ν w). The composition G1 ◦G2
fools f with error 2ε. Once again, f(G1(G2(x))) can be computed by a
standard-order ROBP of width w3 = poly(w). Continuing in this way
for O(c/ν) = O(1) steps, we obtain an explicit O(ε)-PRG for f with
seed length O(logw).

An interesting feature of the proof of Theorem 3.15 is that the
efficiency of the PRG of Lemma 3.20 is a key part of the proof of
correctness of the final PRG.

The Nisan-Zuckerman generator and the INW generator are both
based on “recycling” part of the seed so it can be reused to generate more
pseudorandom bits. The strength of the Nisan-Zuckerman generator is

The version of record is available at: http://dx.doi.org/10.1561/0400000109

3.4. The Nisan-Zuckerman Generator for Short, Wide ROBPs 95

that we use fewer than logw fresh random bits for the recycling process,
which enables us to achieve a nontrivial stretch with an overall seed
length of O(logw). On the other hand, the INW generator has a better
seed length when n (the number of pseudorandom bits) is large.

After Nisan and Zuckerman’s work [184], Armoni developed their
techniques further and designed a PRG that “interpolates” between the
INW generator and the Nisan-Zuckerman generator [13]. Armoni’s seed
length was slightly improved later [140] by plugging in extractors that
were developed after Armoni’s work [109] (and analyzing their space
complexity). At the extremes n ≥ w and n ≤ polylog(w), Armoni’s
generator has the same seed length as the INW generator and the Nisan-
Zuckerman generator, respectively. However, in the intermediate regime
polylog(w) ≪ n ≪ w, Armoni’s generator (as optimized by Kane et
al. [140]) is the best PRG known for ROBPs. It outperforms the INW
generator in this regime by a factor of log logw (for moderate error),
and this slight improvement (combined with other techniques) later led
to the current best unconditional derandomization of space-bounded
computation [124].

The Nisan-Zuckerman generator does not have optimal error. Im-
proving the error is an appealing open problem.

Open Problem 3.5 (Improving the error of the Nisan-Zuckerman gen-
erator). For some function n = ω(logw), design an explicit PRG for
width-w length-n standard-order ROBPs with seed length O(logw) and
error 1/w.

The “hitting set generator” analogue of Open Problem 3.5 has been
solved [3], [128].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4
PRGs and Hardness

From an algorithm-design perspective, an explicit PRG construction
is a “positive” theorem – an upper bound on the resources needed to
sample a distribution that fools such-and-such class. An explicit PRG
can be used as a building block in a larger algorithm.

On the other hand, from a complexity perspective, a construction of
an explicit PRG G fooling a model F provides a concrete example of a
task that F cannot do. A PRG construction is thus a “negative” theorem
– an impossibility result – a lower bound on the resources required to
distinguish the generator’s output from the uniform distribution.

In this section, we will explore connections between PRGs and more
traditional “lower bound” notions. First, in Section 4.1, we will investi-
gate the “PRGs as lower bounds” viewpoint in more detail and discuss
its implications for the prospect of PRG design. Then, in Section 4.2,
we will go the other direction, i.e., we will show how to construct PRGs
from suitable lower bounds.

96

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4.1. PRGs as High-quality Lower Bounds 97

4.1 PRGs as High-quality Lower Bounds

4.1.1 PRGs imply hard Boolean functions

We begin by showing that a PRG that fools F can be converted into
a Boolean function that cannot be computed by F . For the simplest
version of this reduction, we consider a PRG with one-bit stretch.

Proposition 4.1 (PRG =⇒ hard function). Let n ∈ N, and let F be
a class of functions f : {0, 1}n → {0, 1}. Let G : {0, 1}n−1 → {0, 1}n be
an ε-PRG for F where ε < 1/2. Define h : {0, 1}n → {0, 1} by

h(x) = 1 ⇐⇒ there exists y such that G(y) = x.

Then h /∈ F .

Proof. The generator G does not ε-fool h, because E[h(G(Un−1))] = 1
whereas E[h(Un)] ≤ 2n−1

2n = 1
2 .

Note that if the PRG G is explicit, then the hard function h in
Proposition 4.1 is “somewhat explicit,” namely h ∈ NP.

We will refine Proposition 4.1 in two respects. First, if G has a seed
length s that is significantly smaller than n, then we can modify our
hard function so it is a function of approximately s bits instead of a
function of n bits. This is an improvement, because when we prove
hardness results, we want to say that computing h requires a large
amount of resources (time, space, etc.) compared to the input length.
To carry out this improvement, we make the mild assumption that the
class F is “closed under restrictions” as defined below.

Definition 4.1 (Closure under restrictions). Let F be a class of functions
f on {0, 1}n. We say that F is closed under restrictions if the following
holds. Let f ∈ F , let i ∈ [n], and let b ∈ {0, 1}. Define g(x) = f(x(i→b)),
where x(i→b) denotes the string obtained from x by replacing the i-th
bit with b. Then g ∈ F .

We will also refine Proposition 4.1 in a second way. The conclusion
of Proposition 4.1 is a “worst-case” lower bound, i.e., it merely asserts
that there is no function in F that correctly computes the hard function
h on all inputs. We will replace this worst-case lower bound with an

The version of record is available at: http://dx.doi.org/10.1561/0400000109

98 PRGs and Hardness

“average-case” lower bound, which is stronger. As formalized below, an
average-case lower bound asserts that no function in F can correctly
compute the hard function on significantly more than half of the inputs
(with respect to some distribution).

Definition 4.2 (Average-case hardness). Let F be a class of functions
f : {0, 1}r → {0, 1}, let h : {0, 1}r → {0, 1}, and let D be a distribution
over {0, 1}r. We say that h is ε-hard for F with respect to D if for every
f ∈ F , ∣∣∣∣ Pr

X∼D
[f(X) = h(X)] − 1

2

∣∣∣∣ ≤ ε.

(Note that in Definition 4.2, we assume that the success probability
is neither significantly more than 1/2, nor significantly less than 1/2.
This is just for convenience. The two bounds are equivalent if F is closed
under complement.) The following refined reduction, first formalized by
Viola [242], shows that PRGs imply average-case hardness.

Proposition 4.2 (PRG =⇒ average-case hardness [242]). Let F be a
class of functions f : {0, 1}n → {0, 1} that is closed under restrictions.
Let G : {0, 1}s → {0, 1}n be an ε-PRG for F . Let r = s + ⌈log(1/ε)⌉
and assume that r ≤ n. Define h : {0, 1}r → {0, 1} by

h(x) = 1 ⇐⇒ there exist y, z such that G(y) = (x, z).

Let F ′ be the class of functions f : {0, 1}r → {0, 1} of the form f(x) =
f0(x, a) where f0 ∈ F and a ∈ {0, 1}n−r. Let D = 1

2Ur + 1
2G(Us)1...r, i.e.,

the distribution D is a balanced convex combination of the distributions
Ur and G(Us)1...r.1 Then h is ε-hard for F ′ with respect to D.

Proof. Sample U ∼ Ur and U ′ ∼ Us. Fix any f ∈ F ′, say f(x) = f0(x, a).
Then

Pr
X∼D

[f(X) = h(X)]

= 1
2 Pr[f(U) = h(U)] + 1

2 Pr[f(G(U ′)1...r) = h(G(U ′)1...r)]

= 1
2 Pr[f(U) = h(U)] + 1

2 Pr[f(G(U ′)1...r) = 1]

1We write x1...r to denote the first r bits of x.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4.1. PRGs as High-quality Lower Bounds 99

≤ 1
2 Pr[f(U) = 0] + 1

2 Pr[h(U) = 1] + 1
2 (Pr[f(U) = 1] + ε)

= 1
2 + ε+ E[h]

2
≤ 1

2 + ε,

where the first inequality uses the fact that F is closed under restrictions
and hence the distribution G(U ′)1...r fools F ′ with error ε. Since G also
fools complements of functions in F , we also get the reverse inequality
PrX∼D[f(X) = h(X)] ≥ 1

2 − ε.

Proposition 4.2 demonstrates that there is a hierarchy of lower
bounds:

PRG =⇒
(

Average-Case
Lower Bound

)
=⇒

(
Worst-Case

Lower Bound

)
. (4.1)

A PRG construction is a lower bound that is particularly strong, quali-
tatively speaking. Admittedly, the average-case lower bound in Proposi-
tion 4.2 is with respect to a certain (explicitly-sampleable) non-uniform
distribution D, whereas traditionally, we seek average-case lower bounds
with respect to the uniform distribution. However, it turns out that in
many cases the two types of average-case lower bound are essentially
equivalent [55].

4.1.2 The lack-of-lower-bounds barrier

Looking at Equation (4.1), an optimist might hope to use PRGs to
prove new lower bounds. In practice, however, lower bounds come first.
Therefore, a lack of known lower bounds for a particular model can be
considered a type of barrier to constructing PRGs for that model.

For example, let F be the class of all functions f : {0, 1}n → {0, 1}
that can be computed by Boolean circuits of size nlog n. Nonexplicitly,
there exists an ε-PRG that fools F with seed length O(log2 n+log(1/ε))
(Proposition 1.1). If we could construct an explicit 0.49-PRG that fools
F with seed length n−1, then by Proposition 4.1, we would also be able
to construct a function h ∈ NP on n bits with circuit complexity greater
than nlog n. This would be a huge breakthrough in circuit complexity,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

100 PRGs and Hardness

and in particular it would imply P ̸= NP. The conventional wisdom
is that one should not try to design an unconditional PRG for F until
after proving the corresponding circuit lower bounds.

The good news, as we have seen already in Sections 2 and 3, is that
this “lack-of-lower-bounds barrier” still leaves plenty of room for a rich
theory of unconditional PRGs. After all, highly nontrivial lower bounds
are already known for many interesting classes, and hence we can try to
design PRGs with matching parameters. For example, for AC0 circuits
(see Definition 2.13), the state-of-the-art lower bounds are as follows.

Theorem 4.1 (Parity is hard for AC0 circuits [118], [129]). For every
m, d ∈ N and ε > 0, there exists a value r = O(logd−1m · log(1/ε)) such
that the parity function on r bits is ε-hard for depth-d size-m AC0

circuits with respect to the uniform distribution.

In light of Theorem 4.1, we may reasonably hope to design an explicit
ε-PRG for depth-d size-m AC0 circuits with seed length as low as

O(logd−1m · log(1/ε)). (4.2)

(Assume for simplicity that d ≥ 2 and m ≥ n, where n is the num-
ber of pseudorandom bits.) Indeed, recall that Braverman’s theorem
(Section 2.6) implies a fairly similar seed length of logO(d)m · log(1/ε).
Furthermore, as we will discuss in Section 5.3, explicit PRGs for AC0

are known with better seed lengths, getting very close to the bound
of Equation (4.2). The optimal seed length would be O(log(m/ε)),
independent of d, but we should probably not expect to go below
O(logd−1m · log(1/ε)) until after improving the known lower bounds
for AC0 (Theorem 4.1).

As another example, let us consider standard-order ROBPs. Here
the situation is better, because optimal lower bounds are known:

Proposition 4.3 (Inner product is hard for standard-order ROBPs). For
each even positive integer 2r ∈ N, let IP2r : {0, 1}2r → {0, 1} denote the
function

IP2r(x, y) =
r∑

i=1
xiyi mod 2.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4.2. The Nisan-Wigderson Framework 101

For every w ∈ N and ε > 0, there exists a value r = O(log(w/ε)) such
that IP2r is ε-hard for width-w standard-order ROBPs with respect to
the uniform distribution.

Proof. For every width-w length-(2r) standard-order ROBP f , there
is a communication protocol in which Alice holds x, Bob holds y, they
communicate 1 + ⌈logw⌉ bits, and then they output f(x, y). (Alice
simulates the first half of f and sends the state to Bob; Bob simulates
the second half of f and sends the output bit to Alice.) The proposition
follows by plugging in classic lower bounds on the average-case commu-
nication complexity of IP2r (e.g., see Rao and Yehudayoff’s text [196,
Theorem 5.6]).

Thus, for standard-order ROBPs, there is no lack-of-lower-bounds
barrier, and it is perfectly reasonable to try to design optimal PRGs.

4.2 The Nisan-Wigderson Framework

In the previous section, we saw that a PRG implies a hard decision
problem. In this section, we will discuss a famous method due to Nisan
and Wigderson [183] for going the other way: converting a hard decision
problem into a PRG. Thus, we will establish a fairly tight connection
between PRGs and lower bounds (although there are losses that are
important in some cases, so the connection is not a perfect equivalence).

4.2.1 Constructing a PRG from a Hard Function

Let h : {0, 1}r → {0, 1} be a candidate “hard function.” Let s > r, and
let S1, . . . , Sn be a family of r-subsets of [s], i.e., Si ⊆ [s] and |Si| = r.
The Nisan-Wigderson generator G : {0, 1}s → {0, 1}n is given by

G(x) = (h(xS1), . . . , h(xSn)), (4.3)

where xS = xi1xi2 . . . xir when S = {i1 < i2 < · · · < ir}. In words, the
generator applies the hard function to n different substrings of the seed.

We will prove that this construction works under certain assumptions
on h and S1, . . . , Sn. Intuitively, to ensure that the output bits of G
appear to be independent, we should apply the hard function h to

The version of record is available at: http://dx.doi.org/10.1561/0400000109

102 PRGs and Hardness

inputs that are almost “unrelated.” We will achieve this property by
requiring that the sets of indices S1, . . . , Sn are “nearly” disjoint.

Definition 4.3 (Nearly disjoint sets). We say that sets S1, . . . , Sn are
k-nearly disjoint2 if |Si ∩ Sj | ≤ k for all distinct i, j ∈ [n].

Meanwhile, the function h should be hard to compute, even on
average (see Definition 4.2). To fool a function f , we will assume that h
is hard for compositions of f with arbitrary k-juntas (see Definition 2.11).
Under these assumptions, the Nisan-Wigderson generator achieves the
following parameters.

Theorem 4.2 (Nisan-Wigderson reduction). Let f : {0, 1}n → {0, 1}.
Suppose h : {0, 1}r → {0, 1} is ε-hard for f ◦ JUNTAr,k with respect
to the uniform distribution, and suppose that S1, . . . , Sn are k-nearly
disjoint r-subsets of [s] for some s > r. Then the Nisan-Wigderson
generator G given by Equation (4.3) fools f with error ε · n.

4.2.2 Analysis: Unpredictability

The proof of Theorem 4.2 is based on the problem of predicting the
next bit of a pseudorandom string after seeing the first few bits. A truly
random string is completely unpredictable.

Definition 4.4 (Unpredictability). Let X be a distribution over {0, 1}n,
let f : {0, 1}n → {0, 1}, and let ε > 0. We say that X is ε-unpredictable
for f if for every i ∈ [n] and every a ∈ {0, 1}n−i+1, we have∣∣∣∣Pr[f(X1, X2, . . . , Xi−1, a) = Xi] − 1

2

∣∣∣∣ ≤ ε.

Equivalently, X fools the test x 7→ f(x1, x2, . . . , xi−1, a) ⊕ xi with error
ε. We say that a generator G : {0, 1}s → {0, 1}n is ε-unpredictable for
f if G(Us) is ε-unpredictable for f .

In some of the early literature, something like Definition 4.4 is
actually taken to be the definition of a PRG [28], [214]. As a first step
toward proving Theorem 4.2, let us show that the Nisan-Wigderson
generator is unpredictable.

2A family of nearly disjoint sets, all of the same size, is also known as a design
or a partial design or a partial Steiner system or a packing.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4.2. The Nisan-Wigderson Framework 103

Lemma 4.3 (The NW PRG is unpredictable). Under the assumptions of
Theorem 4.2, the Nisan-Wigderson generator G is ε-unpredictable for
f .

Proof. Fix i ∈ [n] and a ∈ {0, 1}n−i+1. Sample a seed Y ∈ {0, 1}s

uniformly at random, and let X = G(Y). Then∣∣∣∣Pr[f(X1, . . . , Xi−1, a) = Xi] − 1
2

∣∣∣∣
=
∣∣∣∣∣ E
Y[s]\Si

[
Pr
YSi

[f(h(YS1), . . . , h(YSi−1), a) = h(YSi)]
]

− 1
2

∣∣∣∣∣
≤ E

Y[s]\Si

[∣∣∣∣∣Pr
YSi

[f(h(YS1), . . . , h(YSi−1), a) = h(YSi)] − 1
2

∣∣∣∣∣
]
.

Consider any arbitrary fixing of Y[s]\Si
and let Z = YSi . For each j < i,

since we fixed Y[s]\Si
and |Si ∩ Sj | ≤ k, there is some k-junta ϕj such

that h(YSj) = ϕj(Z). Therefore,∣∣∣∣∣Pr
YSi

[f(h(YS1), . . . , h(YSi−1), a) = h(YSi)] − 1
2

∣∣∣∣∣
=
∣∣∣∣Pr

Z
[f(ϕ1(Z), . . . , ϕi−1(Z), a) = h(Z)] − 1

2

∣∣∣∣
≤ ε,

because h is ε-hard for f ◦JUNTAr,k (note that each bit of a can trivially
be computed by a 0-junta.)

To complete the proof of Theorem 4.2, we will relate the “predictor”
model to the standard “distinguisher” model. We will show that if a
distribution is unpredictable for f , then it also fools f , with a factor of
n loss in the error parameter. This lemma is attributed to Yao.

Lemma 4.4 (Unpredictable =⇒ Pseudorandom). LetX be a distribution
over {0, 1}n and let f : {0, 1}n → {0, 1}. If X is ε-unpredictable for f ,
then X fools f with error ε · n.

Proof. Let R ∼ Un be independent of X. Define hybrid distributions
D0, D1, . . . , Dn by

Di = X1X2 . . . XiRi+1Ri+2 . . . Rn,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

104 PRGs and Hardness

so Di consists of i pseudorandom bits followed by n− i truly random
bits. By the triangle inequality,

|E[f(X)] − E[f]| = |E[f(Dn)] − E[f(D0)]|

≤
n∑

i=1
|E[f(Di)] − E[f(Di−1)]|.

For each i ∈ [n], we have

E[f(Di)] = E[f(Di−1) | Ri = Xi]

and

E[f(Di−1)] = 1
2 E[f(Di−1) | Ri = Xi] + 1

2 E[f(Di−1) | Ri ̸= Xi].

Therefore,

|E[f(Di)] − E[f(Di−1)]|

=
∣∣∣∣12 E[f(Di−1) | Ri = Xi] − 1

2 E[f(Di−1) | Ri ̸= Xi]
∣∣∣∣

=
∣∣∣∣12 E[f(Di−1) | Ri = Xi] + 1

2 E[¬f(Di−1) | Ri ̸= Xi] − 1
2

∣∣∣∣
=
∣∣∣∣E[f(Di−1) ⊕Ri ⊕Xi] − 1

2

∣∣∣∣
≤ E

R

[∣∣∣∣EX[f(Di−1) ⊕Ri ⊕Xi] − 1
2

∣∣∣∣] .
This is at most ε, because for any fixing of R, if we let g(x) =
f(x1 . . . xi−1Ri . . . Rn) ⊕Ri ⊕ xi, then either g or ¬g is testing whether
f successfully predicts xi given x1, . . . , xi−1. Summing up, we get
|E[f(X)] − E[f]| ≤ ε · n.

4.2.3 A family of nearly disjoint sets

We have now shown how to construct a PRG given two ingredients:
a hard function h and a family of nearly disjoint sets S1, . . . , Sn. The
hard function must be tailored to the specific class of functions that
we wish to fool, but constructing the family of nearly disjoint sets is
a combinatorics problem that can be addressed separately. We will
construct such a family using an argument by Erdős et al. [85].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4.2. The Nisan-Wigderson Framework 105

Lemma 4.5 (Existence of nearly disjoint sets [85]). Let k, r, n ∈ N with
r > k ≥ 1. For a suitable value s = O(n1/(k+1) · r2/k), there exists
a k-nearly disjoint family of r-subsets S1, . . . , Sn ⊆ [s]. Furthermore,
given k, r, and n, the family can be deterministically constructed in
time poly(n, 2s).

Proof. Construct S1, . . . , Sn greedily. That is, for i ∈ [n], having con-
structed S1, . . . , Si−1, search exhaustively through all subsets of [s] to
find a set Si of size r such that for every j < i, we have |Sj ∩ Si| ≤ k.
To prove that such a set exists, consider picking Si uniformly at random
from among all subsets of [s] of size r. Then by the union bound,

Pr
Si

[∃j < i such that |Si ∩ Sj | > k] ≤
i−1∑
j=1

Pr
Si

[|Sj ∩ Si| > k]

= (i− 1) ·
(r

k+1
)

·
(s−(k+1)

r−(k+1)
)(s

r

)
< n ·

(r
k+1
)2(s

k+1
) ,

where the last step uses the identity
(s

r

)
·
(r

k+1
)

=
(s

k+1
)

·
(s−(k+1)

r−(k+1)
)
.

Therefore, a suitable Si is guaranteed to exist provided n ≤
(s

k+1
)
/
(r

k+1
)2.

Choose the universe size to be s = ⌈er2 · n1/(k+1)/k⌉, because that way

n ≤
(
sk

er2

)k+1
<

(s
k+1
)(r

k+1
)2 ,

where the last step uses 0 < k < r ≤ s.

Optimality Ignoring explicitness, what is the best possible universe
size s in Lemma 4.5? Equivalently, given k, r, and s, what is the largest
number n such that there exists a k-nearly disjoint family of r-subsets
S1, . . . , Sn ⊆ [s]? This seems to be an open problem in combinatorics,
even if we are only interested in rough asymptotics. The proof of
Lemma 4.5 shows the existence of a family with n ≥

(s
k+1
)
/
(r

k+1
)2.

Conversely, in every such family, each size-(k + 1) subset of [s] is

The version of record is available at: http://dx.doi.org/10.1561/0400000109

106 PRGs and Hardness

contained in at most one Si, so3 n ≤
(s

k+1
)
/
(r

k+1
)
. This last bound

can be slightly improved [94], [207], but it seems that there is still a
significant gap.

Open Problem 4.1 (Optimal nearly disjoint sets). For given values k,
r, and s, determine (asymptotically) the maximum value n such that
there exists a k-nearly disjoint family of r-subsets S1, . . . , Sn ⊆ [s].

When k and r are constant, the problem has been solved: a famous
theorem by Rödl [204] says that there exist families with n = (1 −
o(1)) ·

(s
k+1
)
/
(r

k+1
)
. When k and r are growing parameters, however,

the situation seems to be less clear. For example, when r = k2 and
s = 100k3, the optimal value of n is somewhere between 2Θ(k) and kΘ(k),
but the true value seems to be unknown.

Efficiency The proof of Lemma 4.5 is simple, but it’s somewhat unsatis-
factory because of the exhaustive search. The universe size s corresponds
to the seed length of the Nisan-Wigderson generator. The time com-
plexity poly(n, 2s) in Lemma 4.5 is too high to get a strictly “explicit”
PRG, except in the case s = O(logn), since our definition of explic-
itness (Definition 1.4) is that the runtime should be poly(n). In the
literature [115], [144], [183], there are several constructions of families
of nearly disjoint sets that are “more explicit” than the construction of
Lemma 4.5, but unfortunately, the parameters of these constructions
are not quite as good.

Open Problem 4.2 (More efficient constructions of nearly disjoint sets).
Find a family of nearly disjoint sets that has the same parameters
as Lemma 4.5 and that can be constructed in time poly(n). (Assume
s < n.)

4.2.4 Unconditional applications

To illustrate the Nisan-Wigderson framework, let us use the framework
to design another PRG for AC0 circuits. Recall that the parity function

3In terms of universe size, we get s ≥ Ω(n1/(k+1) · r). One can also prove
s ≥ Ω(min{r2/k, nr}) using the inclusion-exclusion principle.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4.2. The Nisan-Wigderson Framework 107

is hard for such circuits (Theorem 4.1). By plugging the parity function
into the Nisan-Wigderson framework, we get a PRG with the following
parameters.

Corollary 4.6 (Hardness-based PRG for AC0). For any n,m, d ∈ N and
ε > 0, there is an ε-PRG for depth-d size-m AC0 circuits on n input
bits with seed length s = log2d+O(1)(mn) · polylog(1/ε). The PRG can
be computed in time 2O(s).

Proof. Let k = ⌊logn⌋. By Theorem 4.1, for a suitable value

r = O(logd(mn) · log(n/ε)),

the parity function h : {0, 1}r → {0, 1} is (ε/n)-hard for depth-(d+ 1)
size-(m + n · 2k+1) AC0 circuits. Let S1, . . . , Sn ⊆ [s] be the k-nearly
disjoint family of r-subsets from Lemma 4.5, and let G be the Nisan-
Wigderson PRG given by Equation (4.3).

To prove the correctness of this PRG, let f be a depth-d size-m
AC0 circuit on n input bits. For simplicity, we assume that the circuit
alternates between layers of AND gates and OR gates. Without loss of
generality, assume that the gates immediately above the inputs are OR
gates.

Every k-junta can be computed by a DNF with 2k terms. Therefore,
every function in f ◦ JUNTAr,k can be computed by an AC0 circuit
of depth d + 1 and size m + n · 2k+1: replace each of the 2n literals
in f with a DNF for the corresponding junta, and then merge the
adjacent layers of OR gates. Therefore, h is (ε/n)-hard for f ◦JUNTAr,k,
so Theorem 4.2 implies that G fools f with error ε. By Lemma 4.5,
the seed length of our generator is s = O(n1/(k+1) · r2/k), which is
log2d+O(1)(mn) · log2(1/ε) as claimed.

Historically, the Nisan-Wigderson approach provided the first ex-
plicit PRG for constant-depth polynomial-size AC0 circuits with seed
length polylogn [180]. The seed length in Theorem 4.6 is a little better
than the seed length implied by Braverman’s theorem (Section 2.6) in
some cases, because the factor 2 in the exponent is better. Today, we
can use other frameworks to construct PRGs for AC0 circuits with
better seed lengths (see the discussion in Section 5.3.) However, the

The version of record is available at: http://dx.doi.org/10.1561/0400000109

108 PRGs and Hardness

Nisan-Wigderson framework remains a valuable, flexible approach for
designing PRGs, especially for more powerful models of computation.
For example, the Nisan-Wigderson framework has been used to con-
struct unconditional PRGs for AC0 circuits augmented with a few gates
that compute arbitrary threshold functions or symmetric functions [138],
[158], [164], [208], [241]. Also, a line of work initiated by Trevisan [232]
shows that there are connections between the Nisan-Wigderson frame-
work and unconditional constructions of randomness extractors (see
Definition 3.8).

4.3 Hardness-based PRGs beyond Nisan-Wigderson

In summary, the Nisan-Wigderson framework is a method for converting
a hard function into a PRG. Starting from a function on r bits that is ε-
hard for f ◦ JUNTAr,k, we get a PRG for f with seed length O(n1/(k+1) ·
r2/k) and error ε · n.

Many other PRG constructions, including those that we saw in
Sections 2 and 3 and those that we will see in Section 5, are related
to lower bounds in a less direct way. To design a PRG for a class F ,
rather than using the mere fact that such-and-such lower bound holds,
we can try to distill and develop the insights that were used to prove
the lower bound. For example, as we saw in Section 2.6, Braverman’s
theorem relies on the LMN theorem (Theorem 2.22), which builds on
Håstad’s switching lemma [116], which was originally proven for the sake
of proving lower bounds for AC0 [116]. As another example, the INW
generator for ROBPs (Section 3.2) relies on the same “communication
complexity” intuition that appears in the proof of optimal lower bounds
for ROBPs (Proposition 4.3).

There are also methods other than the Nisan-Wigderson framework
for generically converting hardness into randomness. These methods
improve on the Nisan-Wigderson framework in fascinating and impor-
tant ways. However, the known applications of these other methods
are almost exclusively conditional. Since our focus is on unconditional
PRGs, we will only briefly survey these other methods.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4.3. Hardness-based PRGs beyond Nisan-Wigderson 109

Optimizing the circuit-size blow-up Suppose we wish to design a PRG
for size-n circuits of unbounded depth. The Nisan-Wigderson framework
can produce such a PRG, given a function that is hard for circuits that
are a little larger. Indeed, if f is a size-n circuit, then every function
in f ◦ JUNTAr,k can be computed by a circuit of size m = n · 2O(k). To
avoid paying the severe n1/(k+1) penalty in the Nisan-Wigderson seed
length, one can choose k = Θ(logn), in which case m = n1+Θ(1).

There is a line of work on improving the size complexity m, i.e.,
showing how to construct a PRG for size-n circuits given a function
that is hard for (some type of) circuits of size O(n) or even (1+α)n [60],
[83], [115], [197].

Read-once models There is another “loss” in the Nisan-Wigderson
reduction of a more qualitative nature. The Nisan-Wigderson framework
is not well-suited for the important problem of fooling standard-order
ROBPs. The reason is that every polynomial-size read-many branching
program can be written in the form f◦JUNTAr,1 where f is a polynomial-
size standard-order ROBP. Read-many branching programs are vastly
more powerful than ROBPs, and the Nisan-Wigderson framework does
not give us any way to take advantage of the read-once condition.

Babai et al. [18] nevertheless designed an unconditional hardness-
based PRG for standard-order ROBPs via a different reduction. (Their
generator was superseded by superior PRGs such as Nisan’s PRG [181]
and the INW PRG [131], which we discussed in Section 3.2.)

The seed length compared to the domain size The seed length
in the Nisan-Wigderson reduction is not ideal. Recall that a PRG
with seed length s implies a hard function on approximately s bits
(Proposition 4.2). Therefore, starting from a hard function on r bits, we
can hope to construct a PRG with seed length roughly r, rather than
the r2 factor that appears in Lemma 4.5. Indeed, there is a line of work
showing how to convert an appropriately-hard function on r bits into
a PRG with seed length O(r) or even (1 + α)r [60], [83], [133], [213],
[236].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

110 PRGs and Hardness

Worst-case hardness assumptions Recall that in the Nisan-Wigderson
framework, we rely on access to a function h that is hard on average,
i.e., it is hard to compute h on even a (1/2+ε)-fraction of inputs. There
is a line of work on constructing PRGs from worst-case hardness [60],
[83], [133], [134], [213], [227], [236]. To highlight one example, Umans
showed how to construct a PRG for size-n circuits given a function
that cannot be computed (in the worst case) by circuits of size nc for a
suitable constant c [236]. If the hard function is on r bits, then the PRG
has seed length O(r), and given the truth table of the hard function
and a seed, the PRG can be computed in time 2O(r) [236].

Uniform hardness assumptions In the Nisan-Wigderson framework,
we start with a function h on a finite domain that is hard for some
concrete, “nonuniform” model of computation. There are also many
known constructions of PRGs from uniform complexity-theoretic hard-
ness assumptions such as BPP ̸= EXP [16], [41], [42], [59], [98], [135],
[234].

The error parameter The Nisan-Wigderson reduction converts an
ε-hard function into a PRG with error ε · n. Fefferman et al. [87] have
studied the problem of avoiding the factor-of-n blow-up.

One of the motivations for studying this problem is the challenge of
designing better PRGs for AC0[⊕] circuits, i.e., AC0 circuits augmented
with parity gates. For context, fairly strong lower bounds are known for
this class. In particular, based on Razborov and Smolensky’s work [198],
[222], [223], one can show that for every m, d ∈ N and ε > 0, there
is a value r = ε−2 · O(logm)d−1 such that the majority function on r

bits is ε-hard for depth-d size-m AC0[⊕] circuits, provided r ≤ m [90],
[126]. Therefore, even if we treat the lack-of-lower-bounds barrier as
a real barrier, we can hope to design PRGs for these circuits with
polylogarithmic seed length (at least in the constant-error regime). So
far, however, the best fully-explicit PRGs for these circuits have much
larger seed length, very close to the trivial seed length of n bits [87].

Open Problem 4.3 (PRGs for AC0[⊕]). Design an explicit PRG that
fools constant-depth polynomial-size AC0[⊕] circuits on n input vari-
ables with seed length o(n).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

4.3. Hardness-based PRGs beyond Nisan-Wigderson 111

Note that if we severely relax our standards of “explicitness,” then
there are known constructions of PRGs for AC0[⊕] with seed length
no(1) [57], [58].

Cryptographic PRGs The Nisan-Wigderson generator is unsuitable
for cryptography, because computing the generator involves evaluating
the “hard function” h. A cryptographic PRG cannot afford to evaluate
a function that is hard for the adversary to compute, because a crypto-
graphic PRG must fool all efficient adversaries – including those that
use polynomially more time than the PRG itself uses.

Nevertheless, the paradigm of using some type of “hard function”
to construct a PRG has been highly successful in the cryptographic
setting [5], [27], [28], [77], [84], [95], [96], [99], [101], [110]–[112], [119],
[122], [153], [170], [214], [237], [249]–[251]. Indeed, hardness-based crypto-
graphic PRGs predate the Nisan-Wigderson framework. See, for example,
Goldreich’s expository works [96], [97] for an introduction.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5
Random Restrictions

In this section, we will present several constructions of PRGs based on
random restrictions. A restriction is a string R ∈ {0, 1, ⋆}n. Intuitively,
when Ri = ⋆, the interpretation is that R does not assign any value to
the i-th variable. A restriction R can be applied to a function f via the
following two definitions.

Definition 5.1 (Composition of restrictions). If R ∈ {0, 1, ⋆}n and x ∈
{0, 1}n, define the composition R ◦ x ∈ {0, 1, ⋆}n by

(R ◦ x)i =

Ri if Ri ∈ {0, 1}
xi if Ri = ⋆.

(5.1)

More generally, the same formula holds when x is an element of {0, 1, ⋆}n

rather than {0, 1}n, so ◦ is an associative binary operation on the space
{0, 1, ⋆}n.

Definition 5.2 (Applying a restriction to a function). Let f be a function
on {0, 1}n, and let R ∈ {0, 1, ⋆}n be a restriction. Then the restricted
function f |R is the function on {0, 1}n defined by

f |R(x) = f(R ◦ x).

112

The version of record is available at: http://dx.doi.org/10.1561/0400000109

113

Remark 5.1 (Order of restriction composition). Some sources define the
composition operator ◦ the other way around, so f |R(x) = f(x ◦ R)
rather than f(R ◦ x). Both conventions are reasonable. The motivation
behind our convention is that one can identify a restriction R ∈ {0, 1, ⋆}n

with the unique function R : {0, 1}n → {0, 1}n such that for every f and
x, we have f |R(x) = f(R(x)) (see Figure 5.1). Under this identification,
the restriction composition operator ◦ is literally function composition.

f

0 111

x1 x2 x3 x4 x5 x6 x7 x8

R

Figure 5.1: The restricted function f |R in the case R = {0, ⋆, 1, 1, ⋆, ⋆, 1, ⋆}. We
still think of f |R as a function on the 8-variable domain {0, 1}8, but its output only
depends on the values of four of those variables.

We will often consider random restrictions as defined below.

Definition 5.3 (Truly random restrictions). For p > 0, let Rp denote a
truly random restriction over {0, 1, ⋆}n with ⋆-probability p, i.e., the
coordinates are independent, and each coordinate is

⋆ with probability p
0 with probability (1 − p)/2
1 with probability (1 − p)/2.

(The parameter n will be clear from context.)

The version of record is available at: http://dx.doi.org/10.1561/0400000109

114 Random Restrictions

Random restrictions have been used in many areas of the theory of
computing, perhaps starting with Subbotovskaya’s pioneering work on
De Morgan formulas [226]. The process of designing a PRG for a class
F using restrictions can be divided into two main steps.

1. Prove a lemma that says that functions in F simplify in some
sense under restrictions. We will refer to such a lemma as a
“simplification-under-restrictions lemma.” This first step requires
an intimate understanding of the specific class F .

2. Apply a generic reduction that says how to construct a PRG for
any class satisfying a suitable simplification-under-restrictions
lemma (and perhaps also satisfying some mild conditions such as
closure properties). This second step is mainly about the abstract
logic of restrictions and PRGs.

As we will see, this plan can be instantiated in multiple ways. There
are several different types of simplification-under-restrictions lemmas:

• Are we considering truly random restrictions, or pseudorandom
restrictions, or “partially pseudorandom” restrictions?

• What is our measure of “simplicity?”

• Does simplification occur with high probability, or does it merely
occur “on average?”

Correspondingly, there are several distinct reductions from the problem
of constructing PRGs to the problem of proving simplification under
restrictions. We will discuss the polarizing random walks framework
(Sections 5.1 and 5.2), the iterated restrictions paradigm (Sections 5.3
to 5.5), and the Impagliazzo-Meka-Zuckerman framework (Section 5.6).
Perhaps these variations make the topic a bit confusing, but on the
bright side, all this flexibility means that we have a rich toolkit for
constructing PRGs.

5.1 PRGs from Polarizing Random Walks

In this section, we present our first reduction showing that if a class
simplifies under random restrictions, then we get a PRG for that class.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.1. PRGs from Polarizing Random Walks 115

This first reduction, based on “polarizing random walks,” was introduced
relatively recently by Chattopadhyay et al. [49]. It has the benefit that
its assumptions are quite minimal, i.e., it is applicable in a relatively
broad set of circumstances.

5.1.1 Simplification under truly random restrictions

Let F be a class of functions f : {0, 1}n → {0, 1} that we wish to fool.
Suppose that we have shown that functions in our class F simplify
under random restrictions. Specifically, suppose we have identified a
class Fsimp of “simpler” functions and values p, δ > 0 such that for each
f ∈ F , we have

Pr[f |Rp ∈ Fsimp] ≥ 1 − δ.

For example, Rossman proved the following theorem [205] using Håstad’s
famous switching lemma [116] and his more recent “multi-switching”
lemma [118].

Theorem 5.1 (AC0 simplifies under restrictions [205]). For every n,m, d
∈ N, there is a value p = 1/Θ(logm)d−1 such that if f : {0, 1}n → {0, 1}
is computable by a depth-d size-m AC0 circuit and δ > 0, then with
probability 1 − δ, the restricted function f |Rp can be computed by a
decision tree of depth at most log(1/δ).

For this section, we will consider a class “simple” if we can fool it with
a short seed. For example, we consider small-depth decision trees to be
simple, because we can ε-fool decision trees of depth log(1/δ) using a seed
of length O(log(1/δ)+log(1/ε)+log logn) (see Section 2.3.3). In general,
assuming that functions in F simplify to Fsimp under restrictions, and
assuming that we have a good PRG for Fsimp, how can we design a
PRG for the original class F? Our strategy will be to first design a
relaxation of a PRG called a fractional PRG. Then, we will gradually
transform the fractional PRG into a genuine PRG.

5.1.2 Fractional PRGs

For the purposes of this approach, it will be convenient to work with
Boolean functions f : {−1, 1}n → R instead of our usual domain {0, 1}n.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

116 Random Restrictions

Recall that a PRG for a family of Boolean functions is a function
G : {0, 1}s → {−1, 1}n such that E[f(G(Us))] ≈ E[f] for every function
f in the family. A fractional PRG is a relaxation of a PRG where we
allow G to take values in the solid hypercube [−1, 1]n as opposed to
{−1, 1}n. For this to make sense, we would like to be able to “evaluate”
f : {−1, 1}n → R on arbitrary inputs from [−1, 1]n. One natural way to
do this is by considering the multilinear extension of f . Recall that every
Boolean function f : {−1, 1}n → R has a unique Fourier expansion,

f(x) =
∑

S⊆[n]
f̂(S)

∏
i∈S

xi.

The formula above can be evaluated at an arbitrary point x ∈ Rn,
which allows us to extend f to a multilinear polynomial f : Rn → R.
To understand how to interpret the value f(x) for fractional vectors
x ∈ [−1, 1]n, we make the following definition.

Definition 5.4 (Product distribution notation). For x ∈ [−1, 1]n, let Πx

be the unique product distribution over {−1, 1}n satisfying E[Πx] = x.

Fact 5.1 (Evaluation at fractional points). Let f : {−1, 1}n → R be any
function. Extend f to the domain [−1, 1]n via the Fourier expansion.
Then for every x ∈ [−1, 1]n, we have

f(x) = E[f(Πx)].

More generally, for every product distribution X over [−1, 1]n, we have
E[f(X)] = f(E[X]).

Proof. This is immediate from multilinearity and linearity of expectation.

As a result, if f takes values in {−1, 1}, then its multilinear extension
is a map [−1, 1]n → [−1, 1]. Another useful corollary is that f(0n) = E[f].
Thus, a PRG can be seen as a method of sampling a distribution X

over {−1, 1}n such that E[f(X)] ≈ f(0n). We will define a fractional
PRG by allowing the pseudorandom distribution to take values inside
the cube.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.1. PRGs from Polarizing Random Walks 117

Definition 5.5 (Fractional PRGs). Let f : {−1, 1}n → R, and extend f

to the domain [−1, 1]n via the Fourier expansion. A random variable
X ∈ [−1, 1]n is said to ε-fool f , or fool f with error ε, if

|E[f(X)] − f(0n)| ≤ ε.

We say that X fools a family F of Boolean functions with error ε if X
fools (the multilinear extension of) each function in F with error ε. A
fractional ε-PRG for F is a function G : {0, 1}s → [−1, 1]n such that
G(Us) fools F with error ε.

We can trivially fool all Boolean functions with error 0 and seed
length 0 by simply outputting 0n. However, our main motivation for
defining fractional PRGs is as a means to constructing true PRGs, and
our PRG construction will require some non-triviality conditions from
the fractional PRG. In particular, we will require each coordinate of
the fractional PRG to have variance bounded away from zero.

Definition 5.6 (Noticeability). We say that a random variable X ∈
[−1, 1]n is q-noticeable for a parameter q ≥ 0, if for every i ∈ [n],
E[X2

i] ≥ q. We say that a fractional PRG G : {0, 1}s → [−1, 1]n is
q-noticeable if G(Us) is q-noticeable.

The following lemma shows that if a class F simplifies to another
class Fsimp under restrictions, and we have a good PRG for Fsimp,
then we get a good fractional PRG for the original class F , where the
noticeability depends on the ⋆-probability of the restrictions.

Lemma 5.2 (Simplification implies fractional PRGs). Let F and Fsimp be
classes of functions f : {−1, 1}n → {−1, 1}. Let p, δ > 0, and suppose
that for each f ∈ F , we have

Pr[f |Rp ∈ Fsimp] ≥ 1 − δ.

Let X be a distribution over {−1, 1}n that ε-fools Fsimp. Then pX is
(p2)-noticeable and fools F with error ε+ 2δ.

Proof. Clearly, we always have (pX)2
i = p2, showing that pX is (p2)-

noticeable. Now fix f ∈ F , and sample R ∼ Rp independently of X.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

118 Random Restrictions

For each fixed string x ∈ {±1}n, the composition R ◦ x is a product
distribution over {±1}n, where

E[(R ◦ x)i] = (1 − p) · 0 + p · xi = p · xi.

Therefore, by Fact 5.1, we have E[f(R ◦ x)] = f(px). Consequently,
EX [f(pX)] = ER,X [f(R ◦ X)]. Clearly, |ER,X [f(R ◦ X)] − E[f]| ≤
ε+ 2δ.

By combining Lemma 5.2 and Theorem 5.1, we get a fractional PRG
for AC0 with the following parameters.

Corollary 5.3 (Fractional PRGs for AC0). For every n,m, d ∈ N and
every ε > 0, there is an explicit q-noticeable fractional PRG that ε-fools
depth-d size-m AC0 circuits with seed length O(log(1/ε) + log logn),
where q = 1/Θ(logm)2d−2.

5.1.3 From fractional PRGs to PRGs

In this section we will prove that fractional PRGs can be used to
construct PRGs with small seed length as long as the fractional PRG has
two useful properties: it has a small seed length and all its coordinates
have noticeable variance.

Theorem 5.4 (Fractional PRG =⇒ Standard PRG [49]). Suppose that
F is a family of functions f : {−1, 1}n → {−1, 1} that is closed under
restrictions and shifts.1 Assume that there exists an explicit q-noticeable
fractional PRG for F with error ε and seed length s. Then there exists
an explicit PRG for F with seed length O(s · q−1 · log(n/ε)) and error
O(ε · q−1 · log(n/ε)).

For example, by combining Theorem 5.4 and Corollary 5.3, we get
the following PRG for AC0.

Corollary 5.5 (PRG for AC0 based on simplification under truly random
restrictions). For every n,m, d ∈ N and ε > 0, there is an explicit ε-PRG
for depth-d size-m AC0 circuits on n input bits with seed length

Õ(logm)2d−2 · Õ(log(n/ε) · log(1/ε)).
1For functions on {±1}n, “closure under shifts” means that for every f ∈ F and

every y ∈ {±1}n, the function g(x) = f(x1y1, x2y2, . . . , xnyn) is in F .

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.1. PRGs from Polarizing Random Walks 119

The seed length in Theorem 5.5 is slightly better than the other
PRGs for AC0 circuits that we have already seen (Braverman’s theorem
in Section 2.6, and the Nisan-Wigderson generator in Section 4.2). More
importantly, this new PRG generalizes in some ways that the previously
discussed PRGs do not. After all, the same approach works whenever
a class simplifies under random restrictions. In fact, as we will discuss
in Section 5.2, it even works in the more general setting of a class that
simplifies “on average” under random restrictions.

Random walks

To prove Theorem 5.4, we will take a random walk through the solid
hypercube [−1, 1]n. It is natural to take Y (0) = 0n as the starting point,
since E[f] = f(0n). Our goal then is to define a random walk that
converges quickly to the Boolean cube {−1, 1}n, while each step of the
walk does not incur much error. We will define the steps by independent
samples from the output distribution X of the fractional PRG.

To this end let X(1), . . . , X(t) be t independent samples of X where
t is to be determined later. A natural first step for the random walk is
Y (1) = Y (0) +X(1), as it has the two useful properties:

1. |E[f(Y (1))] − E[f(Y (0))]| ≤ ε, and

2. Each coordinate of Y (1) is likely closer to {−1, 1} due to p-
noticeability.

It is tempting to continue this approach for all steps and in particular
define Y (j) = Y (j−1) +X(j). This does not work, since we may already
step out of the [−1, 1]n cube, and in fact after some steps start getting
farther and farther from {−1, 1}n. A slight modification that works is
to normalize coordinates according to their distance from {−1, 1}n.

For two vectors x, x′ ∈ [−1, 1]n, define x⊙ x′ ∈ [−1, 1]n to be their
coordinate-wise product. Moreover, for every vector y ∈ [−1, 1]n define
δy ∈ [0, 1]n to be the vector with i-th coordinate (δy)i = 1 − |yi|, i.e.,
(δy)i is the distance from yi ∈ [−1, 1] to the Boolean endpoints {−1, 1}.
The vector δy defines dimensions of the largest subcube inside [−1, 1]n
centered at y. Using this notation, we can now define the random walk:

The version of record is available at: http://dx.doi.org/10.1561/0400000109

120 Random Restrictions

• Y (0) = 0n, and

• For j > 0, let Y (j) = Y (j−1) + δY (j−1) ⊙X(j).

We will show that this random walk quickly gets close to {−1, 1}n. Still,
there is a chance that the coordinates of Y (t) are never exactly integers.
The final construction takes care of this by outputting the coordinate-
wise signs of Y (t). To this end, for x ∈ Rn define sign(x) ∈ {−1, 1}n to
be the vector with i-th coordinate sign(x)i = 1 ⇐⇒ xi > 0.

The Generator G:

1. Let X1, . . . , Xt be independent copies of X for a suitable value
t = O(q−1 · log(n/ε))

2. Let Y (0) = 0n, and for j > 0 define

Y (j) = Y (j−1) + δY (j−1) ⊙X(j)

3. Output sign(Y (t))

Analysis of the random walk

To prove the correctness of the generator G, we will prove that the
random walk has three properties:

(a) Each step introduces little error: For every f ∈ F and j ∈ [t], we
have ∣∣∣E [f(Y (j))

]
− E

[
f(Y (j+1))

]∣∣∣ ≤ ε.

(b) The walk polarizes with high probability:

Pr[∥δY (t)∥∞ ≤ ε/n] ≥ 1 − ε.

(c) The final rounding operation introduces little error: For every f ∈ F ,
conditioned on polarization, |f(Y (t)) − f(sign(Y (t)))| ≤ ε.

We prove these properties in the next three lemmas.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.1. PRGs from Polarizing Random Walks 121

Lemma 5.6 (Steps incur small error). Let F be a family of functions
f : {−1, 1}n → R that is closed under restrictions, and suppose X ∈
[−1, 1]n fools F with error ε. Then for every f ∈ F and y ∈ [−1, 1]n,

|f(y) − E[f(y + δy ⊙X)]| ≤ ε.

In particular, for every j ∈ [t],∣∣∣E [f(Y (j−1))
]

− E
[
f(Y (j))

]∣∣∣ ≤ ε.

Proof. Let y ∈ [−1, 1]n be fixed. Sample a restriction R ∈ {−1, 1, ⋆}n,
independent of X, where the coordinates of R are independent and
distributed as follows:

Ri =

sign(yi) with probability |yi|
⋆ with probability 1 − |yi|.

We can extend the composition operation R ◦ x to the case of a vector
x ∈ [−1, 1]n in the natural way: we use x to fill in the ⋆ coordinates of
R (see Equation (5.1)). That way, for each coordinate i ∈ [n], we have

E
R

[(R ◦ x)i] = |yi| · sign(yi) + (1 − |yi|) · xi = yi + (1 − |yi|) · xi,

and hence overall,
E
R

[R ◦ x] = y + δy ⊙ x.

By Fact 5.1, it follows that

E
R

[f |R(x)] = E
R

[f(R ◦ x)] = f

(
E
R

[R ◦ x]
)

= f(y + δy ⊙ x).

Consequently,∣∣∣∣f(y) − E
X

[f(y + δy ⊙X)]
∣∣∣∣ =

∣∣∣∣ER[f |R(0n)] − E
R,X

[f |R(X)]
∣∣∣∣

≤ E
R

[∣∣∣∣f |R(0n) − E
X

[f |R(X)]
∣∣∣∣]

≤ ε,

where the last step uses the fact that F is closed under restriction,
hence X fools f |R with error ε for every fixing of R.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

122 Random Restrictions

Next, we will show that the random walk above converges to {−1, 1}n

quickly. For this argument, we assume that X is both q-noticeable for a
large enough q > 0 and symmetric as defined below.

Definition 5.7 (Symmetric random variables). Let X be a random vari-
able distributed over [−1, 1]n. We say that X is symmetric if for every
x ∈ [−1, 1]n, we have Pr[X = x] = Pr[X = −x].

We can justify the symmetry assumption as follows. Starting from
an arbitrary q-noticeable fractional ε-PRG Gfrac for F with seed length
s, we can define a new q-noticeable fractional PRG with seed length
s+ 1 by the formula

G′
frac(x, b) = (−1)b ·Gfrac(x).

The distribution G′
frac(Us+1) is symmetric, and because F is closed

under shifts, G′
frac(Us+1) still fools F with error ε. (This is the only

place where we use the assumption that F is closed under shifts.)
The symmetry assumption is helpful because of the following lemma

concerning the case n = 1.

Lemma 5.7. Let X ∈ [−1, 1] be a symmetric q-noticeable random
variable. Then

E
[√

1 −X
]

≤ 1 − q/8.

In their original paper, Chattopadhyay et al. [49] observed that
Lemma 5.7 follows immediately from the Taylor expansion of the func-
tion

√
1 − x. We present an alternative argument below.

Proof of Lemma 5.7. Let Y = |X|, and sample Z ∈ {±1} indepen-
dently of X. Then the product Y Z is distributed identically to X.
Furthermore, for each fixed value y ∈ [0, 1], we have

(
E
[√

1 − yZ
])2

=
(√

1 − y +
√

1 + y

2

)2

= 1 +
√

1 − y2

2 ≤ 1 − y2

4 .

Therefore,

E
[√

1 −X
]

= E
Y

[
E
Z

[√
1 − Y Z

]]
≤ E

Y

[√
1 − Y 2/4

]
≤ E

Y
[1 − Y 2/8]

≤ 1 − q/8.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.1. PRGs from Polarizing Random Walks 123

Next, let us use Lemma 5.7 to show that coordinate-wise polarization
happens with high probability. Indeed, looking ahead, the probability
will be high enough to allow a union bound over all coordinates.

Lemma 5.8 (Polarization). Let A(1), . . . , A(t) ∈ [−1, 1] be independent
symmetric q-noticeable random variables. Define B(0) = 0, and for j > 0
define

B(j) = B(j−1) + (1 − |B(j−1)|) ·A(j). (5.2)

Then Pr[1 − |B(t)| ≥ e−tq/8] ≤ e−tq/16.

Proof. What happens to the distance 1−|B(·)| when we apply the update
rule given in Equation (5.2)? If sign(A(j)) = sign(B(j−1)) (the “good
case”), the distance decreases by a factor of 1 − |A(j)|. If sign(A(j)) ̸=
sign(B(j−1)) (the “bad case”), the distance might increase, but at most
it increases by a factor of 1 + |A(j)|. Either way, for j > 0, we have

1 − |B(j)| ≤ (1 − |B(j−1)|) · (1 −A(j) · sign(B(j−1))).

We have assumed that A(1), . . . , A(j−1) are symmetric. It follows that
B(j−1) is also symmetric. Therefore, |B(j−1)| and A(j) · sign(B(j−1)) are
independent. As a consequence,

E
[√

1 − |B(j)|
]

≤ E
[√

1 − |B(j−1)|
]

· E
[√

1 −A(j) · sign(B(j−1))
]
.

The random variable A(j) · sign(B(j−1)) is symmetric and q-noticeable,
so we may apply Lemma 5.7, giving us

E
[√

1 − |B(j)|
]

≤ E
[√

1 − |B(j−1)|
]

· (1 − q/8).

By induction, this implies that

E
[√

1 − |B(t)|
]

≤ (1 − q/8)t ≤ e−qt/8.

The lemma follows by Markov’s inequality.

Now we show that the final rounding step does not introduce too
much error.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

124 Random Restrictions

Lemma 5.9 (Rounding Error). Let f : {−1, 1}n → {−1, 1} be a function,
and extend it to the domain [−1, 1]n via the Fourier expansion. For
every y ∈ [−1, 1]n,

|f(y) − f(sign(y))| ≤
n∑

i=1
(1 − |yi|) ≤ n · ∥δy∥∞.

Proof. We have

|f(y) − f(sign(y))| = |E[f(Πy)] − f(sign(y))| (Fact 5.1)
≤ 2 · Pr[Πy ̸= sign(y)] (since ∥f∥∞ ≤ 1)

≤ 2 ·
n∑

i=1

1 − |yi|
2 ,

where the final inequality follows by the union bound and the observation
that the marginal distributions of Πy are given by

(Πy)i =

sign(yi) with probability 1+|yi|
2

− sign(yi) with probability 1−|yi|
2 .

We can now analyze G and complete the proof of Theorem 5.4.
The output of the generator G is sign(Y (t)) for t = 16 log(n/ε)/q. The
seed for G is determined by t independent samples from the fractional
generator, and hence has seed-length ts = O(s log(n/ε)/q). Then, we
can bound the error of the generator sign(Y (t)) as follows:

|E[f] − E[f(sign(Y (t)))]|

≤ |E[f(sign(Y (t)))] − E[f(Y (t))]| +
t∑

j=1
|E[f(Y (j))] − E[f(Y (j−1))]|

≤ |E[f(sign(Y (t))) − f(Y (t))]| + εt

by Lemma 5.6. Now let E denote the event that ∥δY (t)∥∞ ≤ e−tq/8 and
note that e−tq/8 ≤ ε/n. Then

|E[f(sign(Y (t))) − f(Y (t))]| + εt

≤ |E[f(sign(Y (t))) − f(Y (t)) | E]| + 2 Pr[E] + εt

≤ |E[f(sign(Y (t))) − f(Y (t)) | E]| + 2n · e−tq/16 + εt

≤ |E[f(sign(Y (t))) − f(Y (t)) | E]| + ε(t+ 2)

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.1. PRGs from Polarizing Random Walks 125

by Lemma 5.8. Finally, by Lemma 5.9, we get a final error bound of

(t+ 3)ε ≤ O(ε log(n/ε)/q).

5.1.4 A better reduction for the low-error regime

In this section, we present a more refined reduction, showing how to
convert a fractional PRG into a standard PRG with slightly better
parameters than what was achieved by Chattopadhyay et al. [49] (The-
orem 5.4).

Theorem 5.10 (Fractional PRG =⇒ Standard PRG, refined version).
Suppose that F is a family of functions f : {−1, 1}n → {−1, 1} that is
closed under restrictions and shifts. Assume that there exists an explicit
q-noticeable fractional PRG for F with error ε and seed length s. Then
there exists a PRG for F with seed length

O((s+ log(1/ε)) · q−1 · logn)

and error O(ε · q−1 · logn), computable in poly(n, 1/ε) time.

For comparison, recall that in the conclusion of Theorem 5.4, the
seed length is O(s · q−1 · log(n/ε)) and the error is O(ε · q−1 · log(n/ε)).
We typically have s ≥ log(1/ε), so the parameters of Theorem 5.10 are
superior in the regime ε < n−ω(1). Admittedly, the PRG is not fully
explicit in this regime (the time complexity is greater than poly(n)),
but the PRG’s time complexity is always at most exponential in the
seed length, which is a sufficient “explicitness” condition for many
applications of PRGs.

The idea behind the improvement is to replace the trivial rounding
step. Instead of taking O(q−1 · log(n/ε)) steps of the random walk and
arguing that all the coordinates of Y (t) are well-polarized (i.e., close
to {−1, 1}), we will take only O(q−1 · logn) steps of the random walk
and argue that most of the coordinates of Y (t) are well-polarized. Then,
we will show how to approximately sample from the mostly-polarized
product distribution ΠY (t) .

More precisely, our notion of being “mostly polarized” is that when
we sample from ΠY (t) , with high probability, we get a vector that only
disagrees with sign(Y (t)) in a few coordinates:

The version of record is available at: http://dx.doi.org/10.1561/0400000109

126 Random Restrictions

Definition 5.8 (Polarization). Let y ∈ [−1, 1]n, let k ∈ N, and let δ > 0.
We say that y is (k, δ)-polarized if

Pr[∆(Πy, sign(y)) ≤ k] ≥ 1 − δ,

where ∆ denotes Hamming distance.

We now show that O(q−1 · logn) steps of the random walk suffice
to achieve (2k, ε)-polarization where k = O(log(1/ε)/ logn). For this
argument, we assume that the coordinates of the output distribution X
of the fractional PRG are k-wise independent. To justify this assumption,
observe that we can replaceX withX⊙X ′, whereX ′ ∈ {±1}n is a k-wise
independent distribution. Since F is closed under shifts, this distribution
still fools F with error ε. This modification only increases the seed length
of the fractional PRG by an additive O(k logn) = O(log(1/ε)) bits; this
is the reason for the s+log(1/ε) term in the conclusion of Theorem 5.10.

Lemma 5.11 (Polarization, refined version). Let k = ⌈log(1/ε)/ logn⌉
and assume that the coordinates of X are k-wise independent.2 There
exists a value t = O(q−1 logn) such that with probability 1 − ε, the
vector Y (t) is (2k, ε)-polarized.

Proof. Let J be the set of coordinates where Y (t) is “poorly polarized,”
namely

J =
{
i ∈ [n] : 1 − |Y (t)

i | ≥ 1
n2

}
.

By Lemma 5.8, there is a choice of t = O(q−1 logn) such that for each
coordinate i ∈ [n], we have Pr[i ∈ J] ≤ 1/n2. Therefore, for any set
S ⊆ [n] with |S| = k, we have

Pr[S ⊆ J] ≤ n−2k.

Thus by a union bound,

Pr[|J | ≥ k] ≤
(
n

k

)
· n−2k ≤ n−k ≤ ε.

Now, fix any y ∈ [−1, 1]n such that |{i ∈ [n] : 1 − |yi| ≥ 1/n2}| < k.
Every such y is (2k, ε)-polarized, because

Pr[∆(Πy, sign(y)) ≥ 2k] ≤
(
n− k

k

)
·
(1

2n2

)k

≤ n−k ≤ ε.

2In fact, it suffices for the coordinates to be ε2-almost k-wise independent.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.1. PRGs from Polarizing Random Walks 127

Next, as outlined before, we show that when y is (2k, ε)-polarized,
we can approximately sample from Πy. We use a naïve “brute force”
approach.

Lemma 5.12 (Approximately sampling from well-polarized product distribu-
tions). Let y ∈ [−1, 1]n, let k ∈ N, and let δ > 0. There is a randomized
algorithm Sample such that Sample(y, k, δ) outputs a string in {−1, 1}n,
and if y is (k, δ)-polarized, then the output distribution Sample(y, k, δ) is
within total variation distance O(δ) of Πy. Furthermore, Sample(y, k, δ)
runs in time poly(nk, 1/δ) and it uses O(k logn+log(1/δ)) truly random
bits.

Proof. Let z = 1
2δy ∈ [0, 1/2]n. Let D be the product distribution over

{0, 1}n such that E[D] = z. Note that if we could sample x ∼ D, then
we could sample Πy by outputting the vector with i-th coordinate
(−1)xi · sign(yi). Thus, it suffices to show how to efficiently sample a
vector from {0, 1}n with a distribution close to D in total variation
distance. To achieve this, it is helpful to think of a perfect sample from
D as being produced by the following process.

Perfectly sampling D:

1. Pick ρ ∈ [0, 1] uniformly at random

2. Initialize µ := 0

3. For e ∈ {0, 1}n:

3.1 µ := µ+
∏

i:ei=0 zi
∏

i:ei=1(1 − zi)
3.2 If µ ≥ ρ then halt and output e

4. Output 0n

To efficiently sample from D (approximately), we make two changes.
First, in the “for loop,” we only iterate over e ∈ Bk, where Bk =
{e ∈ {0, 1}n :

∑
i ei ≤ k}. By the assumption of (k, δ)-polarization,

this change only introduces total variation error at most δ. Second,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

128 Random Restrictions

we discretize ρ. That is, we sample ρ ∈ {α, 2α, 3α, . . . , 1} uniformly
at random, where α = 2δ/|Bk|. The additional total variation error
introduced by this second change is at most 1

2 · |Bk| ·α ≤ δ, because the
probability of outputting any particular e ∈ Bk is affected by at most
α.

Given Lemmas 5.11 and 5.12, it follows that the PRG below proves
Theorem 5.10, assuming that X is symmetric and its coordinates are
k-wise independent.

The Generator G′:

1. Let t = O(q−1 · log(n)) and k = ⌈log(1/ε)/ logn⌉

2. Let X(1), . . . , X(t) be independent copies of X

3. Let Y (1) = 0n, and for j > 0 define

Y (j) = Y (j−1) + δY (j−1) ⊙X(j)

4. Output Sample(Y (t), 2k, ε)

5.2 Analysis Technique: Fourier Growth Bounds

Let F be a class of functions f : {0, 1}n → {0, 1} that we wish to fool,
and let Fsimp be a class of “simpler” functions that we know how to
fool. In the previous section, we considered the case that every f ∈ F
simplifies to Fsimp with high probability under random restrictions, i.e.,
for some p, δ > 0, we have

Pr[f |Rp ∈ Fsimp] ≥ 1 − δ. (5.3)

We presented the “polarizing random walks” framework, which shows
that under this assumption, we can construct a PRG for F .

In this section, we consider a more general setting, which is when F
“simplifies on average” under restrictions. We explain the meaning of this
condition in Section 5.2.1. Then, in Section 5.2.2, we present an example

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.2. Analysis Technique: Fourier Growth Bounds 129

of this condition – we show that bounded-width regular ROBPs satisfy
such an “average-case” simplification-under-restrictions lemma. Finally,
in Section 5.2.3, we show that the polarizing random walks framework
still works under this weaker assumption, and consequently we get a
PRG for the model of bounded-width “arbitrary-order permutation
ROBPs.”

5.2.1 The noise operator and simplification on average

The notion of “simplification on average” is based on the noise operator.

Definition 5.9 (Noise operator). Let f : {0, 1}n → R and p > 0. We
define Tpf : {0, 1}n → R by the equation

Tpf(x) = E[f |Rp(x)].

Tp is called the “noise operator” with parameter p, because for each
bit of x, with probability 1 − p, we replace the bit with a fresh random
bit (“noise”). Intuitively, Tpf is a “smoothed out” version of f , and
smaller values of p correspond to more smoothing out.

We say that f simplifies on average under the random restriction
Rp if the function Tpf lies in some “simpler” class Fsimp. For example,
let F be the class of parity functions. When we apply a random restric-
tion Rp, with high probability, no meaningful simplification occurs: the
restriction of a parity function is another parity function (or its com-
plement). However, parity functions do drastically simplify on average
over restrictions. Indeed, if f is a parity function on k bits, then Tpf is
approximated by the constant 1/2 function to within pointwise error
p−k.

For a more interesting example, let us return to the model of bounded-
width regular ROBPs, which we studied previously in Section 3.3. These
programs can compute parity functions, so once again, they do not
meaningfully simplify under a typical individual restriction. However,
we will show that these programs simplify on average under restric-
tions. Specifically, we will show that Tpf is fooled by almost k-wise
uniform distributions, where p and k are suitable parameters and f

is any bounded-width regular ROBP. Our approach for proving this

The version of record is available at: http://dx.doi.org/10.1561/0400000109

130 Random Restrictions

simplification-under-restrictions lemma is to bound the Fourier growth
of f , discussed next.

5.2.2 Fourier growth bounds for regular ROBPs

Recall the Fourier L1 bound from Section 2.3, which is a simple Fourier-
analytic way of measuring the “complexity” of a Boolean function.
Fourier growth is a more refined complexity measure which takes into
account the degree of Fourier coefficients. Specifically:

Definition 5.10 (Functions with bounded Fourier growth). For a, b ≥ 1,
denote by Ln

1 (a, b) the family of all n-variate Boolean functions f :
{−1, 1}n → {−1, 1} that satisfy∑

S⊆[n]
|S|=d

∣∣∣f̂(S)
∣∣∣ ≤ a · bd,

for every d ∈ [n]. Define L1(a, b) =
⋃

n∈N Ln
1 (a, b).

Remark 5.2 (Fourier L2 tail bounds). One can similarly define Ln
2 (a, b) to

be the family of all n-variate Boolean functions f : {−1, 1}n → {−1, 1}
that satisfy ∑

S⊆[n]
|S|=d

∣∣∣f̂(S)
∣∣∣2 ≤ a · 2−d/b,

for every d ∈ [n]. Tal showed that L2(a, b) ⊆ L1(a,O(b)) [228]. The
simple example of the PARITY function (i.e.,

∏
i∈[n] xi) shows that the

reverse is not true. In other words, having bounded L1 Fourier growth
is a weaker assumption than having bounded L2 Fourier tails.

Reingold et al. [202] were the first to prove a Fourier growth bound
for regular ROBPs. Later, building on their work and work by Chat-
topadhyay et al. [51], Lee et al. [149] improved the bound. In this section,
we will present the proof of the latter bound.

Theorem 5.13 (Fourier growth of regular ROBPs [149]). If f is a width-w
standard-order3 regular ROBP, then f ∈ L1(1, w− 1). That is, for every
d ≥ 0,

3The theorem holds more generally for the “arbitrary-order” model, in which the

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.2. Analysis Technique: Fourier Growth Bounds 131

∑
|S|=d

|f̂(S)| ≤ (w − 1)d.

After we are done proving Theorem 5.13, we will show that Fourier
growth bounds imply simplification on average under restrictions.

Level 1 Fourier coefficients

The first step of the proof of Theorem 5.13 is to bound the level-1
Fourier coefficients of f . As a shorthand, we write f̂(i) rather than
f̂({i}). We will prove the following.

Lemma 5.14 (Bound on level-1 Fourier coefficients of regular ROBPs).
Let f be a width-w length-n standard-order regular ROBP. Then

n∑
i=1

|f̂(i)| ≤ E[f] · (w − 1).

Proof. Let m be the number of rejecting vertices in the final layer, i.e.,
m = w − |Vaccept|. We will show by induction on n that

n∑
i=1

|f̂(i)| ≤ E[f] ·m. (5.4)

The lemma will follow, because m ≤ w (and if m = w, then f ≡ 0 and
the lemma is trivial).

In the base case n = 0, Equation (5.4) is trivial, so assume that
n > 0. Let V0, . . . , Vn be the layers of f . Partition Vn−1 = R ∪ S ∪ T

based on the number of accepting edges, i.e.,

R = {v ∈ Vn−1 : E[fv→] = 0}
S = {v ∈ Vn−1 : E[fv→] = 1/2}
T = {v ∈ Vn−1 : E[fv→] = 1}.

ROBP reads the variables in an arbitrary permuted order (note that we still assume
the ROBP is oblivious). The reason is that the quantity

∑
|S|=d

|f̂(S)| is invariant
under variable permutations.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

132 Random Restrictions

Observe that m = |R| + 1
2 |S| because f is regular. For each i < n, we

have

f̂(i) = E
x∼Un

[f(x) · (−1)xi]

= E
x1,...,xn−1

[
(−1)xi · E

xn
[f(x)]

]
= E

x1,...,xn−1

[
(−1)xi ·

(
f→T (x) + 1

2f→S(x)
)]

= f̂→T (i) + 1
2 f̂→S(i).

Therefore, if we write p→A as a shorthand for the probability of visiting
a vertex in A ⊆ Vn−1 (namely, p→A = E[f→A]), then we have

n−1∑
i=1

|f̂(i)| ≤ 1
2

n−1∑
i=1

|f̂→T (i)| + 1
2

n−1∑
i=1

|f̂→T (i) + f̂→S(i)|

= 1
2

n−1∑
i=1

|f̂→T (i)| + 1
2

n−1∑
i=1

|f̂→S∪T (i)|

≤ 1
2 |R ∪ S| · p→T + 1

2 |R| · (p→S∪T) (Induction)

= m · p→T + |R| · p→S

2 .

Meanwhile, at i = n, we have

|f̂(n)| ≤ E
x1,...,xn−1

[∣∣∣∣Exn
[(−1)xn · f(x)]

∣∣∣∣]
= p→S

2 ≤ |S|
2 · p→S

2 ,

because the regularity of f implies that |S| is even. Therefore, overall,
n∑

i=1
|f̂(i)| ≤ m · p→T +

(
|R| + |S|

2

)
· p→S

2

= m ·
(
p→T + p→S

2

)
= m · E[f].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.2. Analysis Technique: Fourier Growth Bounds 133

Higher-level Fourier coefficients

To bound the higher-level Fourier coefficients, we rely on a notion of
local monotonicity [39], [51]. For every vertex v of an ROBP f , define
pv→ = E[fv→].

Definition 5.11 (Local Monotonicity). Let f be a standard-order ROBP
with layers V0, . . . , Vn. We say that f is locally monotone if for each
i ∈ [n] and each vertex u ∈ Vi−1, if we let (u, v) be the outgoing 0-edge
and (u, s) be the outgoing 1-edge, then ps→ ≥ pv→.

It is easy to see that if f is a locally monotone ROBP, then for every
i, we have f̂(i) ≤ 0.4 We observe that every ROBP can be “locally
monotonized” by relabeling its edges, and so local monotonicity is a
property of the labeling and not the structure of the graph.

Observation 5.1 (Local Monotonization [51]). Let f be a standard-order
ROBP with layers V0, . . . , Vn. There exists a locally monotone standard-
order ROBP f ′ obtained by relabeling edges of f . Furthermore, for
every i ∈ [n] and every v ∈ Vi−1,

f̂ ′
v→(i) = −

∣∣∣f̂v→(i)
∣∣∣ .

Proof. First order the vertices in each layer according to pv→, breaking
ties according to a predetermined fixed ordering. We start from the
layer Vi for i = n and move backwards. For every vertex v ∈ Vi we
relabel its outgoing edges if they do not satisfy the local monotonicity
condition. Note that for each vertex v, the acceptance probability pv→
remains unchanged under this relabeling, and hence the ordering of the
vertices within each layer remains the same. Furthermore, swapping the
labels of the outgoing edges of a vertex v ∈ Vi−1 flips the sign of the
Fourier coefficient f̂v→(i) so that it is nonpositive.

Note that if f is regular, then so is the local monotonization f ′.
We also rely on the following general formula for Fourier coefficients of
standard-order ROBPs.

4In the literature, the reverse inequality is claimed [51], [149], but this seems to
be a mistake.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

134 Random Restrictions

Lemma 5.15. Let f be a standard-order ROBP with layers V0, . . . , Vn.
Let i ∈ {0, 1, . . . , n}, let S ⊆ {1, 2, . . . , i}, and let T ⊆ {i+1, i+2, . . . , n}.
Then 5

f̂(S ∪ T) =
∑
v∈Vi

f̂→v(S) · f̂v→(T).

Proof.

f̂(S ∪ T) = E
x∼Ui

y∼Un−i

[f(xy) · χS∪T (xy)]

= E
x∼Ui

y∼Un−i

∑
v∈Vi

f→v(x) · fv→(y)

 · χS(x) · χT (y)

=
∑
v∈Vi

f̂→v(S) · f̂v→(T).

Given Observation 5.1 and Lemma 5.15, we are prepared to bound
the higher-level Fourier coefficients of a regular ROBP, using an induc-
tive argument due to Chattopadhyay et al. [51].

Proof of Theorem 5.13. We will show by induction on d that∑
|S|=d

|f̂(S)| ≤ (w − 1)d · E[f].

Lemma 5.14 is the base case d = 1. For the inductive step, let the layers
of f be V0, . . . , Vn. Then

∑
|S|=d+1

|f̂(S)| =
n∑

i=1

∑
T ⊆[i−1]

|T |=d

|f̂(T ∪ {i})|

=
n∑

i=1

∑
T ⊆[i−1]

|T |=d

∣∣∣∣∣∣
∑

v∈Vi−1

f̂→v(T) · f̂v→(i)

∣∣∣∣∣∣ (Lemma 5.15)

≤
n∑

i=1

∑
T ⊆[i−1]

|T |=d

∑
v∈Vi−1

|f̂→v(T)| · |f̂v→(i)|

5To properly interpret the formula, we think of the variables of fv→ as being
numbered i + 1, i + 2, . . . , n, so its Fourier coefficients are f̂v→(T) for T ⊆ {i + 1, i +
2, . . . , n}.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.2. Analysis Technique: Fourier Growth Bounds 135

=
n∑

i=1

∑
v∈Vi−1

 ∑
T ⊆[i−1]

|T |=d

|f̂→v(T)|

 · |f̂v→(i)|

≤ (w − 1)d ·
n∑

i=1

∑
v∈Vi−1

E[f→v] · |f̂v→(i)|

by induction. Now, to get rid of the absolute value signs, let f ′ be the
local monotonization of f from Observation 5.1. Then continuing, we
have∑

|S|=d+1

|f̂(S)| ≤ (w − 1)d ·
n∑

i=1

∑
v∈Vi−1

E[f→v] · |f̂v→(i)|

= (w − 1)d ·
n∑

i=1

∑
v∈Vi−1

E[f ′
→v] · (−f̂ ′

v→(i))

= (w − 1)d ·
n∑

i=1
− E

x∼Un

 ∑
v∈Vi−1

f ′
→v(x) · f ′

v→(x) · (−1)xi

= (w − 1)d ·

n∑
i=1

−f̂ ′(i)

≤ (w − 1)d · (w − 1) · E[f ′]
= (w − 1)d+1 · E[f],

where the inequality holds by Lemma 5.14.

Fourier growth bounds imply simplification on average

So far, we have shown that regular ROBPs have bounded Fourier growth.
Next, we show that in general, functions with bounded Fourier growth
simplify on average under restrictions, to the point that they can be
fooled by k-wise small-bias distributions.
Proposition 5.1 (Bounded Fourier growth =⇒ simplification on average
under restrictions). Let a, b ≥ 1 and f ∈ Ln

1 (a, b). Let ε ∈ (0, 1), and let
X ∈ {−1, 1}n be k-wise δ-biased,6 where

δ = ε/(2a) and k = ⌈log(2a/ε)⌉.
6Since we are working over ±1, the meaning of “k-wise δ-biased” is that for every

nonempty set S ⊆ [n] with |S| ≤ k, we have |E[
∏

i∈S
Xi]| ≤ δ.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

136 Random Restrictions

Let p = 1/(2b). Then X fools Tpf with error ε.

Proof. The Fourier expansion of Tpf is given by

Tpf(x) = E
R∼Rp

[f(R ◦ x)] =
∑

S⊆[n]
f̂(S) E

R∼Rp

[χS(R ◦ x)]

=
∑

S⊆[n]
f̂(S) · p|S| · χS(x).

(Informally, the noise operator Tp “attenuates” the Fourier coefficients
of f .) Noting that T̂pf(∅) = E[Tpf], we have

|E[Tpf(X)] − E[Tpf]| =

∣∣∣∣∣∣∣∣∣
∑

S⊆[n]
S ̸=∅

p|S|f̂(S)E
[∏

i∈S

Xi

]∣∣∣∣∣∣∣∣∣
≤
∑

S⊆[n]
S ̸=∅

p|S|
∣∣∣f̂(S)

∣∣∣ · ∣∣∣∣∣E
[∏

i∈S

Xi

]∣∣∣∣∣ .
When |S| ≤ k, we have |E [

∏
i∈S Xi]| ≤ δ. When |S| > k, we use the

trivial bound |E [
∏

i∈S Xi]| ≤ 1. Plugging these bounds into the above
inequality, we get

|E[Tpf(X)] − E[Tpf]| ≤ δ · a ·
k∑

d=1
(pb)d + a ·

n∑
d=k+1

(pb)d

≤ δa+ 2−ka

≤ ε.

Thus, in particular, bounded-width standard-order regular ROBPs
simplify on average under restrictions.

5.2.3 Using Fourier growth bounds to obtain PRGs

Using the analysis in the previous section, let us now obtain a PRG for
ROBPs. We already presented some PRGs for standard-order ROBPs
in Section 3, such as the INW PRG. However, those PRGs rely heavily

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.2. Analysis Technique: Fourier Growth Bounds 137

on the fact that the order of the input variables of the ROBP is known
to the generator. A more challenging scenario is when we wish to fool
functions of the form

f(x) = g(xπ(1), . . . , xπ(n)),

where g is a width-w length-n standard-order ROBP and π is an
unknown permutation of the coordinates [n]. We refer to such a function
f as a width-w length-n arbitrary-order ROBP (see Figure 5.2). One
motivation for fooling arbitrary-order ROBPs is that they can simulate
other interesting classes of tests, such as read-once formulas [31]. In
this section, we will focus on a subclass of ROBPs called permutation
ROBPs.

vstart reject

accept

reject

accept

0

x1

1

0

1

0

1

0

1

0

x2

1

0

1

0

1

0

1

0

x3

0

1
0

1

0

1

0

1

0

x4

0

1
0

1

0

1

0

1

Figure 5.2: Define f : {0, 1}2n → {0, 1} by the formula f(x) =
⊕

1≤i≤j≤n
xi · xn+j .

This function can be computed by a width-4 arbitrary-order permutation ROBP
(the case n = 2 is shown above). In contrast, every standard-order ROBP computing
f has width 2Ω(n). This can be shown by a communication complexity argument,
reducing from the inner product mod 2 problem.

Definition 5.12 (Permutation ROBPs). Let f be a length-n arbitrary-
order ROBP with layers V0, . . . , Vn. We say that f is a permutation
ROBP if for every i ∈ [n] and v ∈ Vi, there are exactly two incoming
edges to v (regularity), and those two edges have distinct labels (one is
labeled 0 and the other is labeled 1).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

138 Random Restrictions

In Section 3.3, we saw the BRRY generator, which fools constant-
width standard-order regular ROBPs with seed length Õ(logn). We will
now show how to design another PRG for constant-width permutation
ROBPs, which once again has seed length Õ(logn), but this time the
PRG works even in the more challenging arbitrary-order setting:

Theorem 5.16 (PRG for arbitrary-order permutation ROBPs [49], [149],
[202]). For every w, n ∈ N and ε > 0, there is an ε-PRG for width-
w length-n arbitrary-order permutation ROBPs that has seed length
Õ(w2 · logn · log(1/ε))7 and that is computable in time poly(n, 1/ε).

As a reminder, we showed in Section 5.2.2 that permutation ROBPs
(and more generally regular ROBPs) simplify on average under restric-
tions. To prove Theorem 5.16, we now observe that such an average-case
simplification-under-restrictions lemma is sufficient for the polarizing
random walks framework.

Lemma 5.17 (Simplification on average implies fractional PRGs). Let F be
a class of functions f : {±1}n → R. Let p, ε > 0, let X be a distribution
over {−1, 1}n, and assume that for every f ∈ F , the distribution X

fools Tpf with error ε. Then pX is (p2)-noticeable and fools F with
error ε.

Proof. The proof is exactly the same as the proof of Lemma 5.2, except
that we replace the final step with the following:∣∣∣∣ ER,X

[f(R ◦X)] − E[f]
∣∣∣∣ =

∣∣∣∣EX[Tpf(X)] − E[Tpf]
∣∣∣∣ ≤ ε.

Putting everything together gives us our PRG for bounded-width
arbitrary-order permutation ROBPs:

Proof of Theorem 5.16. Let f be a width-w length-n arbitrary-order
permutation ROBP. Such a program f satisfies the Fourier growth
bound of Theorem 5.13 regardless of the order in which it reads the

7The specific seed length in Theorem 5.16 does not appear in prior work, but it
does follow directly from prior work [49], [91], [149], [202]. In particular, if ε > 1/n,
then it follows from Lee et al.’s work [149], whereas if ε ≤ 1/n, then it follows
from Forbes and Kelley’s work [91]. Our refined polarizing random walks framework
(Theorem 5.10) gives us a unified proof of Theorem 5.16 for all ε.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.2. Analysis Technique: Fourier Growth Bounds 139

input variables, because the quantity
∑

|S|=d |f̂(S)| is invariant under
variable permutations.

Let γ = ε/t for a suitable value t = O(w2 logn). Let δ = γ/2,
let k = ⌈log(2/γ)⌉, and let X ∈ {−1, 1}n be k-wise δ-biased. Let
p = 1

2·(w−1) . Then by Theorem 5.13 and Proposition 5.1, X fools Tpf

with error γ. Therefore, by Lemma 5.17, pX is (p2)-noticeable and fools
f with error γ.

The distribution X can be explicitly sampled using a seed of
length s = O(log(1/γ) + log logn) (see Theorem 2.5). Furthermore,
the class of width-w permutation ROBPs is closed under restrictions
and shifts. Therefore, by the refined polarizing random walks frame-
work (Theorem 5.10), there is a PRG for such programs with error
O(γ · p−2 · logn) = ε and seed length

O
(
s · p−2 · logn

)
= O

(
w2 · logn · (log(w/ε) + log logn)

)
,

computable in time poly(n, 1/ε).

To be clear, the Fourier growth bound (Theorem 5.13) works for all
regular ROBPs, not merely permutation ROBPs. However, the class
of width-w arbitrary-order regular ROBPs is unfortunately not closed
under restrictions. It is therefore unclear how to apply the polarizing
random walks framework to such programs.

Open Problem 5.1 (PRGs for arbitrary-order regular ROBPs). Design
a PRG for constant-width arbitrary-order regular ROBPs with seed
length o(log2 n).

Thankfully, the more restricted class consisting of width-w arbitrary-
order permutation ROBPs is closed under restrictions, a fact which is
crucial in the proof of Theorem 5.16.

More generally, by the same argument, one can use the polarizing
random walks framework to construct a PRG for any class with bounded
Fourier growth, provided that the class is closed under restrictions and
shifts.8

8One can show that closure under shifts is not necessary. On the other hand, it
seems quite challenging to handle classes that are not closed under restrictions.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

140 Random Restrictions

Theorem 5.18 (PRG for functions with bounded Fourier growth). For
every n, a, b, ε, there is an explicit PRG G such that if F ⊆ L1(a, b) and
F is closed under restrictions and shifts, then G fools F with error ε.
Furthermore, G has seed length

O(b2 · logn · (log(ab/ε) + log logn)).

When Reingold et al. [202] proved their Fourier growth bound
for standard-order regular ROBPs, they also conjectured a Fourier
growth bound for all standard-order ROBPs (whether regular or not). In
particular, they conjectured that constant-width standard-order ROBPs
are in L1(poly(n),polylog(n)). The width-3 case of this conjecture was
proven by Steinke et al. [225], and then the general case was proven by
Chattopadhyay et al. [51].

Theorem 5.19 (Fourier growth bound for ROBPs [51]). Suppose f is
a width-w length-n standard-order ROBP. Then f ∈ L1(1, O(logn)w).
That is, for every d ∈ [n],∑

|S|=d

|f̂(S)| ≤ O(logn)wd.

Combining Theorems 5.18 and 5.19 gives a PRG for constant-width
arbitrary-order ROBPs with seed length polylog(n). Later (Section 5.4),
we will see a better PRG for this class that will make use of Theorem 5.19
in a more sophisticated way.

Motivated by the goal of constructing new PRGs for classes of
functions such as AC0[⊕] and F2-polynomials (see Open Problems 2.2
and 4.3), there has been effort on two fronts with the latter having led to
some success: 1. Prove reasonable Fourier tail bounds for the said classes,
and 2. Construct fractional PRGs under more relaxed assumptions, for
example, Fourier tail bounds only on few levels. Chattopadhyay et al.
[50] showed how to construct a fractional PRG using only second-level
Fourier bounds. Then, Chattopadhyay et al. [48] showed that better
bounds can be achieved if bounds on higher Fourier levels are available,
and interestingly, that fractional PRGs can be achieved even from
bounds on |

∑
S:|S|=d f̂(S)| where one can have cancellations, as opposed

to L1 bounds. These works show that certain improved bounds on the

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.3. Fooling AC0 via the Ajtai-Wigderson Framework 141

Fourier tails of F2-polynomials will lead to new PRGs. On the other
hand, Viola [245] showed that the conjectured Fourier tail bounds in
these works is equivalent to new correlation bounds, perhaps hinting at
the difficulty in the success of these approaches.

5.3 Fooling AC0 via the Ajtai-Wigderson Framework

Let F be a class of functions f : {0, 1}n → {0, 1} that we wish to fool.
In this section, we revisit the case that functions in F simplify with
high probability under restrictions. That is, suppose that for some values
p, δ > 0, we have

Pr[f |Rp ∈ Fsimp] ≥ 1 − δ, (5.5)

and furthermore suppose that we already have an explicit PRG for the
“simpler” class Fsimp, say with seed length s.

In Section 5.1, we presented the polarizing walks framework, and we
showed how to use it to construct a PRG for the original class F with a
seed length of roughly p−2 · s · logn. In this section, we present an older
PRG framework due to Ajtai and Wigderson [4]. The Ajtai-Wigderson
framework achieves a better seed length, but it requires a stronger initial
assumption. Roughly speaking, we will show that if it is possible to
“derandomize the choice of ⋆ positions” in Equation (5.5), then we can
fool F with a seed length of approximately p−1 ·s · logn. The distinction
between p−2 and p−1 is quite important in many cases.

5.3.1 Simplification under partially pseudorandom restrictions

The Ajtai-Wigderson framework is based on partially pseudorandom
restrictions, meaning that the set of ⋆ positions is pseudorandom, but the
assigned values are truly random. To reason about these two components
of a restriction separately, we must introduce notation for encoding
restrictions using bitstrings. Many different notational approaches have
been used for this encoding; unfortunately, it seems inevitable that
the notation is somewhat cumbersome and clunky. We will take the
approach of defining the following ⋆⃝ operation.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

142 Random Restrictions

Definition 5.13 (Encoding restrictions). For x, y ∈ {0, 1}n, define x ⋆⃝y ∈
{0, 1, ⋆}n by

(x ⋆⃝ y)i =

xi if yi = 0
⋆ if yi = 1.

(See Figure 5.3.)

x ⋆⃝ y = 1 ⋆ 0 ⋆ ⋆ 1 1 ⋆

x

y

Assignment

Star-set

Figure 5.3: In the restriction x ⋆⃝ y, the string y indicates the ⋆ positions, and the
string x assigns values to the non-⋆ positions.

The assumption of the Ajtai-Wigderson framework is that we have
a simplification-under-restrictions lemma of the form

Pr[f |U ⋆⃝Z ∈ Fsimp] ≥ 1 − δ, (5.6)

where the string of assigned bits U ∈ {0, 1}n is distributed uniformly
at random, the star set Z ∈ {0, 1}n is independent of U , and Z can
be sampled explicitly with a short seed. For example, for AC0, there
is a line of work on proving derandomized switching lemmas [4], [142],
[166], [209], [228], [235]. By combining Lyu’s “derandomized multi-
switching lemma” [166] with Rossman’s arguments [205], one can prove
the following.9

Lemma 5.20 (Simplification of AC0 under a partially pseudorandom
restriction [166], [205]). For every n,m, d, δ, there is a random variable
Z over {0, 1}n that can be explicitly sampled using Õ(d · log(mn/δ))

9Note that Lyu actually proved a fully derandomized multi-switching lemma [166],
but we only use the weaker version where the assigned bits are truly random.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.3. Fooling AC0 via the Ajtai-Wigderson Framework 143

truly random bits such that for any depth-d size-m AC0 circuit f on n
input bits,

Pr[DT(f |U ⋆⃝Z) ≤ O(log(md/δ))] ≥ 1 − δ.

Here, U is a uniform random n-bit string independent of Z, and
DT(f |U ⋆⃝Z) denotes the depth of the shallowest decision tree computing
f |U ⋆⃝Z . Furthermore, for each coordinate i, the “star probability” is
given by E[Zi] = Θ(1/ logm)d−1.

We will not study the proof of Lemma 5.20 here. Instead, we will
focus on the logic of constructing a PRG given a statement such as
Lemma 5.20. The only fact we will use about shallow decision trees is that
they can be fooled with a short seed length. Indeed, in its simplest form,
the Ajtai-Wigderson framework reduces the problem of constructing
PRGs to the problem of proving statements like Equation (5.6) with
the following parameters.

Theorem 5.21 (Simplification under partially-pseudorandom restrictions
=⇒ PRG [4]). Let F and Fsimp be classes of functions f : {0, 1}n →
{0, 1}. Assume that F is closed under restrictions. Let Z be a random
variable over {0, 1}n that can be explicitly sampled using s truly random
bits such that

∀f ∈ F , Pr[f |U ⋆⃝Z ∈ Fsimp] ≥ 1 − δ

where U ∈ {0, 1}n is uniform random and independent of Z. Assume
that we can explicitly compute a value p such that for every i ∈ [n],
we have E[Zi] ≥ p. Suppose also that there is an explicit δ-PRG for
Fsimp with seed length s′. Then there is an explicit PRG for F with
seed length t · (s+ s′) and error O(tδ), where t = ⌈p−1 ln(n/δ)⌉.

For example, applying the Ajtai-Wigderson framework to Lemma
5.20 gives the following PRG for AC0.

Corollary 5.22 (PRG for AC0 via the Ajtai-Wigderson framework). For
every n,m, d ∈ N and ε > 0, there is an explicit ε-PRG for size-m
depth-d AC0 circuits with seed length

O(logm)d−1 · Õ(log(mn/ε) · log(n/ε)).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

144 Random Restrictions

When m = poly(n) and ε = 1/ poly(n), the seed length in Theo-
rem 5.22 is only O(logn)d+O(1), which is superior to the O(d) exponents
in the seed lengths of the PRGs that we saw previously (Sections 2.6,
4.2 and 5.1). Trevisan and Xue were the first to achieve exponent
d + O(1) [235]. Several subsequent papers improved on their seed
length [142], [166], [209], [228], and the current best seed length is
achieved by Lyu [166]. Let d be constant and let m ≥ n. Using a so-
phisticated variant of the Ajtai-Wigderson framework, Lyu designed
an explicit ε-PRG for size-m depth-d AC0 circuits with seed length
Õ(logd−1m · log(m/ε)), which is quite close to the lack-of-lower-bounds
barrier of Θ(logd−1m · log(1/ε)) (see Section 4.1.2). The remaining gap
between the two bounds is most pronounced for the case d = 2. The best
PRGs for CNFs and DNFs have seed length Õ(log(m/ε) · logm) [75],
[228], whereas the lack-of-lower-bounds barrier allows for a seed length
as low as O(logm · log(1/ε)).

Open Problem 5.2 (Better PRGs for CNFs and DNFs). Design an explicit
PRG for polynomial-size CNFs and DNFs on n variables with error 0.1
and seed length o(log2 n).

In the remainder of this section, we explain the Ajtai-Wigderson
framework in its simplest form, i.e., we prove Theorem 5.21.

5.3.2 Restrictions that preserve expectation

The first step of the proof of Theorem 5.21 is to construct a fully
pseudorandom restriction that preserves the expectations of functions
in F , as defined next.

Definition 5.14 (Preserving expectation). Let f : {0, 1}n → R, and let
R be a random variable distributed over {0, 1, ⋆}n. We say that R
preserves the expectation of f to within ε, or ε-preserves the expectation
of f , if

|E[f |R(U)] − E[f]| ≤ ε.

Here U is independent of R and distributed uniformly over {0, 1}n.

Recall that we are assuming that f simplifies under the partially-
pseudorandom restriction U ⋆⃝ Z. To construct a restriction that pre-
serves the expectation of f , we replace the truly random bits with stars,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.3. Fooling AC0 via the Ajtai-Wigderson Framework 145

(x ⋆⃝ y) ◦ z = x1 z2 x3 z4 z5 x6 x7 z8

yi = 0

yi = 1

= (z ⋆⃝ y) ◦ x

Figure 5.4: To compute (x ⋆⃝ y) ◦ z, we use y to partition the coordinates into two
parts. The coordinates in one part get their values from x, while the coordinates in
the other part get their values from z. Thus, if we swap the roles of x and z and flip
each bit of y, nothing changes. Here we depict the case y = 01011001.

and we replace the stars with pseudorandom bits. To explain further, for
y ∈ {0, 1}n, let y denote the string obtained by flipping each bit of y,
i.e., yi = 1 − yi. Observe that the ⋆⃝ operation (Definition 5.13) and the
◦ operation (Definition 5.1) satisfy the following “duality” condition:

Fact 5.2 (Restriction duality). For any x, y, z ∈ {0, 1}n, we have

(x ⋆⃝ y) ◦ z = (z ⋆⃝ y) ◦ x.

(See Figure 5.4.) As a consequence of Fact 5.2, whenever we have
a simplification-under-restriction lemma with a derandomized set of ⋆
positions (Equation (5.6)), there is a related restriction that preserves
expectations:

Lemma 5.23 (Simplification =⇒ preserving expectation). Let Fsimp be
a class of functions f : {0, 1}n → {0, 1}. Let X,Z,U be independent
random variables taking values in {0, 1}n, where U is uniform and X

fools Fsimp with error ε. Let f : {0, 1}n → {0, 1}, and assume that

Pr[f |U ⋆⃝Z ∈ Fsimp] ≥ 1 − δ.

Then X ⋆⃝ Z preserves the expectation of f to within ε+ δ.

Proof. We must show that (X ⋆⃝ Z) ◦ U fools f . By Fact 5.2,

f((X ⋆⃝ Z) ◦ U) = f((U ⋆⃝ Z) ◦X)
= f |U ⋆⃝Z(X).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

146 Random Restrictions

By assumption, except with probability δ, f |U ⋆⃝Z ∈ Fsimp, and in this
case, X fools the restricted function with error ε.

Observe that if U ⋆⃝Z (the restriction that causes simplification) has
⋆-probability p, then X ⋆⃝Z (the restriction that preserves expectations)
has ⋆-probability 1 − p. When we are trying to prove simplification
under restrictions, we want the ⋆-probability to be as large as possible,
whereas when we are trying to prove preservation of expectation, we
want the ⋆-probability to be as small as possible.

5.3.3 Iterated restrictions

Lemma 5.20 provides us with a fully pseudorandom restriction R that
preserves the expectation of f ∈ F . Because R is fully pseudorandom,
we can afford to sample it and apply it, so f becomes f |R. The next
lemma says that if we then sample another copy of R and further restrict
the restricted function, we continue preserving its expectation.

Lemma 5.24 (Composing restrictions that preserve expectations). Let F
be a class of functions f : {0, 1}n → R that is closed under restriction.
Let R(1), . . . , R(t) be independent random variables distributed over
{0, 1, ⋆}n, assume that each R(i) preserves the expectation of every
f ∈ F to within ε, and let R = R(1) ◦ · · · ◦R(t). Then R preserves the
expectation of every f ∈ F to within ε · t.

Proof. Let us prove it by induction on t. The base case t = 1 is trivial.
For the inductive step, let R(<t) = R(1) ◦ · · · ◦R(t−1) and assume that
R(<t) preserves the expectation of every f ∈ F to within ε · (t− 1). Fix
some f ∈ F , and let F = f |R(<t) . Since F is closed under restriction,
we have F ∈ F with probability 1. Sample U ∈ {0, 1}n uniformly at
random. Then

|E[f |R(U)] − E[f]|
= |E[f(R(<t) ◦R(t) ◦ U)] − E[f]|
= |E[F |R(t)(U)] − E[f]|
≤ |E[F |R(t)(U)] − E[F (U)]| + |E[F (U)] − E[f]|

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.4. The Forbes-Kelley Generator for ROBPs 147

≤ E
F

[∣∣∣∣∣ E
R(t),U

[F |R(t)(U)] − E
U

[F (U)]
∣∣∣∣∣
]

+ |E[f |R(<t)(U)] − E[f]|

≤ E
F

[ε] + ε · (t− 1) = ε · t.

To get a full PRG, we will take t to be large enough that with high
probability, the composed restriction R in Lemma 5.24 assigns values
to all variables.

Lemma 5.25 (Preserving expectation =⇒ PRG). Let F be a class
of functions f : {0, 1}n → R that is closed under restrictions. Suppose
there is a distribution R over {0, 1, ⋆}n such that R can be explicitly
sampled using s truly random bits, and R preserves the expectation of
every f ∈ F to within δ, and for every coordinate i, Pr[Ri = ⋆] ≤ 1 − p.
Then there is an explicit PRG for F with seed length s · t and error
O(tδ), where t = ⌈p−1 ln(n/δ)⌉.

Proof. Let R◦t = R(1) ◦ · · · ◦R(t), where R(1), . . . , R(t) are independent
copies of R. Our PRG outputs the string R◦t ◦ 0n. This PRG clearly
has seed length s · t. By Lemma 5.24, the restriction R◦t preserves
the expectation of every f ∈ F to within error t · δ. Furthermore, the
probability that there are any stars remaining in R◦t is bounded by

Pr[R◦t /∈ {0, 1}n] ≤
n∑

i=1
Pr[R◦t

i = ⋆] =
n∑

i=1
Pr[Ri = ⋆]t ≤

n∑
i=1

(1 − p)t ≤ δ.

Consequently, R◦t ◦ 0n fools F with error (t+ 1) · δ.

The Ajtai-Wigderson reduction, Theorem 5.21, stating that simpli-
fication under pseudorandom restrictions implies PRGs, follows from
Lemma 5.23 (Simplification ⇒ preserving expectation) and Lemma 5.25
(Preserving expectation ⇒ PRG).

5.4 The Forbes-Kelley Generator for ROBPs

In Section 5.2, we presented a PRG for arbitrary-order permutation
ROBPs. In this section, we present Forbes and Kelley’s PRGs [91],

The version of record is available at: http://dx.doi.org/10.1561/0400000109

148 Random Restrictions

which fool general arbitrary-order ROBPs, without any permutation
assumption. In the polynomial-width case, Forbes and Kelley achieve
seed length O(log3 n) (Theorem 5.28), and in the constant-width case,
they achieve seed length Õ(log2 n) (Theorem 5.29).

These seed lengths constitute significant improvements over several
earlier PRGs for arbitrary-order ROBPs [31], [51], [113], [130], [202],
[225]. For polynomial-width programs, the best prior seed length was
Õ(

√
n) [202]. For width-w programs where w = O(1), the best prior

seed length was Õ(logw+1 n) [51]. Forbes and Kelley’s work implies the
first PRG with polylogarithmic seed length for read-once formulas with
constant fan-in over an arbitrary basis, since every such formula can be
computed by a polynomial-width ROBP under some input order [31].

In terms of techniques, Forbes and Kelley’s work builds on several
earlier papers, especially work by Reingold et al. [202] and work by
Haramaty et al. [113]. Forbes and Kelley’s PRGs are based on a gener-
alization of the Ajtai-Wigderson framework (Section 5.3). We begin by
explaining the generalized framework, and then we will present Forbes
and Kelley’s PRGs.

5.4.1 Pseudorandomness plus noise

Let F be a class of functions that we wish to fool. Recall the first step of
the Ajtai-Wigderson framework: we showed (Lemma 5.23) that if func-
tions in F simplify with high probability under partially-pseudorandom
restrictions, then we get a fully pseudorandom restriction that preserves
the expectation of each f ∈ F . We now refine that analysis to get an “if
and only if” condition (actually three equivalent conditions).

Lemma 5.26 (Characterizing preservation of expectation). Let X,Z,U
be mutually independent random variables, where each is distributed
over {0, 1}n and U is uniform random. Let f : {0, 1}n → R be a function
and let ε > 0. The following are equivalent.

1. (Preservation of Expectation) The restriction X ⋆⃝ Z preserves
the expectation of f to within error ε, i.e.,

|E[f |X ⋆⃝Z(U)] − E[f]| ≤ ε.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.4. The Forbes-Kelley Generator for ROBPs 149

2. (Simplification on Average) The distribution X fools g with error
ε, where

g(x) def= E
Z,U

[f |U ⋆⃝Z(x)]. (5.7)

3. (Pseudorandomness Plus Noise) The distribution X + (Z ∧ U)
fools f with error ε, i.e.,

|E[f(X + (Z ∧ U)] − E[f]| ≤ ε, (5.8)

where + denotes addition over Fn
2 and ∧ denotes coordinatewise

conjunction.

Proof. (1 ⇐⇒ 2) By Fact 5.2, we have

f |X ⋆⃝Z(U) = f((U ⋆⃝ Z) ◦X) = f |U ⋆⃝Z(X).

Therefore, E[f |X ⋆⃝Z(U)] = E[g(X)]. Furthermore, because U is uniform
random, we have E[g] = E[f].

(2 ⇐⇒ 3) Because U is uniform random, the random variables
X + (Z ∧ U) and (U ⋆⃝ Z) ◦ X are identically distributed. (In each
case, we start with X and then we randomize the bits where Zi = 1.)
Therefore, E[f(X + (Z ∧ U)] = E[g(X)]. As mentioned previously, the
fact that U is uniform random also implies that E[f] = E[g].

Recall that the noise operator with parameter p is defined by
Tpf(x) = E[f |Rp(x)]. The function g defined in Equation (5.7) can
be understood as the result of applying a partially derandomized noise
operator to f . Thus, Item 2 says that f simplifies on average under
partially-pseudorandom restrictions. This condition is a combination of
what we studied in Section 5.2 (simplification on average) and what
we studied in Section 5.3 (simplification under partially-pseudorandom
restrictions). A form of the perspective embodied by Item 2 was first
studied by Gopalan et al. [105].

In this section, it will not be so useful to think in terms of “simpli-
fication.” Instead, it will be more productive to reason about fooling
f itself using a partially-pseudorandom distribution, as articulated in
Item 3. Intuitively, establishing Equation (5.8) is easier than trying to
design a PRG in one shot, because the helpful “noise vector” Z ∧ U

The version of record is available at: http://dx.doi.org/10.1561/0400000109

150 Random Restrictions

contributes a considerable amount of true randomness into the picture.
This “pseudorandomness plus noise” perspective originates in work by
Haramaty et al. [113]. We adopt this perspective for the rest of this
section.

Once we obtain random variables X,Z ∈ Fn
2 satisfying Equa-

tion (5.8), we can repeat the same procedure iteratively to get a PRG
for F . This is because F is closed under restrictions and for any fixed
x, z ∈ Fn

2 , fooling the new function g(y) = f(x+ (z ∧ y)) is equivalent
to fooling f |x ⋆⃝z (see Lemma 5.25). We now move on to explaining the
Forbes-Kelley PRGs for arbitrary-order ROBPs, which are important
examples of the “pseudorandomness plus noise” approach.

5.4.2 A Fourier decomposition lemma for ROBPs

The starting point for Forbes and Kelley’s work is the following Fourier
decomposition lemma for ROBPs. For simplicity, we assume that the
ROBP uses the standard variable ordering (note that permuting vari-
ables just permutes Fourier coefficients in the obvious way).

Lemma 5.27 (Forbes-Kelley decomposition of ROBPs). Let f be a length-
n width-w standard-order ROBP with layers V0, V1, . . . , Vn, and k ≥ 0
be an arbitrary integer. Then

f(x) = L(x) +H(x),

where
L(x) =

∑
S:|S|<k

f̂(S)χS(x),

and
H(x) =

n∑
i=1

∑
v∈Vi

Hv(x)fv→(x),

where Hv(x) =
∑

S⊆[i]:|S|=k,i∈S f̂→v(S)χS(x).

Proof. Since L(x) is exactly the degree < k part of the Fourier expansion
of f , we just need to show that

H(x) =
∑

S⊆[n]:|S|≥k

f̂(S)χS(x).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.4. The Forbes-Kelley Generator for ROBPs 151

For every S with |S| ≥ k, let i(S) denote the k-th smallest index that
appears in S, let SL := S ∩ [i(S)] be the indices in S up to i(S), and
let SR := S \ SL be the remaining indices in S. Note that |SL| = k and
i(S) ∈ SL. We have

f̂(S) =
∑

v∈Vi(S)

f̂→v(SL) · f̂v→(SR),

where we used the fact that f(x) =
∑

i∈Vi(S)
f→v(x) · fv→(x). Thus,

∑
S⊆[n]:|S|≥k

f̂(S)χS(x) =
n∑

i=1

∑
S:i(S)=i

f̂(S)χS(x)

=
n∑

i=1

∑
S:i(S)=i

∑
v∈Vi

f̂→v(SL) · f̂v→(SR)χSL
(x)χSR

(x)

=
n∑

i=1

∑
v∈Vi

∑
SL⊆[i]
|SL|=k
i∈SL

∑
SR⊆[n]\[i]

f̂→v(SL) · f̂v→(SR)χSL
(x)χSR

(x)

=
n∑

i=1

∑
v∈Vi

Hv(x)
∑

SR⊆[n]\[i]
f̂v→(SR)χSR

(x)

=
n∑

i=1

∑
v∈Vi

Hv(x)fv→(x)

= H(x).

5.4.3 Pseudorandom restrictions that preserve the expectation of
ROBPs

The key point of the construction will be to analyze ROBPs under
bounded independent restrictions. In the proposition below, once again
we assume for simplicity that the ROBP reads its variables in the stan-
dard order; this is without loss of generality because k-wise uniformity
is preserved under variable permutations.

Proposition 5.2 (Preserving the expectation of ROBPs). Suppose f :
{0, 1}n → {0, 1} is computed by a width-w standard-order ROBP.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

152 Random Restrictions

Suppose that X,Z,U are independent random variables, where X is
2k-wise uniform, Z is k-wise uniform, and U is uniform. Then∣∣∣∣ E

X,Z,U
[f(X + Z ∧ U)] − E[f]

∣∣∣∣ ≤ wn

2k/2 .

Remark 5.3. For our current project of designing PRGs for ROBPs,
the fact that Z is pseudorandom in Proposition 5.2 is not crucial.
After all, if we take Z to be truly random, then Proposition 5.2 says
that X fools T1/2f , where Tp is the noise operator with parameter p.
From there, the polarizing random walks framework gives a PRG (see
Sections 5.1 and 5.2). Since p is a constant, the seed length from the
polarizing random walks framework is the same as the seed length
from the iterated restrictions framework for this case. (In general, the
polarizing walks framework has a worse dependence on p.)

That being said, there are other benefits to the iterated restrictions
paradigm besides seed length. In particular, the fact that Z is pseudo-
random will be crucial in Section 5.5, which builds on this section using
an “early termination” approach.

The intuition behind the proof is that the noise operator has the
simplifying effect of significantly lowering the weight of the high degree
terms, and the low degree terms are fooled by bounded independence.

Proof. The key is to utilize Lemma 5.27. We have∣∣∣∣ E
X,Z,U

[f(X + Z ∧ U)] − E[f]
∣∣∣∣

=
∣∣∣∣ E
X,Z,U

[L(X + Z ∧ U) +H(X + Z ∧ U)] − f̂(∅)]
∣∣∣∣

=
∣∣∣∣ E
X,Z,U

[H(X + Z ∧ U)]
∣∣∣∣ ,

where the last equality uses the fact that

E
X,Z,U

[L(X + Z ∧ U)] = f̂(∅),

since X + Z ∧U is k-wise uniform. It is left to bound |EX,Z,U [H(X +
Z ∧ U)]|. Note that,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.4. The Forbes-Kelley Generator for ROBPs 153

∣∣∣∣ E
X,Z,U

[H(X + Z ∧ U)
∣∣∣∣

=

∣∣∣∣∣∣
n∑

i=1

∑
v∈Vi

E
X,Z,U

[Hv(X + Z ∧ U)fv→(X + Z ∧ U)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

∑
v∈Vi

E
X,Z

[
E
U

[Hv(X + Z ∧ U)]E
U

[fv→(X + Z ∧ U)]
]∣∣∣∣∣∣

≤
n∑

i=1

∑
v∈Vi

E
X,Z

[∣∣∣∣EU [Hv(X + Z ∧ U)]
∣∣∣∣]

≤ nw · max
v

E
X,Z

[∣∣∣∣EU [Hv(X + Z ∧ U)]
∣∣∣∣] ,

where the first inequality uses the triangle inequality and the fact that
|EU [fv→(X +Z ∧U)]| ≤ 1. It is thus sufficient to bound the right-hand
side. For every i and v ∈ Vi, we have

E
X,Z

[∣∣∣∣EU [Hv(X + Z ∧ U)]
∣∣∣∣]2

≤ E
X,Z

[(
E
U

[Hv(X + Z ∧ U)]
)2
]

= E
X,Z
U,U ′

[∑
S,S′

f̂→v(S)f̂→v(S′)χS(X + Z ∧ U)χS′(X + Z ∧ U ′)
]

=
∑
S,S′

f̂→v(S)f̂→v(S′) E
X,Z

[
E
U

[χS(X + Z ∧ U)] E
U ′

[χS′(X + Z ∧ U ′)]
]
,

where the sums are over S, S′ ⊆ [i], such that i ∈ S, S′, |S| = |S′| = k,
and the first step is the Cauchy-Schwarz inequality. Now note that, when-
ever Z has a 1 coordinate in S or S′, then EU [χS(X+Z∧U)]EU ′ [χS′(X+
Z∧U ′] = 0. Otherwise when Z is all zeros on both S and S′ coordinates,
we have χS(X +Z ∧U) = χS(X) and χS′(X +Z ∧U ′) = χS′(X). Now
since X is 2k-wise uniform, in this case we get

E
X

[
E
U

[χS(X + Z ∧ U)] E
U ′

[χS′(X + Z ∧ U ′)]
]

= E
X

[χS(X) · χS′(X)] =

1 if S = S′

0 if S ̸= S′.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

154 Random Restrictions

Putting these facts together, we get∑
S,S′⊆[i]:
i∈S,S′,

|S|=|S′|=k

f̂→v(S)f̂→v(S′) E
X,Z

[
E
U

[χS(X + Z ∧ U)] E
U ′

[χS′(X + Z ∧ U ′])
]

=
∑

S⊆[i]:
i∈S,|S|=k

f̂→v(S)2 Pr
Z

[Zi = 0 ∀i ∈ S]

= 2−k ·
∑

S⊆[i]:
i∈S,|S|=k

f̂→v(S)2 ≤ 2−k,

where the second equality is due to Z being k-wise uniform, and the
last inequality follows from Parseval’s identity.

Given Proposition 5.2, we can get a full ε-PRG for arbitrary-order
ROBPs by choosing k = O(log(wn/ε)) and applying the generic reduc-
tion Lemma 5.25. Using efficient constructions of k-wise and 2k-wise
uniform distributions, an individual restriction can be sampled explicitly
using O(k logn) = O(logn · log(nw

ε)) truly random bits. Therefore, the
overall seed length is as follows.

Theorem 5.28 (PRGs for arbitrary-order ROBPs [91]). For every n,w ∈ N
and ε > 0, there is an explicit ε-PRG for width-w length-n arbitrary-
order ROBPs with seed length O(logn · log(n/ε) · log(nw/ε)). In particu-
lar, when w = poly(n) and ε = 1/ poly(n), the seed length is O(log3 n).

For small values of ε, a better seed length of O(log(nw/ε)·log2 n) can
be achieved by terminating the iterative restriction process after O(logn)
restrictions instead of O(log(n/ε)) restrictions and observing that the
restricted function is an O(log(nw/ε))-junta with high probability. See
Forbes and Kelley’s work for details [91].

5.4.4 A better generator for the small-width setting

Forbes and Kelley showed how to achieve a better seed length when
w is small. The construction is similar, except that k-wise uniform
distributions are replaced by small-bias distributions.10

10In Forbes and Kelley’s work [91], they take the star-set T to be almost k-wise
uniform; this is implied by the small-bias condition (see Theorem 2.6).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.5. PRGs for Read-once CNFs via Early Termination 155

Proposition 5.3 (Preserving the expectation of ROBPs that have low
level-k Fourier weight [91, Lemma 7.2]). Suppose f : {0, 1}n → {0, 1}
is computed by a width-w standard-order ROBP. Moreover, suppose
that X and Z are independent β-biased random variables distributed
over {0, 1}n. Let k ∈ N, and let L =

∑
|S|=k |f̂(S)|. Then the restriction

X ⋆⃝ Z preserves the expectation of f to within

O
((

2−k/2 +
√
β · (L+ 2k/4)

)
· n · w

)
.

The proof of Proposition 5.3 is similar to the proof of Proposition 5.2,
and we omit it. The point is that Proposition 5.3 allows us to take
advantage of bounds on the Fourier growth of f . Plugging Theorem 5.19
into Proposition 5.3 and choosing k = Θ(log(wn/ε)) yields the following.

Proposition 5.4 (Preserving the expectation of low-width ROBPs). For
every w, n ∈ N and ε > 0, there is a value

β = 2−O(log(wn/ε)·w·log log n)

such that if X and Z are independent β-biased random variables dis-
tributed over {0, 1}n, then the restriction X ⋆⃝Z preserves the expecta-
tion of any width-w ROBP f : {0, 1}n → {0, 1} to within ε.

Note that the restriction X ⋆⃝ Z has ⋆-probability 1/2, so we are
assigning values to roughly half the input bits. Furthermore, when w

is a constant, the restriction X ⋆⃝ Z can be sampled using Õ(log(n/ε))
truly random bits. Iterating for O(logn) steps like before leads to the
following PRG.

Theorem 5.29 ([91]). There is an explicit PRG for width-w length-n
arbitrary-order ROBPs with error ε and seed length O(w · log(nw/ε) ·
logn · log logn).

5.5 PRGs for Read-once CNFs via Early Termination

Let F be a class of functions that we wish to fool. In Sections 5.3 and 5.4,
our approach for fooling F was to first design a pseudorandom restriction
R that approximately preserves the expectations of functions in F . Then,
we iteratively applied many copies of this restriction, assigning values

The version of record is available at: http://dx.doi.org/10.1561/0400000109

156 Random Restrictions

to more and more variables. If R assigns values to a p-fraction of the
variables, then we perform roughly p−1 · logn many iterations. Thus, if
each copy of R costs s truly random bits, then this approach leads to a
final seed length of roughly p−1 · s · logn.

In this section, we develop a refined version of the iterated restrictions
paradigm that can lead to an improved seed length in some cases. The
idea is, we start by composing t copies of R, say R′ = R(1) ◦ · · · ◦R(t),
where the number of iterations (t) is significantly smaller than p−1 ·logn,
such as perhaps t = p−1 · log logn. Then, we prove that functions in F
simplify under this composed restriction R′. That is, we show that

∀f ∈ F , Pr[f |R′ ∈ Fsimp] ≥ 1 − δ, (5.9)

where Fsimp is some class of “simpler” functions. Consequently, there is
no need to continue sampling copies of R. Instead, we can use a PRG
for Fsimp to finish the job, taking advantage of the “simplicity” of the
restricted function f |R′ . This leads to a final seed length of s · t + s′,
where s′ is the seed length for fooling Fsimp.

Observe that the restriction R′ in this framework is fully pseudo-
random. Thus, the key challenge of this approach is that it requires
proving a fully-derandomized simplification-under-restrictions lemma
(Equation (5.9)). In Section 5.5.1, we show an example of a fully-
derandomized simplification-under-restriction lemma, for the class of
read-once CNF formulas. Then, in Section 5.5.2, we explain how to use
that lemma to design a near-optimal PRG for such formulas.

5.5.1 Simplification of read-once CNFs under fully-pseudorandom
restrictions

Recall that a CNF is a conjunction of clauses, each of which is a
disjunction of literals. We will show that under a suitable pseudorandom
restriction, a read-once CNF is likely to simplify, in the sense that the
restricted formula only has a few remaining clauses. We begin with the
following convenient definition, which generalizes the notion of γ-almost
k-wise uniformity.

Definition 5.15 (k-wise γ-close distributions). Let Σ be an alphabet, let
n ∈ N, and let X,Y be distributions over Σn. Let k ∈ N and γ > 0. We

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.5. PRGs for Read-once CNFs via Early Termination 157

say that X is k-wise γ-close to Y if for every S ⊆ [n] with |S| ≤ k, the
substrings XS and YS have total variation distance at most γ.

Recall that the width of a clause is the number of literals in the
clause. A width-w CNF is a CNF in which each clause has width at
most w. We begin by analyzing the effect of a “mild” pseudorandom
restriction, i.e., a restriction that only assigns values to a constant
fraction of the input variables. Intuitively, under such a restriction,
the width of a read-once CNF should decrease by a constant factor,
because in any given clause, a constant fraction of the variables should
be assigned values. We show that this indeed occurs in all but a few
“exceptional” clauses.

Lemma 5.30 (Simplification of read-once CNFs under mild fully-pseu-
dorandom restrictions). For every w ∈ N and δ > 0, there is a value
k = O(w + log(1/δ)) such that the following holds. Let f be a width-w
read-once CNF. Let γ = 2−4k, let p ≤ 2−10, and let R̃ be a distribution
over {0, 1, ⋆}n that is k-wise γ-close to Rp. Then with probability 1 − δ,
the restricted function f |

R̃
can be computed by a read-once CNF of the

form f |
R̃

= fnarrow ∧ fsmall, where fnarrow is a read-once CNF of width
at most w/2 and fsmall is a read-once CNF with at most O(log2(1/δ))
clauses.

To prove Lemma 5.30, we rely on the following tail bound, which
we cite without proof.

Theorem 5.31 (Tail bound for almost k-wise independent random vari-
ables [82]). Let q > 0 and let X ∈ {0, 1}m, where X1, . . . , Xm are
independent random variables with E[Xi] ≥ q for each i. Let k be an
even positive integer, let γ > 0, and let X̃ be k-wise γ-close to X.
Then11

Pr
[
X̃1 = X̃2 = · · · = X̃m = 0

]
≤
(16k
qm

)k/2
+ 2k · γ ·

(1
q

)k

.

11The statement in Doron et al.’s work [82] includes an extra assumption k ≤ qm.
This assumption is not necessary, because if k > qm, then the conclusion of the
theorem is trivial.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

158 Random Restrictions

The specific bound of Theorem 5.31 appears in work by Doron et
al. [82] as a corollary of earlier work by Steinke et al. [225]; a similar
bound appears in work by Celis et al. [43]. Now we prove Lemma 5.30
using Theorem 5.31.

Proof of Lemma 5.30. Let k be a multiple of w such that 32k ·2−k/2 ≤ δ.
Let m be the number of clauses in f , say f = C1 ∧· · ·∧Cm. We consider
three cases based on the value of m. For the first case, suppose that
m ≤ 8w. For j ∈ [m], let Xj be the indicator for the bad event that
there are more than w/2 variables that are read by Cj and kept alive
by R. Let fsmall consist of all the clauses with Xj = 1 and let fnarrow
consist of all the clauses with Xj = 0; our job is to show that fsmall has
few clauses with high probability. Let wj be the number of variables
that Cj reads, so wj ≤ w. If R̃ is a truly random restriction R̃ = Rp,
then

E[Xj] ≤
(
wj

w/2

)
· pw/2 ≤ 2w · pw/2 ≤ 2−4w.

For any set S ⊆ [m] of size |S| = k/w, the clauses {Cj}j∈S read a total
of at most k variables, so when R̃ is a pseudorandom restriction (namely
k-wise γ-close to Rp), we have

Pr[XS = 1S] ≤ γ + (2−4w)k/w = 2 · 2−4k.

Therefore, by the union bound,

Pr

∑
j

Xj ≥ k/w

 ≤
(
m

k/w

)
· 2 · 2−4k ≤ 8w·k/w · 2 · 2−4k = 2 · 2−k

≤ δ/(16k).

Note that k/w = O(1 + log(1/δ)/w) ≤ O(log(1/δ)), so indeed, with
high probability, fsmall has at most O(log(1/δ)) clauses.

Next, for the second case, suppose that 8w < m ≤ 8w · 16(k/w).
In this case, write f = f1 ∧ · · · ∧ f16(k/w), where each fj is a read-
once CNF of width at most w with at most 8w clauses. We apply the
previous argument to each fj . By the union bound, with probability
1 − δ, each fj |

R̃
can be written as f (j)

narrow ∧ f
(j)
small, where f (j)

narrow has
width at most w/2 and f

(j)
small has at most O(log(1/δ)) clauses. Define

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.5. PRGs for Read-once CNFs via Early Termination 159

fnarrow =
∧

j f
(j)
narrow and fsmall =

∧
j f

(j)
small, and observe that fsmall has

at most O(log(1/δ) · k/w) ≤ O(log2(1/δ)) clauses.
For the final case, suppose that m > 8w · 16(k/w). In this case, we

will show that with high probability, the restricted function is identically
zero. Let Y = (Y1, . . . , Ym), where Yj indicates whether the clause Cj

is falsified by a truly random restriction, i.e., Yj = 1 ⇐⇒ Cj |Rp ≡ 0.
Similarly, let Ỹ = (Ỹ1, . . . , Ỹm), where Ỹj indicates whether Cj |

R̃
≡ 0.

Observe that Y1, . . . , Ym are independent and E[Yj] ≥ (1−p
2)w ≥ 4−w.

Meanwhile, the vector Ỹ is (k/w)-wise γ-close to Y . Therefore, by
Theorem 5.31,

Pr[f |R ̸≡ 0] = Pr[Ỹ = 0m] ≤
(16k/w

4−wm

)k/(2w)
+ 2(k/w) · γ · 4w(k/w)

≤ 2−k/2 + 2(k/w) · 2−2k

≤ δ.

Next, we analyze the effect of a pseudorandom restriction with a
relatively small ⋆-probability (more similar to the traditional “switching
lemma” regime). By applying Lemma 5.30 several times, we show that
the number of clauses in a read-once CNF drastically decreases under
such a restriction.

Corollary 5.32 (Simplification of read-once CNFs under fully-pseudorandom
restrictions). For every w ∈ N and δ > 0, there is a value k = O(w +
log(1/δ)) such that the following holds. Let f be a width-w read-once
CNF. Let γ = 2−4k, let p ≤ 2−10, let t = ⌈logw⌉, and let R̃(1), . . . , R̃(t)

be independent random variables, where each R̃(j) is k-wise γ-close to
Rp. Then with probability 1 − δ, the restricted function f |

R̃(1)◦···◦R̃(t)

can be computed by a read-once CNF with at most Õ(logw · log2(1/δ))
many clauses.

Proof sketch. We repeatedly apply Lemma 5.30 with failure probability
δ/t. The first time, we apply it to f , which with high probability becomes
fnarrow ∧ fsmall. The second time, we apply it to fnarrow, which becomes
f ′

narrow ∧ f ′
small. The third time, we apply it to f ′

narrow, etc. After t

The version of record is available at: http://dx.doi.org/10.1561/0400000109

160 Random Restrictions

iterations, the width of the “narrow” part drops below 1, so only the
“small” parts remain. All together, the “small” parts have O(t · log2(t/δ))
many clauses.

5.5.2 Iterated restrictions with early termination

So far, we have shown that read-once CNFs simplify under fully-
pseudorandom restrictions (Theorem 5.32). Next, we shall use The-
orem 5.32 to design a PRG for read-once CNFs. Previously, we showed
that δ-biased generators ε-fool read-once AC0 formulas (Section 2.5.3);
this led to a seed length of O(logn · log(1/ε)) for the depth-two case.
Now we will show how to achieve near-optimal seed length Õ(log(n/ε)).

Theorem 5.33 (Near-optimal PRG for read-once depth-two formulas). For
every n ∈ N and ε > 0, there is an explicit ε-PRG for read-once CNFs
and DNFs with seed length Õ(log(n/ε)).

Theorem 5.33 was first proven by Gopalan et al. [105]. (Compared
to Gopalan et al.’s original proof [105], the analysis we present here
is more similar to later work that considers more general models [82],
[148].) Later, Doron et al. [81] achieved a slightly better seed length
of O(logn) + Õ(log(1/ε)). It remains an open problem to achieve the
optimal seed length for this basic and fundamental class.

Open Problem 5.3 (Optimal PRGs for read-once depth-two formulas).
Construct an explicit PRG for read-once CNFs with seed length

O(log(n/ε)).

As outlined at the beginning of this section, we prove Theorem 5.33
using the iterated restrictions paradigm. As the first (and main) step,
let us aim for seed length Õ(w+ log(n/ε)), where w is the width of the
formula.

Lemma 5.34 (PRGs for bounded-width read-once CNFs). For every
w, n ∈ N and ε > 0, there is an explicit ε-PRG for width-w read-once
CNFs on n input variables with seed length Õ(w + log(n/ε)).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.5. PRGs for Read-once CNFs via Early Termination 161

Proof. The PRG outputsR(1)◦· · ·◦R(t)◦Z, where eachR(i) is distributed
according to X ⋆⃝Y , X and Y are β-biased, and Z is α-biased for suitable
values

t = O(logw)
β = 2−Θ(w+log(n/ε)·log log n)

α = 2−Θ(log(1/ε)·log log(w/ε)).

Observe that the seed length is O(t log(n/β) + log(1/α)), which is
indeed Õ(w + log(n/ε)). Our remaining job is to prove correctness. Let
f : {0, 1}n → {0, 1} be a width-w read-once CNF, and let R be the
composed restriction R = R(1) ◦ · · · ◦R(t).

The first step of the correctness proof is to show that each indi-
vidual restriction R(i) preserves the expectation of read-once CNFs.
This is a straightforward consequence of Forbes and Kelley’s work (see
Section 5.4). Indeed, read-once CNFs can be simulated by width-3
arbitrary-order ROBPs. Therefore, by Proposition 5.4, each individual
restriction R(i) preserves the expectation of f to within ε

3t , provided
we choose β < 2−c·log(n/ε)·log log n for a large enough constant c. Con-
sequently, by Lemma 5.24, the composed restriction R preserves the
expectation of f to within ε/3.

The next step is to show that read-once CNFs simplify under the
composed restriction R. This is a straightforward consequence of our
analysis in Section 5.5.1. Indeed, for every k, each individual restriction
R(i) is k-wise (2β · 2k/2)-close to R1/2 by Theorem 2.6. Therefore,
a composition of ten restrictions such as R(1) ◦ · · · ◦ R(10) is k-wise
(20β · 2k/2)-close to Rp where p = 2−10. Therefore, by Theorem 5.32,
with probability 1 − ε/3, the restricted function f |R is computable by a
read-once CNF with at most m∗ many clauses, where m∗ = Õ(logw ·
log2(1/ε)), provided we choose t = 10⌈logw⌉ and β < 2−c′·(w+log(1/ε))

for a large enough constant c′. Let E be the bad event that the restricted
function is not computable by a read-once CNF with only m∗ clauses.

The third step is to show that the small-bias distribution Z fools
the simplified formula. This follows from our analysis in Section 2.5.3.
In that section, we argued that α-bias generators fool read-once CNFs
with error exp(−Ω(log(1/α)/ logn)). Looking at the proof more closely,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

162 Random Restrictions

if the number of clauses is bounded by m∗, then the error is actually
exp(−Ω(log(1/α)/ logm∗)). This error is at most ε/3 provided we choose
a suitable value α = 2−Θ(log(1/ε)·log log(w/ε)).

To wrap up the proof, let us compute the overall error of our PRG.
Let U be a uniform random n-bit string. Then

|E[f(R ◦ Z)] − E[f]|
≤ |E[f(R ◦ Z)] − E[f(R ◦ U)]| + |E[f(R ◦ U)] − E[f]|

≤ E
R

[∣∣∣∣EZ [f |R(Z)] − E
U

[f |R(U)]
∣∣∣∣]+ ε/3

≤ E
R

[∣∣∣∣EZ [f |R(Z)] − E
U

[f |R(U)]
∣∣∣∣ | ¬E

]
+ 2ε/3

≤ ε.

To complete the proof of Theorem 5.33, we need to eliminate the
dependence on width from Lemma 5.34. We accomplish this by a
sandwiching argument.

Lemma 5.35. Let f be a read-once CNF. For every ε > 0, f can be
ε-sandwiched by read-once CNFs of width ⌈log(n/ε)⌉.

Proof. Define fu by deleting from f all clauses of width greater than
⌈log(n/ε)⌉, and meanwhile define fℓ by deleting all but the first
⌈log(n/ε)⌉ literals from each clause. Clearly, fℓ ≤ f ≤ fu. Further-
more, a clause of width ⌈log(n/ε)⌉ has expectation at least 1 − ε/n. A
read-once CNF can have at most n clauses, so by the union bound,

Pr
x

[fu(x) ̸= fℓ(x)] ≤ ε.

Theorem 5.33 is an immediate consequence of Lemmas 5.34, 5.35
and 2.18.

5.5.3 Discussion: Two types of simplification

Looking again at the construction and analysis, our near-optimal PRG
for read-once CNFs is based on combining two distinct simplification-
under-restrictions lemmas:

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.6. Fooling General Branching Programs via the IMZ Framework 163

• The first step of the PRG is applying a Forbes-Kelley pseudoran-
dom restriction R (with ⋆-probability p = 1/2). As discussed in
Section 5.4.1, the fact that R preserves the expectation of every
read-once CNF is equivalent to saying that every read-once CNF
“simplifies on average” under a related partially-pseudorandom
restriction (with ⋆-probability 1 − p = 1/2).

• The second step of the PRG is arguing that read-once CNFs
simplify with high probability under R◦t for some t = O(log logn).
Note that R◦t is a fully-pseudorandom restriction with ⋆-prob-
ability 1/ polylog(n).

This is an attribute of the early termination framework more generally.
In general, when we’re trying to prove the first simplification-under-
restrictions lemma, two things are working in our favor: the relevant
restriction is only partially pseudorandom, and it suffices to show simpli-
fication on average. On the other hand, when we’re trying to prove the
second simplification-under-restrictions lemma, we have something else
going for us: the ⋆-probability is relatively low. The early termination
framework’s power comes from the fact that we get to combine the
advantages of these two different settings.

In the decade since Gopalan et al. [105] introduced the early ter-
mination framework, it has proven to be a versatile and powerful
approach to PRG design, especially in the regime of near-optimal seed
length [80]–[82], [105], [148], [152], [171]. Recently, Lyu introduced
a different “partition-based” refinement of the iterated restrictions
framework, which is also based on showing simplification under purely-
pseudorandom restrictions, and used it to design an improved PRG for
AC0 circuits [166].

5.6 Fooling General Branching Programs via the IMZ Framework

Let F be a class of functions that we wish to fool. Let us suppose
yet again that functions in F simplify with high probability under
restrictions. That is, for some values p, δ > 0, we have

Pr[f |Rp ∈ Fsimp] ≥ 1 − δ, (5.10)

where Fsimp is some class of “simpler” functions.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

164 Random Restrictions

In Section 5.1, we used the polarizing walks framework to design a
PRG for F with a seed length of roughly p−2 · s (ignoring log factors),
where s is the seed length of a PRG for Fsimp. Then, in Section 5.3, we
showed that if it is possible to partially derandomize Equation (5.10),
then we can improve the seed length to roughly p−1 · s using the Ajtai-
Wigderson framework. In this section, we will present a framework due
to Impagliazzo et al. [130] (the “IMZ framework”). Assuming that it
is possible to fully derandomize Equation (5.10), the IMZ framework
gives a PRG for F with a seed length of roughly p−1 + r, where r is
the description length of functions in the “simpler” class Fsimp, i.e.,
r = log |Fsimp|.

Observe that our measure of “simplicity” has changed. In all the
previous sections, what mattered was the cost of fooling functions in
Fsimp (i.e., s), but now, what matters is the cost of describing functions
in Fsimp (i.e., r). Usually, the fooling cost s is much smaller than
the description length r. (Indeed, ideally we hope for s ≈ log r; see
Proposition 1.1.) Nevertheless, the IMZ framework is sometimes superior
to the Ajtai-Wigderson framework, because the final seed length in
the Ajtai-Wigderson framework is approximately the product p−1 · s,
whereas the final seed length in the IMZ framework is closer to the sum
p−1 + r.

We emphasize that the IMZ framework requires a fully-derandomized
simplification-under-restrictions lemma (just like the early termination
framework that we discussed in Section 5.5). In Section 5.6.1, we will
prove a fully-derandomized simplification-under-restrictions lemma for
general branching programs where we only have a bound on the size of
the program (i.e., the number of vertices). Then, in Section 5.6.2, we
explain how to use such a lemma to construct a PRG.

5.6.1 Shrinkage of branching programs under fully-pseudorandom
restrictions

In this section, we study general size-m branching programs, with no
restriction on the width or the number of times each variable is read.

Definition 5.16 (Unrestricted branching programs). A size-m branching
program over n input variables is a directed acyclic graph with at most

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.6. Fooling General Branching Programs via the IMZ Framework 165

x23

x24

x34

x13

x14

x34

x12

x14

x24

x12

x13

x23

acc

rej

1

1

1

1

1

1

1

1

1

1

1

1

0 0 0

0 0 0

0 0 0

0

0

0

vstart

Figure 5.5: Let n = m2, and let x ∈ {0, 1}n = {0, 1}m×m be the adjacency matrix
of an undirected graph G. There is a branching program of size O(m3) = O(n1.5)
that tests whether G has a triangle given x (the case m = 4 is shown above). In
contrast, every read-once branching program computing this function must have width
2Ω(n), even if we allow arbitrary variable ordering. This follows from communication
complexity lower bounds in the best-case partition model [186].

m vertices. Each non-sink vertex v is labeled with an index jv ∈ [n] has
two outgoing edges labeled 0 and 1. A subset Vaccept of the sink vertices
are designated as “accepting vertices.” Given an input x ∈ {0, 1}n, the
program starts at a designated “start vertex” vstart, and in each step,
having reached a vertex v, the program queries xjv and traverses the
corresponding outgoing edge. Eventually, the program reaches a sink
vertex v, and f(x) = 1 ⇐⇒ v ∈ Vaccept (see Figure 5.5).

Let BP(f) denote the size of the smallest branching program comput-
ing f . One can easily show that branching programs shrink under truly
random restrictions, in the sense that E[BP(f |Rp)] ≤ p · BP(f). We will
prove that similar shrinkage occurs with high probability rather than in
expectation, and furthermore that it occurs under a fully pseudorandom
restriction. In particular, our pseudorandom restriction distribution is
as follows.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

166 Random Restrictions

Definition 5.17 (k-wise independent restrictions). Let R be a distribu-
tion over {0, 1, ⋆}n. We say that R is a k-wise independent p-regular
restriction if the coordinates of R are k-wise independent, and the
marginal distributions are given by

Ri =

⋆ with probability p
0 with probability (1 − p)/2
1 with probability (1 − p)/2.

Equivalently, R is k-wise 0-close to Rp (see Definition 5.15).

Lemma 5.36 (High-probability shrinkage of branching programs under
fully-pseudorandom restrictions). For every δ > 0, there is a value k =
O(log(1/δ)) such that for every f : {0, 1}n → {0, 1} and every p > 0, if
R ∈ {0, 1, ⋆}n is a k-wise independent p-regular restriction, then

Pr
[
BP(f |R) ≤ ⌈p · BP(f)⌉ · 2O(

√
log(1/δ))

]
≥ 1 − δ.

As discussed previously, what we really care about is the description
length of f |R, but this can be bounded in terms of the branching program
size BP(f |R). To prove Lemma 5.36, we rely on a tail bound for sums
of k-wise independent random variables, which we cite without proof.12

Theorem 5.37 (Tail bound for sums of k-wise independent random variables
[24, Lemma 2.3]). Let X1, . . . , Xn ∈ [0, 1] be k-wise independent, where
k ≥ 4 is an even integer, and let X =

∑n
i=1Xi. Then for any ∆ > 0,

Pr [|X − E[X]| ≥ ∆] ≤ 8 ·
(
kE[X] + k2

∆2

)k/2

.

Proof of Lemma 5.36. Identify f with a branching program computing
f of size BP(f). For i ∈ [n], letmi be the number of nodes in f that query
xi. Let H be the set of “heavy variables,” namely H = {i : mi > h}

12Here we are citing a bound due to Bellare and Rompel [24]. Skorski has shown
an improvement to Bellare and Rompel’s bound [221], but the improved bound is
slightly more complicated and it makes no difference in our application, so we stick
with Bellare and Rompel’s simpler bound [24].

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.6. Fooling General Branching Programs via the IMZ Framework 167

where h = p ·BP(f) ·2
√

log(1/δ). We first show that with high probability,
few heavy variables are left alive. Indeed, since k >

√
log(1/δ), we have

Pr
[
|H ∩R−1(⋆)| ≥

√
log(1/δ)

]
≤
(

|H|√
log(1/δ)

)
· p

√
log(1/δ)

≤ (p|H|)
√

log(1/δ)

≤ (p · BP(f)/h)
√

log(1/δ)

= δ.

Now let us consider the “light” variables. For each i ̸∈ H, let Xi =
mi · 1[Ri = ⋆]/h ∈ [0, 1]. Let X =

∑
i∈H Xi, so E[X] ≤ p · BP(f)/h < 1.

By Theorem 5.37 with ∆ = O(log(1/δ)), we have

Pr[X ≤ O(log(1/δ))] ≥ 1 − δ.

Our branching program for f |R begins by querying all the variables in
H∩R−1(⋆) and storing all those values in memory. Then it simulates the
branching program for f , skipping queries to variables in H∪R−1({0, 1})
since those values are known. The size of the branching program is

2|H∩R−1(⋆)| − 1 + 2|H∩R−1(⋆)| ·
∑

i∈R−1(⋆)\H

mi < (1 + h ·X) · 2|H∩R−1(⋆)|,

which is bounded by ⌈p · BP(f)⌉ · 2O(
√

log(1/δ)) except with probability
2δ. Replacing δ with δ/2 completes the proof.

The parameters of Lemma 5.36 are perhaps a bit disappointing.
Let m = BP(f). When δ < 2−Θ(log2 m), the lemma breaks down: it
is not able to show that any shrinkage occurs with probability 1 − δ.
Unfortunately, this is unavoidable. Indeed, by a standard counting
argument, there exists a function f with BP(f) ≥ m that only reads
k

def= O(logm) of the input variables. For this function f , assuming
p ≥ 1/m, even under a truly random restriction R = Rp, we have

Pr[BP(f |R) = BP(f)] ≥ pk ≥ 2−O(log2 m).

Thus, in the regime p ≥ 1/m (which is the most interesting regime),
one cannot prove a shrinkage lemma where the failure probability is
exponentially small compared to m.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

168 Random Restrictions

5.6.2 PRGs from fully-derandomized shrinkage lemmas

Now let us present the IMZ reduction.

Theorem 5.38 (Simplification under fully-pseudorandom restrictions =⇒
PRG [130]). Let F and Fsimp be classes of functions f : {0, 1}n → {0, 1}.
Assume that F is closed under restrictions and shifts, and assume that
Fsimp contains the constant 0 function. Let δ > 0, and let R be a
random variable over {0, 1, ⋆}n that can be explicitly sampled using q
truly random bits such that

∀f ∈ F , Pr[f |R ∈ Fsimp] ≥ 1 − δ.

Assume that we can explicitly compute a value p such that for every
i ∈ [n], we have Pr[Ri = ⋆] ≥ p. Let r ∈ N, and assume that (a)
log |Fsimp| ≤ r and (b) there is an explicit δ-PRG for Fsimp with seed
length r.13 Then there is an explicit PRG that fools F with error O(tδ)
and seed length O(t · (q + log(r/δ)) + r), where t = ⌈p−1 ln(n/δ)⌉.

We think of q and polylog(nm/δ) as “small,” so the seed length
in Theorem 5.38 is indeed approximately p−1 + r, as suggested at the
beginning of this section. For branching programs, Theorem 5.38 implies
the following PRG.

Corollary 5.39 (PRG for branching programs [130]). For any n,m, ε,
there is an explicit ε-PRG for size-m branching programs with seed
length

√
m · 2O(

√
log(m/ε)) · polylogn.

When ε = 1/ poly(m) and m ≥ n, the seed length in Theorem 5.39
is m

1
2 +o(1).

Proof sketch. Assume without loss of generality that logn ≤ m ≤ n2.
Let p be the largest power of two with p < 1/

√
m. Let t = ⌈p−1 ln(n/ε)⌉

and let δ = Θ(ε/t). Let R be a k-wise independent p-regular restriction
where k = O(log(1/δ)). By a construction similar to the proof of
Theorem 2.2, the distribution R can be sampled explicitly using q truly
random bits, where

q = O(k log(n/p)) = O(log(m/ε) logn).
13Given condition (a), condition (b) is relatively mild; note that the optimal seed

length would be O(log(r/δ)) (see Proposition 1.1).

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.6. Fooling General Branching Programs via the IMZ Framework 169

Let Fsimp be the class of all branching programs of size at most m′,
where

m′ = ⌈p ·m⌉ · 2O(
√

log(1/δ)) =
√
m · 2O(

√
log(m/ε)).

By Lemma 5.36, for every size-m branching program f , we have
Pr[f |R ∈ Fsimp] ≥ 1 − δ. Let r = O(m′ logn). Then log |Fsimp| ≤ r,
and furthermore there is an explicit PRG that perfectly fools Fsimp
with seed length r, namely an m′-wise uniform generator. Therefore, by
Theorem 5.38, there is an explicit PRG for size-m branching programs
with error O(tδ) = ε and seed length

O(t · (q + log(r/δ)) + r) =
√
m · 2O(

√
log(m/ε)) · polylog(n).

In their original paper, Impagliazzo et al. [130] used the IMZ frame-
work to design PRGs for a few additional classes, such as De Morgan
formulas. Later, Hatami et al. [120] gave improved PRGs for branching
programs and De Morgan formulas using variants of the IMZ framework.
For branching programs, the improved seed length is

√
m · polylog(n/ε),

which is close to the lack-of-lower-bounds barrier. See also the work of
Cheraghchi et al. [63] for another variation on the IMZ framework.

Now let us get started proving the basic IMZ reduction (Theo-
rem 5.38). The proof draws inspiration from the Nisan-Zuckerman
generator (Section 3.4). The high-level intuition is that when we do
a restriction, the restricted function cannot encode much information
about the random bits we have used so far (since it can be succinctly
described), and therefore we can use an extractor to recycle the random
bits.

In detail, let G : {0, 1}r → {0, 1}n be a δ-PRG for Fsimp, let

Ext : {0, 1}ℓ × {0, 1}d → {0, 1}r

be an (ℓ− r, δ)-extractor, and let G′ denote the following PRG.

1. Sample t independent copies R(1), . . . , R(t) of the restriction R.

2. Sample X,Y (1), . . . , Y (t) uniformly at random, let Z(i) = Ext(X,
Y (i)), and output

t∑
i=1

R(i) ◦G(Z(i)),

where the sum is over Fn
2 .

The version of record is available at: http://dx.doi.org/10.1561/0400000109

170 Random Restrictions

Lemma 5.40 (Correctness of the IMZ reduction). Under the assumptions
of Theorem 5.38, the generator G′ defined above fools F with error
O(tδ).

Proof. The proof is a hybrid argument. Sample U (1), . . . , U (t) ∈ {0, 1}n

independently and uniformly at random. Define hybrid distributions
H(0), . . . ,H(t) by

H(j) =

 j∑
i=1

R(i) ◦ U (i)

+
t∑

i=j+1
R(i) ◦G(Z(i)),

i.e., in the first j terms of the sum, we fill in the stars of R(i) using
truly random bits instead of the pseudorandom bits G(Z(i)). Fix some
f ∈ F and some j ∈ [t]. Let us show that E[f(H(j−1))] ≈ E[f(H(j))].

There is a random variable B, independent of U (j) and Y (j), such
that

H(j−1) = B +R(j) ◦G(Z(j))
H(j) = B +R(j) ◦ U (j).

(Note that B and X are not independent.) Define f+B(x) = f(x+B),
define F = f+B|R(j) , and define

F ′ =

F if F ∈ Fsimp

the 0 function if F /∈ Fsimp.

By construction, F ′ ∈ Fsimp, so F ′ can be described using r bits. By
Lemma 3.17, H̃min(X | F ′) ≥ ℓ− r. Therefore, by Lemma 3.18,

dTV((Z(j), F ′), (U,F ′)) ≤ 3δ,

where U is a uniform random r-bit string independent of F ′. Applying
a deterministic function can only make two distributions closer, so

|E[F ′(G(Z(j)))] − E[F ′(G(U))]| ≤ 3δ.

Since F ′ ∈ Fsimp, the generator G fools F ′ with error δ, hence
|E[F ′(G(U))] − E[F ′(U (j))]| ≤ δ. Furthermore, with probability 1 − δ,
we have F ≡ F ′. Therefore, overall,

The version of record is available at: http://dx.doi.org/10.1561/0400000109

5.6. Fooling General Branching Programs via the IMZ Framework 171

|E[F (G(Z(j)))] − E[F (U (j))]| ≤ 5δ,

or equivalently,

|E[f(H(j−1))] − E[f(H(j))]| ≤ 5δ.

Clearly, H(0) is the output distribution of our PRG G′. By the
triangle inequality, H(0) and H(t) are nearly indistinguishable to f . To
complete the proof, let us show that H(t) is statistically close to uniform.
Indeed, for each j ∈ [n], we have

Pr[∀i ∈ [t], R(i)
j ̸= ⋆] ≤ (1 − p)t ≤ e−pt ≤ δ/n.

Therefore, by the union bound, with probability at least 1 − δ, we have⋃t
i=1(R(i))−1(⋆) = [n]. In this case, with repsect to the randomness of

U (1), . . . , U (t), the distribution H(t) is uniform. Therefore, overall, the
total variation distance between H(t) and the uniform distribution is at
most δ, and hence G′ fools f with error (5t+ 1)δ.

To complete the proof of Theorem 5.38, we bound the seed length
of G′.

Proof of Theorem 5.38. The restrictions R(1), . . . , R(t) cost qt truly ran-
dom bits in total. Using the GUV extractor (Theorem 3.16), the
source length ℓ of the extractor Ext is O(r), and its seed length is
d = O(log(r/δ)). Therefore, the total seed length is (q + d)t+ ℓ, which
is O((q + log(r/δ)) · t+ r) as claimed.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

Acknowledgements

We thank Yevgeniy Dodis, Oded Goldreich, Avishay Tal, Salil Vadhan,
Emanuele Viola, Avi Wigderson, David Zuckerman, and anonymous
reviewers for helpful comments on drafts of this work.

Part of this work done while the second author was visiting the
Simons Institute for the Theory of Computing. Part of this work was
done while the second author was a graduate student at the University
of Texas at Austin.

172

The version of record is available at: http://dx.doi.org/10.1561/0400000109

Appendices

The version of record is available at: http://dx.doi.org/10.1561/0400000109

A
Converse of the Sandwiching Lemma

Suppose we wish to show that every distribution that fools one class
Fsimp also fools another class F . We presented two techniques for proving
such a “transfer theorem”:

1. The first technique is to express each f ∈ F as a linear combination
of functions in Fsimp and invoke the Triangle Inequality for PRG
Errors.

2. The second technique is to sandwich each f ∈ F between functions
in Fsimp and invoke the Sandwiching Lemma.

As discussed in Section 2.5.1, we will now prove the following converse
statement: If every distribution that fools Fsimp also fools F , then every
f ∈ F is sandwiched between linear combinations of functions in Fsimp.

Theorem A.1 (Characterization of when fooling one class implies fooling
another). Let n ∈ N, let Fsimp be a finite class of functions f : {0, 1}n →
R, and let g : {0, 1}n → R. Let ε0, ε > 0 and suppose that every
distribution X that fools Fsimp with error ε0 also fools g with error ε.

174

The version of record is available at: http://dx.doi.org/10.1561/0400000109

175

Then g is (2ε)-sandwiched between two functions fℓ, fu : {0, 1}n → R
of the form

fℓ(x) = λ
(0)
ℓ +

kℓ∑
i=1

λ
(i)
ℓ f

(i)
ℓ (x) (A.1)

fu(x) = λ(0)
u +

ku∑
i=1

λ(i)
u f (i)

u (x), (A.2)

where kℓ, ku ∈ N, λ(i)
ℓ , λ

(i)
u ∈ R, f (i)

ℓ , f
(i)
u ∈ Fsimp, and

ε0 ·
kℓ∑

i=1
|λ(i)

ℓ | ≤ ε (A.3)

ε0 ·
ku∑
i=1

|λ(i)
u | ≤ ε. (A.4)

Conversely, if we start from the assumption that Equations (A.1)
to (A.4) hold, then for any distribution X that fools Fsimp with error
ε0, the Triangle Inequality for PRG Errors implies that X fools fℓ and
fu with error ε, and therefore the Sandwiching Lemma implies that X
fools g with error 3ε. This recovers the assumption of Theorem A.1 up
to a factor of three1 in the error parameter. In this sense, Theorem A.1
shows that the Triangle Inequality for PRG Errors and the Sandwiching
Lemma are “complete.”

Before presenting the proof, let us elaborate on what the theorem
says in two important special cases.

• Let Fsimp be the class of Boolean k-juntas and let ε0 = 0. Then
Theorem A.1 says that a function is fooled by every k-wise uniform
distribution if and only if the function can be sandwiched between
two low-degree real polynomials. This was first shown by Bazzi
[20] and, independently, by Benjamini et al. [26].

• Next, let Fsimp to be the class of parity functions. Then Theo-
rem A.1 essentially says that a function is fooled by every small-
bias distribution if and only if the function can be sandwiched

1A more refined analysis, involving a more cumbersome version of the Sandwiching
Lemma, gives a tight characterization without the extra factor of three.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

176 Converse of the Sandwiching Lemma

between two functions with low Fourier L1 norm.2 This was first
shown by De et al. [75].3

The general case seems to be folklore.

Proof of Theorem A.1. The proof uses linear programming duality. For
each f ∈ Fsimp, define f : {0, 1}n → R by f(x) = f(x) − E[f]. Consider
the following linear program in the variables {px}x∈{0,1}n :

Maximize
∑

x∈{0,1}n

pxg(x),

subject to px ≥ 0 for all x ∈ {0, 1}n

and
∑

x∈{0,1}n

px = 1

and
∑

x∈{0,1}n

pxf(x) ≤ ε0 for all f ∈ Fsimp

and −
∑

x∈{0,1}n

pxf(x) ≤ ε0 for all f ∈ Fsimp.

The constraints say that the px variables are the probability mass
function of some distribution that fools Fsimp with error ε0. The program
is feasible, because if nothing else we can set px = 2−n (the uniform
distribution). The objective function is the expectation of g under the
distribution defined by the px variables, so the optimal value must be
at most E[g] + ε.

The dual linear program, in the variables z and {y+
f , y

−
f }f∈Fsimp , is

as follows:

Minimize z + ε0 ·
∑

f∈F0

(y+
f + y−

f),

subject to y+
f , y

−
f ≥ 0 for all f ∈ Fsimp

and z +
∑

f∈F0

f(x) · (y+
f − y−

f) ≥ g(x) for all x ∈ {0, 1}n.

2Actually the quantity that matters is the sum of absolute values of the nonempty
Fourier coefficients, whereas we included the empty Fourier coefficient in our definition
of Fourier L1 norm.

3Note that there is a minor mistake in the formulation by De et al. [75]: in their
Proposition 2.7, the lower and upper sandwichers should be allowed to have different
values of “l” and “δ.”

The version of record is available at: http://dx.doi.org/10.1561/0400000109

177

By strong LP duality, the optimal value of this dual linear program is
also at most E[g] + ε. Observe that given a feasible solution to the dual
linear program, if we subtract min{y+

f , y
−
f } from y+

f and from y−
f , then

we get another feasible solution and the objective function can only
decrease. Therefore, by setting yf = y+

f − y−
f , we obtain real numbers

z∗ and {y∗
f }f∈Fsimp such that

z∗ + ε0 ·
∑

f∈Fsimp

|y∗
f | ≤ E[g] + ε, and

z∗ +
∑

f∈Fsimp

f(x)y∗
f ≥ g(x) for all x ∈ {0, 1}n.

Define

fu(x) = z∗ +
∑

f∈Fsimp

y∗
f · f(x)

=

z∗ −
∑

f∈Fsimp

y∗
f E[f]

+
∑

f∈Fsimp

y∗
f · f(x).

Then fu has the form given by Equation (A.2), and fu ≥ g. Furthermore,
E[fu] = z∗, so

0 ≤ E[fu − g] = z∗ − E[g] ≤ ε− ε0 ·
∑

f∈Fsimp

|y∗
f |.

This shows that E[fu − g] ≤ ε and that Equation (A.4) holds.
Fooling g is equivalent to fooling −g, so the above also shows that

there is some function fℓ of the form given by Equation (A.1) such that
−fℓ ≥ −g, E[g − fℓ] ≤ ε, and Equation (A.3) holds. Therefore, g is
(2ε)-sandwiched between fℓ and fu.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

B
List of PRGs

For reference, we conclude this text by listing the best explicit PRG
constructions currently known for various models of computation, ar-
ranged by the model they fool. The list is not meant to be exhaustive;
only a selection of important computational models are included. In
each case, we only record a single state-of-the-art seed length, which in
many cases is superior to the PRG constructions that we presented.

178

The version of record is available at: http://dx.doi.org/10.1561/0400000109

B.1. Circuit Models 179

B.1 Circuit Models

In the list below, we use d to denote depth and m to denote size. Assume
d = O(1) and m ≥ n.

• Conjunctions/disjunctions of literals

– Seed length: O(log(1/ε) + log logn)
– Approach: k-wise δ-bias
– Reference: Folklore

• AC0 circuits

– Seed length: Õ(logd−1m · log(m/ε))
– Approach: Variant of the Ajtai-Wigderson framework
– Reference: [166]

• Read-once CNFs/DNFs

– Seed length: O(logn) + Õ(log(1/ε))
– Approach: Iterated restrictions with early termination
– Reference: [81]

• Read-once AC0 formulas

– Seed length: Õ(log(n/ε))
– Approach: Iterated restrictions with early termination
– References: [80], [82]

• De Morgan formulas

– Seed length: m1/3+o(1) · polylog(1/ε)
– Approach: Variant of the IMZ framework
– Reference: [120]

• Read-once De Morgan formulas

– Seed length: O(log2 n · log(n/ε))
– Approach: Iterated restrictions
– Reference: [91]

The version of record is available at: http://dx.doi.org/10.1561/0400000109

180 List of PRGs

B.2 Branching Program Models

In the list below, we use m to denote size and w to denote width.
Assume m ≥ n.

• Unrestricted branching programs

– Seed length:
√
m · polylog(n/ε)

– Approach: Variant of the IMZ framework
– Reference: [120]

• Width-2 branching programs that read d bits at a time

– Seed length: O(d logn+ d · 2d · log(m/ε))
– Approach: Sum of d δ-biased distributions
– Reference: [29]

• Standard-order ROBPs with w = 3

– Seed length: Õ(logn · log(1/ε))
– Approach: Iterated restrictions with early termination
– Reference: [171]

• Standard-order ROBPs with 4 ≤ w ≤ n

– Seed length: O(log(n/ε) · logn)
– Approach: Recycling seeds
– References: [131], [181]

• Standard-order ROBPs with w ≫ n

– Seed length: O
(

log(w/ε)·log n
log log w

)
– Approach: Recycling seeds
– References: [13], [140]

The version of record is available at: http://dx.doi.org/10.1561/0400000109

B.2. Branching Program Models 181

• Standard-order regular ROBPs

– Seed length: Õ(log(w/ε) · logn)
– Approach: INW generator
– Reference: [38]

• Standard-order permutation ROBPs with w = O(1)

– Seed length: O(logn · log(1/ε))
– Approach: INW generator
– References: [74], [145], [224]

• Arbitrary-order ROBPs

– Seed length: O(log(wn/ε) · log2 n)
– Approach: Iterated restrictions
– Reference: [91]

• Arbitrary-order ROBPs with w = O(1)

– Seed length: Õ(log(n/ε) · logn)
– Approach: Iterated restrictions
– Reference: [91]

• Arbitrary-order permutation ROBPs with w = O(1)

– Seed length: Õ(logn · log(1/ε))
– Approach: Polarizing random walks
– Reference: [49]

• Decision trees, or more generally parity decision trees

– Seed length: O(log(m/ε))
– Approach: δ-bias
– Reference: [146]

The version of record is available at: http://dx.doi.org/10.1561/0400000109

182 List of PRGs

B.3 Algebraic Models

• Parity functions

– Seed length: O(log(n/ε))
– Approach: Balanced codes
– References: [178], [217]

• Parities of at most k bits

– Seed length: O(log(k/ε)) + log logn
– Approach: ε-biased seed for k-wise uniform generator
– Reference: [178]

• Degree-d polynomials over F2

– Seed length: O(d logn+ d2d log(1/ε))
– Approach: Sum of d δ-biased distributions
– Reference: [242]

B.4 Models Based on Locality

• [−1, 1]-valued k-juntas

– Seed length: O(k + log(1/ε) + log logn)
– Approach: k-wise δ-bias
– Reference: [178]

• Two-dimensional combinatorial rectangles

– Seed length: n
2 +O(log(1/ε))

– Approach: Random edge of expander
– Reference: [131]

• d-dimensional combinatorial rectangles

– Seed length: Õ(n/d+ log(1/ε) + log logn)
– Approach: Iterative alphabet reduction
– Reference: [106]

The version of record is available at: http://dx.doi.org/10.1561/0400000109

B.4. Models Based on Locality 183

• Two-party communication protocols with cost m

– Seed length: n
2 +O(m+ log(1/ε))

– Approach: Random edge of expander
– Reference: [131]

The version of record is available at: http://dx.doi.org/10.1561/0400000109

References

[1] S. Aaronson, “BQP and the polynomial hierarchy,” in Proc.
42nd Annual ACM Symposium on Theory of Computing (STOC),
pp. 141–150, 2010. doi: 10.1145/1806689.1806711.

[2] A. Ahmadinejad, J. Kelner, J. Murtagh, J. Peebles, A. Sidford,
and S. Vadhan, “High-precision estimation of random walks
in small space,” in Proc. 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 1295–1306, 2020.
doi: 10.1109/FOCS46700.2020.00123.

[3] M. Ajtai, J. Komlós, and E. Szemerédi, “Deterministic simulation
in logspace,” in Proc. 19th Annual ACM Symposium on Theory
of Computing (STOC), pp. 132–140, 1987. doi: 10.1145/28395.
28410.

[4] M. Ajtai and A. Wigderson, “Deterministic simulation of prob-
abilistic constant-depth circuits,” Advances in Computing Re-
search – Randomness and Computation, vol. 5, 1989, pp. 199–
23.

[5] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, “RSA and
Rabin functions: Certain parts are as hard as the whole,” SIAM J.
Comput., vol. 17, no. 2, 1988, pp. 194–209. doi: 10.1137/0217013.

[6] N. Alon, “Eigenvalues and expanders,” Combinatorica, vol. 6,
no. 2, 1986, pp. 83–96. doi: 10.1007/BF02579166.

184

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1145/28395.28410
https://doi.org/10.1145/28395.28410
https://doi.org/10.1137/0217013
https://doi.org/10.1007/BF02579166

References 185

[7] N. Alon, “Explicit expanders of every degree and size,” Combi-
natorica, vol. 41, no. 4, 2021, pp. 447–463. doi: 10.1007/s00493-
020-4429-x.

[8] N. Alon, L. Babai, and A. Itai, “A fast and simple randomized
parallel algorithm for the maximal independent set problem,” J.
Algorithms, vol. 7, no. 4, 1986, pp. 567–583. doi: 10.1016/0196-
6774(86)90019-2.

[9] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, “Simple con-
structions of almost k-wise independent random variables,” Ran-
dom Structures & Algorithms, vol. 3, no. 3, 1992, pp. 289–304.
doi: 10.1002/rsa.3240030308.

[10] E. Anand and C. Umans, “Pseudorandomness of the sticky
random walk,” arXiv preprint arXiv:2307.11104, 2023.

[11] A. E. Andreev, A. E. F. Clementi, and J. D. P. Rolim, “A new
general derandomization method,” J. ACM, vol. 45, no. 1, 1998,
pp. 179–213. doi: 10.1145/273865.273933.

[12] A. E. Andreev, A. E. F. Clementi, J. D. P. Rolim, and L. Trevisan,
“Weak random sources, hitting sets, and BPP simulations,”
SIAM J. Comput., vol. 28, no. 6, 1999, pp. 2103–2116. doi:
10.1137/S0097539797325636.

[13] R. Armoni, “On the derandomization of space-bounded compu-
tations,” in Proc. 2nd International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science (RAN-
DOM), pp. 47–59, 1998. doi: 10.1007/3-540-49543-6_5.

[14] R. Armoni, M. Saks, A. Wigderson, and S. Zhou, “Discrep-
ancy sets and pseudorandom generators for combinatorial rect-
angles,” in Proc. 37th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 412–421, 1996. doi:
10.1109/SFCS.1996.548500.

[15] S. Arora and B. Barak, Computational Complexity: A Modern
Approach. Cambridge University Press, 2009. doi: 10 . 1017 /
CBO9780511804090.

[16] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, “BPP has
subexponential time simulations unless EXPTIME has publish-
able proofs,” Comput. Complexity, vol. 3, no. 4, 1993, pp. 307–
318. doi: 10.1007/BF01275486.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1145/273865.273933
https://doi.org/10.1137/S0097539797325636
https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1109/SFCS.1996.548500
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1007/BF01275486

186 References

[17] L. Babai, P. Hajnal, E. Szemerédi, and G. Turán, “A lower bound
for read-once-only branching programs,” J. Comput. System
Sci., vol. 35, no. 2, 1987, pp. 153–162. doi: 10 . 1016 / 0022 -
0000(87)90010-9.

[18] L. Babai, N. Nisan, and M. Szegedy, “Multiparty protocols,
pseudorandom generators for logspace, and time-space trade-
offs,” J. Comput. System Sci., vol. 45, no. 2, 1992, pp. 204–232.
doi: 10.1016/0022-0000(92)90047-M.

[19] D. A. Barrington, “Bounded-width polynomial-size branching
programs recognize exactly those languages in NC1,” J. Comput.
System Sci., vol. 38, no. 1, 1989, pp. 150–164. doi: 10.1016/0022-
0000(89)90037-8.

[20] L. M. J. Bazzi, “Polylogarithmic independence can fool DNF
formulas,” SIAM J. Comput., vol. 38, no. 6, 2009, pp. 2220–2272.
doi: 10.1137/070691954.

[21] P. Beame, T. S. Jayram, and M. Saks, “Time-space tradeoffs
for branching programs,” J. Comput. System Sci., vol. 63, no. 4,
2001, pp. 542–572. doi: 10.1006/jcss.2001.1778.

[22] P. Beame, V. Liew, and M. Pǎtraşcu, “Finding the median
(obliviously) with bounded space,” in Proc. 42nd International
Colloquium on Automata, Languages and Programming (ICALP),
pp. 103–115, 2015. doi: 10.1007/978-3-662-47672-7_9.

[23] R. Beigel, N. Reingold, and D. A. Spielman, “The perceptron
strikes back,” in Proc. 6th Annual IEEE Conference on Structure
in Complexity Theory, pp. 286, 287, 288, 289, 290, 291, Jul. 1991.
doi: 10.1109/SCT.1991.160270.

[24] M. Bellare and J. Rompel, “Randomness-efficient oblivious sam-
pling,” in Proc. 35th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 276–287, 1994. doi: 10.1109/
SFCS.1994.365687.

[25] A. Ben-Aroya and A. Ta-Shma, “A combinatorial construction
of almost-Ramanujan graphs using the zig-zag product,” SIAM
J. Comput., vol. 40, no. 2, 2011, pp. 267–290. doi: 10.1137/
080732651.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1016/0022-0000(87)90010-9
https://doi.org/10.1016/0022-0000(87)90010-9
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1137/070691954
https://doi.org/10.1006/jcss.2001.1778
https://doi.org/10.1007/978-3-662-47672-7_9
https://doi.org/10.1109/SCT.1991.160270
https://doi.org/10.1109/SFCS.1994.365687
https://doi.org/10.1109/SFCS.1994.365687
https://doi.org/10.1137/080732651
https://doi.org/10.1137/080732651

References 187

[26] I. Benjamini, O. Gurel-Gurevich, and R. Peled, “On k-wise inde-
pendent distributions and boolean functions,” arXiv:1201.3261,
2012.

[27] L. Blum, M. Blum, and M. Shub, “A simple unpredictable pseu-
dorandom number generator,” SIAM J. Comput., vol. 15, no. 2,
1986, pp. 364–383. doi: 10.1137/0215025.

[28] M. Blum and S. Micali, “How to generate cryptographically
strong sequences of pseudorandom bits,” SIAM J. Comput.,
vol. 13, no. 4, 1984, pp. 850–864. doi: 10.1137/0213053.

[29] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff, “Pseudoran-
domness for width-2 branching programs,” Theory of Computing,
vol. 9, 2013, pp. 283–293. doi: 10.4086/toc.2013.v009a007.

[30] A. Bogdanov, W. M. Hoza, G. Prakriya, and E. Pyne, “Hit-
ting Sets for Regular Branching Programs,” in Proc. 37th Com-
putational Complexity Conference (CCC), 3:1–3:22, 2022. doi:
10.4230/LIPIcs.CCC.2022.3.

[31] A. Bogdanov, P. A. Papakonstantinou, and A. Wan, “Pseudoran-
domness for read-once formulas,” in FOCS, R. Ostrovsky, Ed.,
pp. 240–246, IEEE, 2011.

[32] A. Bogdanov and E. Viola, “Pseudorandom bits for polynomials,”
SIAM J. Comput., vol. 39, no. 6, 2010, pp. 2464–2486. doi:
10.1137/070712109.

[33] R. B. Boppana, “The average sensitivity of bounded-depth cir-
cuits,” Inf. Process. Lett., vol. 63, no. 5, 1997, pp. 257–261. doi:
10.1016/S0020-0190(97)00131-2.

[34] C. Bordenave, “A new proof of Friedman’s second eigenvalue
theorem and its extension to random lifts,” Ann. Sci. Éc. Norm.
Supér. (4), vol. 53, no. 6, 2020, pp. 1393–1439. doi: 10.24033/
asens.245.

[35] A. Borodin, D. Dolev, F. E. Fich, and W. Paul, “Bounds for
width two branching programs,” SIAM J. Comput., vol. 15, no. 2,
1986, pp. 549–560. doi: 10.1137/0215040.

[36] M. Braverman, “Polylogarithmic independence fools AC0 cir-
cuits,” J. ACM, vol. 57, no. 5, 2010, 28:1–28:10. doi: 10.1145/
1754399.1754401.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1137/0215025
https://doi.org/10.1137/0213053
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.4230/LIPIcs.CCC.2022.3
https://doi.org/10.1137/070712109
https://doi.org/10.1016/S0020-0190(97)00131-2
https://doi.org/10.24033/asens.245
https://doi.org/10.24033/asens.245
https://doi.org/10.1137/0215040
https://doi.org/10.1145/1754399.1754401
https://doi.org/10.1145/1754399.1754401

188 References

[37] M. Braverman, G. Cohen, and S. Garg, “Pseudorandom pseudo-
distributions with near-optimal error for read-once branching
programs,” SIAM J. Comput., vol. 49, no. 5, 2020, STOC18-242–
STOC18-299. doi: 10.1137/18M1197734.

[38] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff, “Pseudoran-
dom generators for regular branching programs,” SIAM J. Com-
put., vol. 43, no. 3, 2014, pp. 973–986. doi: 10.1137/120875673.

[39] J. Brody and E. Verbin, “The coin problem and pseudorandom-
ness for branching programs,” in Proc. 51st Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 30–39,
2010. doi: 10.1109/FOCS.2010.10.

[40] H. Buhrman and L. Fortnow, “One-sided versus two-sided er-
ror in probabilistic computation,” in Proc. 16th Symposium on
Theoretical Aspects of Computer Science (STACS), pp. 100–109,
1999. doi: 10.1007/3-540-49116-3_9.

[41] J.-Y. Cai, A. Nerurkar, and D. Sivakumar, “Hardness and hier-
archy theorems for probabilistic quasi-polynomial time,” in Proc.
31st Annual ACM Symposium on Theory of Computing (STOC),
pp. 726–735, 1999. doi: 10.1145/301250.301444.

[42] M. L. Carmosino, R. Impagliazzo, and M. Sabin, “Fine-Grained
Derandomization: From Problem-Centric to Resource-Centric
Complexity,” in Proc. 45th International Colloquium on Au-
tomata, Languages and Programming (ICALP), 27:1–27:16, 2018.
doi: 10.4230/LIPIcs.ICALP.2018.27.

[43] L. E. Celis, O. Reingold, G. Segev, and U. Wieder, “Balls and
bins: Smaller hash families and faster evaluation,” SIAM J.
Comput., vol. 42, no. 3, 2013, pp. 1030–1050. doi: 10 .1137/
120871626.

[44] S. Chari, P. Rohatgi, and A. Srinivasan, “Improved algorithms via
approximations of probability distributions,” J. Comput. System
Sci., vol. 61, no. 1, 2000, pp. 81–107. doi: 10.1006/jcss.1999.1695.

[45] E. Chattopadhyay, “Pseudorandomness and combinatorial con-
structions,” 2018. URL: https://courses.cs.cornell.edu/cs6815/
2018fa/.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1137/18M1197734
https://doi.org/10.1137/120875673
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.1007/3-540-49116-3_9
https://doi.org/10.1145/301250.301444
https://doi.org/10.4230/LIPIcs.ICALP.2018.27
https://doi.org/10.1137/120871626
https://doi.org/10.1137/120871626
https://doi.org/10.1006/jcss.1999.1695
https://courses.cs.cornell.edu/cs6815/2018fa/
https://courses.cs.cornell.edu/cs6815/2018fa/

References 189

[46] E. Chattopadhyay, “Pseudorandomness and combinatorial con-
structions,” 2019. URL: https://courses.cs.cornell.edu/cs6815/
2019fa/.

[47] E. Chattopadhyay, “Pseudorandomness and combinatorial con-
structions,” 2022. URL: https://courses.cs.cornell.edu/cs6815/
2022fa/.

[48] E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A.
Shetty, “Fractional Pseudorandom Generators from Any Fourier
Level,” in Proc. 36th Computational Complexity Conference
(CCC), 10:1–10:24, 2021. doi: 10.4230/LIPIcs.CCC.2021.10.

[49] E. Chattopadhyay, P. Hatami, K. Hosseini, and S. Lovett, “Pseu-
dorandom generators from polarizing random walks,” Theory
Comput., vol. 15, no. 1, 2019, pp. 1–26. doi: 10.4086/toc.2019.
v015a010.

[50] E. Chattopadhyay, P. Hatami, S. Lovett, and A. Tal, “Pseudoran-
dom Generators from the Second Fourier Level and Applications
to AC0 with Parity Gates,” in Proc. 10th Conference on Innova-
tions in Theoretical Computer Science (ITCS), 22:1–22:15, 2018.
doi: 10.4230/LIPIcs.ITCS.2019.22.

[51] E. Chattopadhyay, P. Hatami, O. Reingold, and A. Tal, “Im-
proved pseudorandomness for unordered branching programs
through local monotonicity,” in Proc. 50th Annual ACM Sympo-
sium on Theory of Computing (STOC), pp. 363–375, 2018. doi:
10.1145/3188745.3188800.

[52] E. Chattopadhyay and J.-J. Liao, “Optimal error pseudodistribu-
tions for read-once branching programs,” in Proc. 35th Annual
IEEE Conference on Computational Complexity (CCC), vol. 169,
25:1–25:27, 2020. doi: 10.4230/LIPIcs.CCC.2020.25.

[53] E. Chattopadhyay and J.-J. Liao, Recursive error reduction for
regular branching programs, ECCC preprint TR23-130, 2023.
URL: https://eccc.weizmann.ac.il/report/2023/130/.

[54] L. Chen, W. M. Hoza, X. Lyu, A. Tal, and H. Wu, Weighted
pseudorandom generators via inverse analysis of random walks
and shortcutting, ECCC preprint TR23-114, 2023. URL: https:
//eccc.weizmann.ac.il/report/2023/114/.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://courses.cs.cornell.edu/cs6815/2019fa/
https://courses.cs.cornell.edu/cs6815/2019fa/
https://courses.cs.cornell.edu/cs6815/2022fa/
https://courses.cs.cornell.edu/cs6815/2022fa/
https://doi.org/10.4230/LIPIcs.CCC.2021.10
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.1145/3188745.3188800
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://eccc.weizmann.ac.il/report/2023/130/
https://eccc.weizmann.ac.il/report/2023/114/
https://eccc.weizmann.ac.il/report/2023/114/

190 References

[55] L. Chen, Z. Lu, X. Lyu, and I. C. Oliveira, “Majority vs. Ap-
proximate Linear Sum and Average-Case Complexity Below
NC1,” in Proc. 48th International Colloquium on Automata,
Languages and Programming (ICALP), 51:1–51:20, 2021. doi:
10.4230/LIPIcs.ICALP.2021.51.

[56] L. Chen, X. Lyu, A. Tal, and H. Wu, “New PRGs for Unbounded-
Width/Adaptive-Order Read-Once Branching Programs,” in
Proc. 50th International Colloquium on Automata, Languages
and Programming (ICALP), vol. 261, 39:1–39:20, 2023. doi:
10.4230/LIPIcs.ICALP.2023.39.

[57] L. Chen, X. Lyu, and R. R. Williams, “Almost-everywhere circuit
lower bounds from non-trivial derandomization,” in Proc. 61st
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 1–12, 2020. doi: 10.1109/FOCS46700.2020.00009.

[58] L. Chen and H. Ren, “Strong average-case circuit lower
bounds from nontrivial derandomization,” SIAM J. Comput.,
vol. 51, no. 3, 2022, STOC20-115–STOC20-173. doi: 10.1137/
20M1364886.

[59] L. Chen, R. D. Rothblum, R. Tell, and E. Yogev, “On exponential-
time hypotheses, derandomization, and circuit lower bounds:
Extended abstract,” in Proc. 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 13–23, 2020. doi:
10.1109/FOCS46700.2020.00010.

[60] L. Chen and R. Tell, “Simple and fast derandomization from
very hard functions: Eliminating randomness at almost no cost,”
in Proc. 53rd Annual ACM Symposium on Theory of Computing
(STOC), pp. 283–291, 2021. doi: 10.1145/3406325.3451059.

[61] K. Cheng and W. M. Hoza, “Hitting sets give two-sided deran-
domization of small space,” Theory of Computing, vol. 18, no. 21,
2022, pp. 1–32. doi: 10.4086/toc.2022.v018a021.

[62] K. Cheng and X. Li, “Efficient document exchange and error
correcting codes with asymmetric information,” in Proc. 2021
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 2424–2443, 2021. doi: 10.1137/1.9781611976465.144.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ICALP.2021.51
https://doi.org/10.4230/LIPIcs.ICALP.2023.39
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1137/20M1364886
https://doi.org/10.1137/20M1364886
https://doi.org/10.1109/FOCS46700.2020.00010
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.4086/toc.2022.v018a021
https://doi.org/10.1137/1.9781611976465.144

References 191

[63] M. Cheraghchi, V. Kabanets, Z. Lu, and D. Myrisiotis, “Circuit
lower bounds for MCSP from local pseudorandom generators,”
ACM Trans. Comput. Theory, vol. 12, no. 3, 2020, Art. 21, 27.
doi: 10.1145/3404860.

[64] R. Chiclana and Y. Peres, “A local central limit theorem for
random walks on expander graphs,” arXiv preprint arXiv:2212.
00958, 2022.

[65] B. Chor and O. Goldreich, “Unbiased bits from sources of weak
randomness and probabilistic communication complexity,” SIAM
J. on Computing, vol. 17, no. 2, 1988, pp. 230–261. doi: 10.1137/
0217015.

[66] B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, and
R. Smolensky, “The bit extraction problem or t-resilient func-
tions,” in Proc. 26th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 396–407, 1985. doi: 10.1109/
SFCS.1985.55.

[67] S. M. Cioabă and M. R. Murty, “Expander graphs and gaps
between primes,” Forum Math., vol. 20, no. 4, 2008, pp. 745–756.
doi: 10.1515/FORUM.2008.035.

[68] T. H. Click, A. Liu, and G. A. Kaminski, “Quality of random
number generators significantly affects results of monte carlo
simulations for organic and biological systems,” Journal of Com-
putational Chemistry, vol. 32, no. 3, 2011, pp. 513–524. doi:
10.1002/jcc.21638.

[69] P. Coddington, “Analysis of random number generators us-
ing monte carlo simulation,” International Journal of Modern
Physics C, vol. 05, no. 03, 1994, pp. 547–560. doi: 10.1142/
S0129183194000726.

[70] G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma,
“Error reduction for weighted PRGs against read once branching
programs,” in Proc. 36th Computational Complexity Conference
(CCC), 22:1–22:17, 2021. doi: 10.4230/LIPIcs.CCC.2021.22.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/3404860
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1515/FORUM.2008.035
https://doi.org/10.1002/jcc.21638
https://doi.org/10.1142/S0129183194000726
https://doi.org/10.1142/S0129183194000726
https://doi.org/10.4230/LIPIcs.CCC.2021.22

192 References

[71] G. Cohen, D. Minzer, S. Peleg, A. Potechin, and A. Ta-Shma,
“Expander Random Walks: The General Case and Limitations,”
in Proc. 49th International Colloquium on Automata, Languages
and Programming (ICALP), 43:1–43:18, 2022. doi: 10.4230/
LIPIcs.ICALP.2022.43.

[72] G. Cohen, N. Peri, and A. Ta-Shma, “Expander random walks:
A Fourier-analytic approach,” in Proc. 53rd Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 1643–1655, ACM,
New York, 2021. doi: 10.1145/3406325.3451049.

[73] M. B. Cohen, “Ramanujan graphs in polynomial time,” in Proc.
57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 276–281, 2016. doi: 10.1109/FOCS.2016.37.

[74] A. De, “Pseudorandomness for permutation and regular branch-
ing programs,” in Proc. 26th Annual IEEE Conference on Com-
putational Complexity (CCC), pp. 221–231, 2011. doi: 10.1109/
CCC.2011.23.

[75] A. De, O. Etesami, L. Trevisan, and M. Tulsiani, “Improved
pseudorandom generators for depth 2 circuits,” in Proc. 14th
International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), pp. 504–517, 2010.
doi: 10.1007/978-3-642-15369-3_38.

[76] R. De Wolf, “A brief introduction to fourier analysis on the
boolean cube,” Theory of Computing, 2008, pp. 1–20.

[77] A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan, “Fine-
grained cryptography,” in Proc. 36th Annual International Cryp-
tology Conference (CRYPTO), pp. 533–562, 2016. doi: 10.1007/
978-3-662-53015-3_19.

[78] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and
E. Viola, “Bounded independence fools halfspaces,” SIAM J.
Comput., vol. 39, no. 8, 2010, pp. 3441–3462. doi: 10 .1137/
100783030.

[79] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy ex-
tractors: How to generate strong keys from biometrics and other
noisy data,” SIAM J. Comput., vol. 38, no. 1, 2008, pp. 97–139.
doi: 10.1137/060651380.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ICALP.2022.43
https://doi.org/10.4230/LIPIcs.ICALP.2022.43
https://doi.org/10.1145/3406325.3451049
https://doi.org/10.1109/FOCS.2016.37
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1007/978-3-642-15369-3_38
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1137/100783030
https://doi.org/10.1137/100783030
https://doi.org/10.1137/060651380

References 193

[80] D. Doron, P. Hatami, and W. M. Hoza, “Near-Optimal Pseudo-
random Generators for Constant-Depth Read-Once Formulas,”
in Proc. 34th Computational Complexity Conference (CCC),
16:1–16:34, 2019. doi: 10.4230/LIPIcs.CCC.2019.16.

[81] D. Doron, P. Hatami, and W. M. Hoza, “Log-Seed Pseudo-
random Generators via Iterated Restrictions,” in Proc. 35th
Computational Complexity Conference (CCC), 6:1–6:36, 2020.
doi: 10.4230/LIPIcs.CCC.2020.6.

[82] D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan, “Pseu-
dorandom Generators for Read-Once Monotone Branching Pro-
grams,” in Proc. 25th International Workshop on Randomization
and Approximation Techniques in Computer Science (RAN-
DOM), 58:1–58:21, 2021. doi: 10 . 4230 / LIPIcs . APPROX /
RANDOM.2021.58.

[83] D. Doron, D. Moshkovitz, J. Oh, and D. Zuckerman, “Nearly
optimal pseudorandomness from hardness,” in Proc. 61st Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 1057–1068, 2020. doi: 10.1109/FOCS46700.2020.00102.

[84] S. Egashira, Y. Wang, and K. Tanaka, “Fine-grained cryptogra-
phy revisited,” J. Cryptology, vol. 34, no. 3, 2021, Paper No. 23,
43. doi: 10.1007/s00145-021-09390-3.

[85] P. Erdős, P. Frankl, and Z. Füredi, “Families of finite sets in
which no set is covered by the union of r others,” Israel J. Math.,
vol. 51, no. 1-2, 1985, pp. 79–89. doi: 10.1007/BF02772959.

[86] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Veličković, “Ef-
ficient approximation of product distributions,” Random Struc-
tures Algorithms, vol. 13, no. 1, 1998, pp. 1–16. doi: 10.1002/
(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W.

[87] B. Fefferman, R. Shaltiel, C. Umans, and E. Viola, “On beating
the hybrid argument,” Theory Comput., vol. 9, 2013, pp. 809–843.
doi: 10.4086/toc.2013.v009a026.

[88] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, “Monte carlo
simulations: Hidden errors from ‘good’ random number gener-
ators,” Phys. Rev. Lett., vol. 69, 23 Dec. 1992, pp. 3382–3384.
doi: 10.1103/PhysRevLett.69.3382.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.CCC.2019.16
https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.58
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.58
https://doi.org/10.1109/FOCS46700.2020.00102
https://doi.org/10.1007/s00145-021-09390-3
https://doi.org/10.1007/BF02772959
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.1103/PhysRevLett.69.3382

194 References

[89] T. Filk, M. Marcu, and K. Fredenhagen, “Long range correlations
in random number generators and their influence on monte carlo
simulations,” Physics Letters B, vol. 165, no. 1, 1985, pp. 125–
130. doi: 10.1016/0370-2693(85)90705-1.

[90] Y. Filmus, “Smolensky’s lower bound,” 2010. URL: https://
yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf.

[91] M. A. Forbes and Z. Kelley, “Pseudorandom generators for read-
once branching programs, in any order,” in Proc. 59th Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 946–955, 2018. doi: 10.1109/FOCS.2018.00093.

[92] J. Friedman, “Some geometric aspects of graphs and their eigen-
functions,” Duke Math. J., vol. 69, no. 3, 1993, pp. 487–525. doi:
10.1215/S0012-7094-93-06921-9.

[93] J. Friedman, “A proof of Alon’s second eigenvalue conjecture and
related problems,” Mem. Amer. Math. Soc., vol. 195, no. 910,
2008, pp. viii+100. doi: 10.1090/memo/0910.

[94] Z. Füredi, “Matchings and covers in hypergraphs,” Graphs Com-
bin., vol. 4, no. 2, 1988, pp. 115–206. doi: 10.1007/BF01864160.

[95] O. Goldreich and L. A. Levin, “A hard-core predicate for all
one-way functions,” in Proc. 21st Annual ACM Symposium on
Theory of Computing (STOC), pp. 25–32, 1989. doi: 10.1145/
73007.73010.

[96] O. Goldreich, Foundations of Cryptography Volume I: Ba-
sic Tools. Cambridge University Press, 2001. doi: 10 . 1017 /
CBO9780511546891.

[97] O. Goldreich, A primer on pseudorandom generators, vol. 55,
ser. University Lecture Series. American Mathematical Society,
Providence, RI, 2010, pp. x+114. doi: 10.1090/ulect/055.

[98] O. Goldreich, “In a world of P = BPP,” in Studies in complexity
and cryptography, ser. Lecture Notes in Comput. Sci. Vol. 6650,
Springer, Heidelberg, 2011, pp. 191–232. doi: 10.1007/978-3-
642-22670-0_20.

[99] O. Goldreich, H. Krawczyk, and M. Luby, “On the existence
of pseudorandom generators,” SIAM J. Comput., vol. 22, no. 6,
1993, pp. 1163–1175. doi: 10.1137/0222069.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1016/0370-2693(85)90705-1
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.1215/S0012-7094-93-06921-9
https://doi.org/10.1090/memo/0910
https://doi.org/10.1007/BF01864160
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1090/ulect/055
https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1137/0222069

References 195

[100] O. Goldreich, S. Vadhan, and A. Wigderson, “Simplified deran-
domization of BPP using a hitting set generator,” in Studies in
Complexity and Cryptography, ser. Lecture Notes in Computer
Science, vol. 6650, Springer, Heidelberg, 2011, pp. 59–67. doi:
10.1007/978-3-642-22670-0_8.

[101] S. Goldwasser, S. Micali, and P. Tong, “Why and how to estab-
lish a private code on a public network,” in Proc. 23rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 134–144, 1982. doi: 10.1109/SFCS.1982.100.

[102] L. Golowich, “A new Berry-Esseen theorem for expander walks,”
in Proc. 55th Annual ACM Symposium on Theory of Computing
(STOC), pp. 10–22, ACM, New York, 2023. doi: 10.1145/3564246.
3585141.

[103] L. Golowich and S. Vadhan, “Pseudorandomness of Expander
Random Walks for Symmetric Functions and Permutation
Branching Programs,” in Proc. 37th Computational Complexity
Conference (CCC), 27:1–27:13, 2022. doi: 10.4230/LIPIcs.CCC.
2022.27.

[104] P. Gopalan, D. M. Kane, and R. Meka, “Pseudorandomness via
the discrete Fourier transform,” SIAM J. Comput., vol. 47, no. 6,
2018, pp. 2451–2487. doi: 10.1137/16M1062132.

[105] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. Vadhan,
“Better pseudorandom generators from milder pseudorandom
restrictions,” in Proc. 53rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 120–129, 2012. doi:
10.1109/FOCS.2012.77.

[106] P. Gopalan and A. Yehudayoff, “Concentration for limited inde-
pendence via inequalities for the elementary symmetric polyno-
mials,” Theory Comput., vol. 16, 2020, Paper No. 17, 29. doi:
10.4086/toc.2020.v016a017.

[107] P. Grassberger, “On correlations in ‘good’ random number gen-
erators,” Physics Letters A, vol. 181, no. 1, 1993, pp. 43–46. doi:
10.1016/0375-9601(93)91122-L.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/978-3-642-22670-0_8
https://doi.org/10.1109/SFCS.1982.100
https://doi.org/10.1145/3564246.3585141
https://doi.org/10.1145/3564246.3585141
https://doi.org/10.4230/LIPIcs.CCC.2022.27
https://doi.org/10.4230/LIPIcs.CCC.2022.27
https://doi.org/10.1137/16M1062132
https://doi.org/10.1109/FOCS.2012.77
https://doi.org/10.4086/toc.2020.v016a017
https://doi.org/10.1016/0375-9601(93)91122-L

196 References

[108] V. Guruswami and V. M. Kumar, “Pseudobinomiality of the
Sticky Random Walk,” in Proc. 12th Conference on Innovations
in Theoretical Computer Science (ITCS), vol. 185, 2021. doi:
10.4230/LIPIcs.ITCS.2021.48.

[109] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced ex-
panders and randomness extractors from Parvaresh-Vardy
codes,” J. ACM, vol. 56, no. 4, 2009, Art. 20, 34. doi: 10.1145/
1538902.1538904.

[110] I. Haitner, D. Harnik, and O. Reingold, “Efficient pseudoran-
dom generators from exponentially hard one-way functions,” in
Proc. 33rd International Colloquium on Automata, Languages
and Programming (ICALP), pp. 228–239, 2006. doi: 10.1007/
11787006_20.

[111] I. Haitner, D. Harnik, and O. Reingold, “On the power of the
randomized iterate,” SIAM J. Comput., vol. 40, no. 6, 2011,
pp. 1486–1528. doi: 10.1137/080721820.

[112] I. Haitner, O. Reingold, and S. Vadhan, “Efficiency improve-
ments in constructing pseudorandom generators from one-way
functions,” SIAM J. Comput., vol. 42, no. 3, 2013, pp. 1405–1430.
doi: 10.1137/100814421.

[113] E. Haramaty, C. H. Lee, and E. Viola, “Bounded independence
plus noise fools products,” SIAM J. Comput., vol. 47, no. 2, 2018,
pp. 493–523. doi: 10.1137/17M1129088.

[114] P. Harsha and S. Srinivasan, “On polynomial approximations
to AC0,” Random Structures Algorithms, vol. 54, no. 2, 2019,
pp. 289–303. doi: 10.1002/rsa.20786.

[115] T. Hartman and R. Raz, “On the distribution of the number
of roots of polynomials and explicit weak designs,” Random
Structures Algorithms, vol. 23, no. 3, 2003, pp. 235–263. doi:
10.1002/rsa.10095.

[116] J. Hastad, “Almost optimal lower bounds for small depth cir-
cuits,” Adv. Comput. Res., vol. 5, 1989, pp. 143–170. URL:
https://www.csc.kth.se/~johanh/largesmalldepth.pdf.

[117] J. Håstad, “A slight sharpening of lmn,” Journal of Computer
and System Sciences, vol. 63, no. 3, 2001, pp. 498–508. doi:
10.1006/jcss.2001.1803.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ITCS.2021.48
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1007/11787006_20
https://doi.org/10.1007/11787006_20
https://doi.org/10.1137/080721820
https://doi.org/10.1137/100814421
https://doi.org/10.1137/17M1129088
https://doi.org/10.1002/rsa.20786
https://doi.org/10.1002/rsa.10095
https://www.csc.kth.se/~johanh/largesmalldepth.pdf
https://doi.org/10.1006/jcss.2001.1803

References 197

[118] J. Håstad, “On the correlation of parity and small-depth circuits,”
SIAM J. Comput., vol. 43, no. 5, 2014, pp. 1699–1708. doi:
10.1137/120897432.

[119] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A
pseudorandom generator from any one-way function,” SIAM
J. Comput., vol. 28, no. 4, 1999, pp. 1364–1396. doi: 10.1137/
S0097539793244708.

[120] P. Hatami, W. M. Hoza, A. Tal, and R. Tell, “Fooling constant-
depth threshold circuits,” in Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 104–115, 2022.
doi: 10.1109/FOCS52979.2021.00019.

[121] A. Healy, S. Vadhan, and E. Viola, “Using nondeterminism to
amplify hardness,” SIAM Journal on Computing, vol. 35, no. 4,
2006, pp. 903–931. doi: 10.1137/S0097539705447281.

[122] T. Holenstein, “Pseudorandom generators from one-way func-
tions: A simple construction for any hardness,” in Theory of cryp-
tography, ser. Lecture Notes in Comput. Sci. Vol. 3876, Springer,
Berlin, 2006, pp. 443–461. doi: 10.1007/11681878_23.

[123] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and
their applications,” Bull. Amer. Math. Soc. (N.S.), vol. 43, no. 4,
2006, pp. 439–561. doi: 10.1090/S0273-0979-06-01126-8.

[124] W. M. Hoza, “Better pseudodistributions and derandomization
for space-bounded computation,” in Proc. 25th International
Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM), 28:1–28:23, 2021. doi: 10.4230/
LIPIcs.APPROX/RANDOM.2021.28.

[125] W. M. Hoza, “Recent progress on derandomizing space-bounded
computation,” Bulletin of the EATCS, no. 138, 2022, pp. 114–
143. URL: https://eatcs.org/images/bulletin/beatcs138.pdf.

[126] W. M. Hoza, A technique for hardness amplification against AC0,
ECCC preprint TR23-176, 2023. URL: https://eccc.weizmann.
ac.il/report/2023/176/.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1137/120897432
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/FOCS52979.2021.00019
https://doi.org/10.1137/S0097539705447281
https://doi.org/10.1007/11681878_23
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://eatcs.org/images/bulletin/beatcs138.pdf
https://eccc.weizmann.ac.il/report/2023/176/
https://eccc.weizmann.ac.il/report/2023/176/

198 References

[127] W. M. Hoza, E. Pyne, and S. Vadhan, “Pseudorandom Genera-
tors for Unbounded-Width Permutation Branching Programs,”
in Proc. 12th Conference on Innovations in Theoretical Com-
puter Science (ITCS), 7:1–7:20, 2021. doi: 10.4230/LIPIcs.ITCS.
2021.7.

[128] W. M. Hoza and D. Zuckerman, “Simple optimal hitting sets
for small-success RL,” SIAM J. Comput., vol. 49, no. 4, 2020,
pp. 811–820. doi: 10.1137/19M1268707.

[129] R. Impagliazzo, W. Matthews, and R. Paturi, “A satisfiability
algorithm for AC0,” in Proc. 23rd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 961–972, 2012. URL:
https://dl.acm.org/doi/10.5555/2095116.2095193.

[130] R. Impagliazzo, R. Meka, and D. Zuckerman, “Pseudorandom-
ness from shrinkage,” J. ACM, vol. 66, no. 2, 2019, Art. 11, 16.
doi: 10.1145/3230630.

[131] R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudorandomness
for network algorithms,” in Proc. 26th Annual ACM Symposium
on Theory of Computing (STOC), pp. 356–364, 1994. doi: 10.
1145/195058.195190.

[132] R. Impagliazzo, R. Shaltiel, and A. Wigderson, “Near-optimal
conversion of hardness into pseudo-randomness,” in Proc. 40th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 181–190, 1999. doi: 10.1109/SFFCS.1999.814590.

[133] R. Impagliazzo, R. Shaltiel, and A. Wigderson, “Reducing the
seed length in the Nisan-Wigderson generator,” Combinatorica,
vol. 26, no. 6, 2006, pp. 647–681. doi: 10.1007/s00493-006-0036-8.

[134] R. Impagliazzo and A. Wigderson, “P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma,” in Proc.
29th Annual ACM Symposium on Theory of Computing (STOC),
pp. 220–229, 1997. doi: 10.1145/258533.258590.

[135] R. Impagliazzo and A. Wigderson, “Randomness vs time: Deran-
domization under a uniform assumption,” J. Comput. System
Sci., vol. 63, no. 4, 2001, pp. 672–688. doi: 10.1006/jcss.2001.
1780.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.1137/19M1268707
https://dl.acm.org/doi/10.5555/2095116.2095193
https://doi.org/10.1145/3230630
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/195058.195190
https://doi.org/10.1109/SFFCS.1999.814590
https://doi.org/10.1007/s00493-006-0036-8
https://doi.org/10.1145/258533.258590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1006/jcss.2001.1780

References 199

[136] P. Indyk, “Stable distributions, pseudorandom generators, em-
beddings, and data stream computation,” J. ACM, vol. 53, no. 3,
2006, pp. 307–323. doi: 10.1145/1147954.1147955.

[137] V. Kabanets and J.-Y. Cai, “Circuit minimization problem,” in
Proc. 32nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 73–79, 2000. doi: 10.1145/335305.335314.

[138] V. Kabanets and Z. Lu, “Satisfiability and Derandomization for
Small Polynomial Threshold Circuits,” in Proc. 22nd Interna-
tional Workshop on Randomization and Approximation Tech-
niques in Computer Science (RANDOM), 46:1–46:19, 2018. doi:
10.4230/LIPIcs.APPROX-RANDOM.2018.46.

[139] C. Kalle and S. Wansleben, “Problems with the random number
generator ranf implemented on the cdc cyber 205,” Computer
Physics Communications, vol. 33, no. 4, 1984, pp. 343–346. doi:
10.1016/0010-4655(84)90139-5.

[140] D. M. Kane, J. Nelson, and D. P. Woodruff, Revisiting norm
estimation in data streams, 2008. arXiv: 0811.3648 [cs.DS].

[141] R. M. Karp and R. J. Lipton, “Some connections between nonuni-
form and uniform complexity classes,” in Proc. 12th Annual ACM
Symposium on Theory of Computing (STOC), pp. 302–309, 1980.
doi: 10.1145/800141.804678.

[142] Z. Kelley, “An improved derandomization of the switching
lemma,” in Proc. 53rd Annual ACM Symposium on Theory
of Computing (STOC), pp. 272–282, 2021. doi: 10.1145/3406325.
3451054.

[143] A. R. Klivans, H. K. Lee, and A. Wan, “Mansour’s conjecture
is true for random DNF formulas,” in Proc. 23rd Conference
on Learning Theory (COLT), pp. 368–380, 2010. URL: http:
//www.learningtheory.org/colt2010/papers/085Lee.pdf.

[144] A. R. Klivans and D. van Melkebeek, “Graph nonisomorphism
has subexponential size proofs unless the polynomial-time hierar-
chy collapses,” SIAM J. Comput., vol. 31, no. 5, 2002, pp. 1501–
1526. doi: 10.1137/S0097539700389652.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1145/335305.335314
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.46
https://doi.org/10.1016/0010-4655(84)90139-5
https://arxiv.org/abs/0811.3648
https://doi.org/10.1145/800141.804678
https://doi.org/10.1145/3406325.3451054
https://doi.org/10.1145/3406325.3451054
http://www.learningtheory.org/colt2010/papers/085Lee.pdf
http://www.learningtheory.org/colt2010/papers/085Lee.pdf
https://doi.org/10.1137/S0097539700389652

200 References

[145] M. Koucký, P. Nimbhorkar, and P. Pudlák, “Pseudorandom
generators for group products,” in Proc. 43rd Annual ACM
Symposium on Theory of Computing (STOC), pp. 263–272, 2011.
doi: 10.1145/1993636.1993672.

[146] E. Kushilevitz and Y. Mansour, “Learning decision trees using
the Fourier spectrum,” SIAM J. Comput., vol. 22, no. 6, 1993,
pp. 1331–1348. doi: 10.1137/0222080.

[147] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical
testing of random number generators,” ACM Trans. Math. Softw.,
vol. 33, no. 4, Aug. 2007. doi: 10.1145/1268776.1268777.

[148] C. H. Lee, “Fourier bounds and pseudorandom generators for
product tests,” in Proc. 34th Computational Complexity Confer-
ence (CCC), 7:1–7:25, 2019. doi: 10.4230/LIPIcs.CCC.2019.7.

[149] C. H. Lee, E. Pyne, and S. Vadhan, “Fourier Growth of Reg-
ular Branching Programs,” in Proc. 26th International Work-
shop on Randomization and Approximation Techniques in Com-
puter Science (RANDOM), 2:1–2:21, 2022. doi: 10.4230/LIPIcs.
APPROX/RANDOM.2022.2.

[150] C. H. Lee, E. Pyne, and S. Vadhan, “On the Power of Regular and
Permutation Branching Programs,” in Proc. 27th International
Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM), 44:1–44:22, 2023. doi: 10.4230/
LIPIcs.APPROX/RANDOM.2023.44.

[151] C. H. Lee and E. Viola, “Some limitations of the sum of small-
bias distributions,” Theory Comput., vol. 13, 2017, Paper No.
16, 23. doi: 10.4086/toc.2017.v013a016.

[152] C. H. Lee and E. Viola, “More on bounded independence plus
noise: Pseudorandom generators for read-once polynomials,”
Theory Comput., vol. 16, 2020, Paper No. 7, 50. doi: 10.4086/
toc.2020.v016a007.

[153] L. A. Levin, “One way functions and pseudorandom generators,”
Combinatorica, vol. 7, no. 4, 1987, pp. 357–363. doi: 10.1007/
BF02579323.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/1993636.1993672
https://doi.org/10.1137/0222080
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.4230/LIPIcs.CCC.2019.7
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.2
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.2
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.44
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.44
https://doi.org/10.4086/toc.2017.v013a016
https://doi.org/10.4086/toc.2020.v016a007
https://doi.org/10.4086/toc.2020.v016a007
https://doi.org/10.1007/BF02579323
https://doi.org/10.1007/BF02579323

References 201

[154] N. Linial, M. Luby, M. Saks, and D. Zuckerman, “Efficient
construction of a small hitting set for combinatorial rectangles
in high dimension,” Combinatorica, vol. 17, no. 2, 1997, pp. 215–
234. doi: 10.1007/BF01200907.

[155] N. Linial, Y. Mansour, and N. Nisan, “Constant depth circuits,
Fourier transform, and learnability,” Journal of the ACM, vol. 40,
no. 3, 1993, pp. 607–620. doi: 10.1145/174130.174138.

[156] N. Linial and N. Nisan, “Approximate inclusion-exclusion,” Com-
binatorica, vol. 10, no. 4, 1990, pp. 349–365. doi: 10 . 1007 /
BF02128670.

[157] S. Lovett, “Unconditional pseudorandom generators for low de-
gree polynomials,” Theory of Computing, vol. 5, no. 1, 2009,
pp. 69–82. doi: 10.4086/toc.2009.v005a003.

[158] S. Lovett and S. Srinivasan, “Correlation bounds for poly-size
AC0 circuits with n1−o(1) symmetric gates,” in Proc. 15th Inter-
national Workshop on Randomization and Approximation Tech-
niques in Computer Science (RANDOM), pp. 640–651, 2011.
doi: 10.1007/978-3-642-22935-0_54.

[159] C.-J. Lu, “Improved pseudorandom generators for combinatorial
rectangles,” Combinatorica, vol. 22, no. 3, 2002, pp. 417–433.
doi: 10.1007/s004930200021.

[160] C.-J. Lu, S.-C. Tsai, and H.-L. Wu, “Improved hardness ampli-
fication in NP,” Theoret. Comput. Sci., vol. 370, no. 1-3, 2007,
pp. 293–298. doi: 10.1016/j.tcs.2006.10.009.

[161] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,”
Combinatorica, vol. 8, no. 3, 1988, pp. 261–277. doi: 10.1007/
BF02126799.

[162] A. Lubotzky, “Expander graphs in pure and applied mathemat-
ics,” Bull. Amer. Math. Soc. (N.S.), vol. 49, no. 1, 2012, pp. 113–
162. doi: 10.1090/S0273-0979-2011-01359-3.

[163] M. Luby and B. Veličković, “On deterministic approximation of
DNF,” Algorithmica, vol. 16, no. 4/5, 1996, pp. 415–433. doi:
10.1007/BF01940873.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/BF01200907
https://doi.org/10.1145/174130.174138
https://doi.org/10.1007/BF02128670
https://doi.org/10.1007/BF02128670
https://doi.org/10.4086/toc.2009.v005a003
https://doi.org/10.1007/978-3-642-22935-0_54
https://doi.org/10.1007/s004930200021
https://doi.org/10.1016/j.tcs.2006.10.009
https://doi.org/10.1007/BF02126799
https://doi.org/10.1007/BF02126799
https://doi.org/10.1090/S0273-0979-2011-01359-3
https://doi.org/10.1007/BF01940873

202 References

[164] M. Luby, B. Veličković, and A. Wigderson, “Deterministic ap-
proximate counting of depth-2 circuits,” in Proc. 2nd Israel
Symposium on Theory and Computing Systems (ISTCS), pp. 18–
24, 1993. doi: 10.1109/ISTCS.1993.253488.

[165] M. Luby and A. Wigderson, “Pairwise independence and de-
randomization,” Foundations and Trends in Theoretical Com-
puter Science, vol. 1, no. 4, 2006, pp. 237–301. doi: 10.1561/
0400000009.

[166] X. Lyu, “Improved Pseudorandom Generators for AC0 Circuits,”
in Proc. 37th Computational Complexity Conference (CCC),
34:1–34:25, 2022. doi: 10.4230/LIPIcs.CCC.2022.34.

[167] A. W. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing
families I: Bipartite Ramanujan graphs of all degrees,” Ann. of
Math. (2), vol. 182, no. 1, 2015, pp. 307–325. doi: 10.4007/
annals.2015.182.1.7.

[168] G. A. Margulis, “Explicit group-theoretic constructions of com-
binatorial schemes and their applications in the construction of
expanders and concentrators,” Problemy Peredachi Informatsii,
vol. 24, no. 1, 1988, pp. 51–60. URL: http://mi.mathnet.ru/eng/
ppi/v24/i1/p51.

[169] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1,
Jan. 1998, pp. 3–30. doi: 10.1145/272991.272995.

[170] N. Mazor and J. Zhang, “Simple constructions from (almost)
regular one-way functions,” in Proc. 19th Theory of Cryptography
Conference (TCC), pp. 457–485, 2021. doi: 10.1007/978-3-030-
90453-1_16.

[171] R. Meka, O. Reingold, and A. Tal, “Pseudorandom generators
for width-3 branching programs,” in Proc. 51st Annual ACM
Symposium on Theory of Computing (STOC), pp. 626–637, 2019.
doi: 10.1145/3313276.3316319.

[172] R. Meka and D. Zuckerman, “Small-bias spaces for group prod-
ucts,” in Proc. 13th International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science (RAN-
DOM), pp. 658–672, 2009. doi: 10.1007/978-3-642-03685-9_49.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1109/ISTCS.1993.253488
https://doi.org/10.1561/0400000009
https://doi.org/10.1561/0400000009
https://doi.org/10.4230/LIPIcs.CCC.2022.34
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.4007/annals.2015.182.1.7
http://mi.mathnet.ru/eng/ppi/v24/i1/p51
http://mi.mathnet.ru/eng/ppi/v24/i1/p51
https://doi.org/10.1145/272991.272995
https://doi.org/10.1007/978-3-030-90453-1_16
https://doi.org/10.1007/978-3-030-90453-1_16
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/978-3-642-03685-9_49

References 203

[173] R. Meka and D. Zuckerman, “Pseudorandom generators for
polynomial threshold functions,” SIAM J. Comput., vol. 42,
no. 3, 2013, pp. 1275–1301. doi: 10.1137/100811623.

[174] A. Milchev, K. Binder, and D. Heermann, “Fluctuations and lack
of self-averaging in the kinetics of domain growth,” Zeitschrift
für Physik B Condensed Matter, vol. 63, no. 4, 1986, pp. 521–535.
doi: 10.1007/BF01726202.

[175] P. B. Miltersen, “Derandomizing complexity classes,” in Hand-
book of randomized computing, Vol. I, II, ser. Comb. Optim.
Vol. 9, Kluwer Acad. Publ., Dordrecht, 2001, pp. 843–941. doi:
10.1007/978-1-4615-0013-1_19.

[176] S. Mohanty, R. O’Donnell, and P. Paredes, “Explicit near-Rama-
nujan graphs of every degree,” in Proc. 52nd Annual ACM
Symposium on Theory of Computing (STOC), pp. 510–523, ACM,
New York, 2020. doi: 10.1145/3357713.3384231.

[177] M. Morgenstern, “Existence and explicit constructions of q + 1
regular Ramanujan graphs for every prime power q,” J. Combin.
Theory Ser. B, vol. 62, no. 1, 1994, pp. 44–62. doi: 10.1006/jctb.
1994.1054.

[178] J. Naor and M. Naor, “Small-bias probability spaces: Efficient
constructions and applications,” SIAM J. Comput., vol. 22, no. 4,
1993, pp. 838–856. doi: 10.1137/0222053.

[179] A. Nilli, “On the second eigenvalue of a graph,” Discrete Math.,
vol. 91, no. 2, 1991, pp. 207–210. doi: 10.1016/0012-365X(91)
90112-F.

[180] N. Nisan, “Pseudorandom bits for constant depth circuits,”
Combinatorica, vol. 11, no. 1, 1991, pp. 63–70. doi: 10.1007/
BF01375474.

[181] N. Nisan, “Pseudorandom generators for space-bounded compu-
tation,” Combinatorica, vol. 12, no. 4, 1992, pp. 449–461. doi:
10.1007/BF01305237.

[182] N. Nisan and A. Ta-Shma, “Extracting randomness: A survey
and new constructions,” J. Comput. System Sci., vol. 58, no. 1,
part 2, 1999, pp. 148–173. doi: 10.1006/jcss.1997.1546.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1137/100811623
https://doi.org/10.1007/BF01726202
https://doi.org/10.1007/978-1-4615-0013-1_19
https://doi.org/10.1145/3357713.3384231
https://doi.org/10.1006/jctb.1994.1054
https://doi.org/10.1006/jctb.1994.1054
https://doi.org/10.1137/0222053
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1007/BF01375474
https://doi.org/10.1007/BF01375474
https://doi.org/10.1007/BF01305237
https://doi.org/10.1006/jcss.1997.1546

204 References

[183] N. Nisan and A. Wigderson, “Hardness vs randomness,” J. Com-
put. Syst. Sci., vol. 49, no. 2, 1994, pp. 149–167. doi: 10.1016/
S0022-0000(05)80043-1.

[184] N. Nisan and D. Zuckerman, “Randomness is linear in space,”
J. Comput. System Sci., vol. 52, no. 1, 1996, pp. 43–52. doi:
10.1006/jcss.1996.0004.

[185] R. O’Donnell, Analysis of Boolean Functions. Cambridge Uni-
versity Press, 2014. doi: 10.1017/CBO9781139814782.

[186] C. H. Papadimitriou and M. Sipser, “Communication complex-
ity,” J. Comput. System Sci., vol. 28, no. 2, 1984, pp. 260–269.
doi: 10.1016/0022-0000(84)90069-2.

[187] G. Parisi and F. Rapuano, “Effects of the random number gen-
erator on computer simulations,” Physics Letters B, vol. 157,
no. 4, 1985, pp. 301–302. doi: 10.1016/0370-2693(85)90670-7.

[188] R. Peralta, “On the randomness complexity of algorithms,”
University of Wisconsin, Milwaukee CS Research Report TR
90-1, 1990.

[189] N. Perlroth, “Government announces steps to restore confidence
on encryption standards,” The New York Times, 2013. URL:
https ://bits .blogs .nytimes . com/2013/09/10/government -
announces - steps - to - restore - confidence - on - encryption -
standards/ (accessed on 07/14/2021).

[190] N. Pippenger and M. J. Fischer, “Relations among complexity
measures,” Journal of the ACM, vol. 26, no. 2, 1979, pp. 361–381.
doi: 10.1145/322123.322138.

[191] E. Pyne, R. Raz, and W. Zhan, Certified hardness vs. randomness
for log-space, ECCC preprint TR23-040, 2023. URL: https://
eccc.weizmann.ac.il/report/2023/040/.

[192] E. Pyne and S. Vadhan, “Limitations of the Impagliazzo-Nisan-
Wigderson pseudorandom generator against permutation branch-
ing programs,” in Proc. 27th International Computing and Com-
binatorics Conference (COCOON), pp. 3–12, 2021. doi: 10.1007/
978-3-030-89543-3_1.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1016/0022-0000(84)90069-2
https://doi.org/10.1016/0370-2693(85)90670-7
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://doi.org/10.1145/322123.322138
https://eccc.weizmann.ac.il/report/2023/040/
https://eccc.weizmann.ac.il/report/2023/040/
https://doi.org/10.1007/978-3-030-89543-3_1
https://doi.org/10.1007/978-3-030-89543-3_1

References 205

[193] E. Pyne and S. Vadhan, “Pseudodistributions that beat all
pseudorandom generators (extended abstract),” in Proc. 36th
Computational Complexity Conference (CCC), 33:1–33:15, 2021.
doi: 10.4230/LIPIcs.CCC.2021.33, Full version: ECCC preprint
TR21-019.

[194] E. Pyne and S. Vadhan, “Deterministic approximation of random
walks via queries in graphs of unbounded size,” in Proc. 5th
Symposium on Simplicity in Algorithms (SOSA), pp. 57–67,
2022. doi: 10.1137/1.9781611977066.5.

[195] Y. Rabani and A. Shpilka, “Explicit construction of a small ε-net
for linear threshold functions,” SIAM J. on Computing, vol. 39,
no. 8, 2010, pp. 3501–3520. doi: 10.1137/090764190.

[196] A. Rao and A. Yehudayoff, Communication Complexity and
Applications. Cambridge University Press, 2020. doi: 10.1017/
9781108671644.

[197] R. Raz, O. Reingold, and S. Vadhan, “Extracting all the ran-
domness and reducing the error in Trevisan’s extractors,” J.
Comput. System Sci., vol. 65, no. 1, 2002, pp. 97–128. doi:
10.1006/jcss.2002.1824.

[198] A. A. Razborov, “Lower bounds on the size of bounded depth
circuits over a complete basis with logical addition,” Math. Notes,
vol. 41, no. 4, 1987, pp. 333–338. doi: 10.1007/BF01137685.

[199] A. A. Razborov and S. Rudich, “Natural proofs,” J. Comput.
Syst. Sci., vol. 55, no. 1, 1997, pp. 24–35.

[200] A. Razborov, “A simple proof of Bazzi’s theorem,” ACM Trans-
actions on Computation Theory, vol. 1, no. 1, 2009. doi: 10.1145/
1490270.1490273.

[201] A. A. Razborov, “Lower bounds for deterministic and nondeter-
ministic branching programs,” in Proc. 8th International Confer-
ence on Fundamentals of Computation Theory (FCT), pp. 47–60,
1991. doi: 10.1007/3-540-54458-5_49.

[202] O. Reingold, T. Steinke, and S. Vadhan, “Pseudorandomness for
regular branching programs via Fourier analysis,” in Proc. 17th
International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), pp. 655–670, 2013.
doi: 10.1007/978-3-642-40328-6_45.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://eccc.weizmann.ac.il/report/2021/019/
https://doi.org/10.1137/1.9781611977066.5
https://doi.org/10.1137/090764190
https://doi.org/10.1017/9781108671644
https://doi.org/10.1017/9781108671644
https://doi.org/10.1006/jcss.2002.1824
https://doi.org/10.1007/BF01137685
https://doi.org/10.1145/1490270.1490273
https://doi.org/10.1145/1490270.1490273
https://doi.org/10.1007/3-540-54458-5_49
https://doi.org/10.1007/978-3-642-40328-6_45

206 References

[203] O. Reingold, L. Trevisan, and S. Vadhan, “Pseudorandom walks
on regular digraphs and the RL vs. L problem,” in Proc. 38th
Annual ACM Symposium on Theory of Computing (STOC),
pp. 457–466, 2006. doi: 10.1145/1132516.1132583.

[204] V. Rödl, “On a packing and covering problem,” European Journal
of Combinatorics, vol. 6, no. 1, 1985, pp. 69–78. doi: 10.1016/
S0195-6698(85)80023-8.

[205] B. Rossman, “Criticality of Regular Formulas,” in Proc. 34th
Computational Complexity Conference (CCC), 1:1–1:28, 2019.
doi: 10.4230/LIPIcs.CCC.2019.1.

[206] M. Saks and S. Zhou, “BPHSPACE(S) ⊆ DSPACE(S3/2),” J.
Comput. System Sci., vol. 58, no. 2, 1999, pp. 376–403. doi:
10.1006/jcss.1998.1616.

[207] J. Schönheim, “On coverings,” Pacific J. Math., vol. 14, 1964,
pp. 1405–1411. URL: http ://projecteuclid .org/euclid .pjm/
1103033815.

[208] R. A. Servedio and L.-Y. Tan, “Luby-Veličković-Wigderson revis-
ited: Improved correlation bounds and pseudorandom generators
for depth-two circuits,” in Proc. 22nd International Workshop
on Randomization and Approximation Techniques in Computer
Science (RANDOM), 56:1–56:20, 2018. doi: 10.4230/LIPIcs.
APPROX-RANDOM.2018.56.

[209] R. A. Servedio and L.-Y. Tan, “Improved Pseudorandom Gener-
ators from Pseudorandom Multi-Switching Lemmas,” in Proc.
28th International Workshop on Randomization and Approxima-
tion Techniques in Computer Science (RANDOM), 45:1–45:23,
2019. doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.45.

[210] R. A. Servedio and L.-Y. Tan, “Pseudorandomness for read-k
DNF formulas,” in Proc. 30th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 621–638, 2019. doi: 10.
1137/1.9781611975482.39.

[211] R. Shaltiel, “Recent developments in extractors,” Bulletin of the
European Association for Theoretical Computer Science, vol. 77,
Jun. 2002, pp. 67–95.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/1132516.1132583
https://doi.org/10.1016/S0195-6698(85)80023-8
https://doi.org/10.1016/S0195-6698(85)80023-8
https://doi.org/10.4230/LIPIcs.CCC.2019.1
https://doi.org/10.1006/jcss.1998.1616
http://projecteuclid.org/euclid.pjm/1103033815
http://projecteuclid.org/euclid.pjm/1103033815
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.56
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.56
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://doi.org/10.1137/1.9781611975482.39
https://doi.org/10.1137/1.9781611975482.39

References 207

[212] R. Shaltiel, “An introduction to randomness extractors,” in Proc.
38th International Colloquium on Automata, Languages and
Programming (ICALP), pp. 21–41, 2011. doi: 10.1007/978-3-
642-22012-8_2.

[213] R. Shaltiel and C. Umans, “Simple extractors for all min-
entropies and a new pseudorandom generator.,” J. ACM, vol. 52,
no. 2, 2005, pp. 172–216. doi: 10.1145/1059513.1059516.

[214] A. Shamir, “On the generation of cryptographically strong pseu-
dorandom sequences,” ACM Trans. Comput. Syst., vol. 1, no. 1,
1983, pp. 38–44. doi: 10.1145/357353.357357.

[215] A. Ta-Shma, “Randomized algorithms and de-randomization,”
2015. URL: http://www.cs.tau.ac.il/~amnon/Classes/2015-
PRG/class.htm.

[216] A. Ta-Shma, “Expanders, pseudorandomness and derandomiza-
tion,” 2016. URL: http://www.cs.tau.ac.il/~amnon/Classes/
2016-PRG/class.htm.

[217] A. Ta-Shma, “Explicit, almost optimal, epsilon-balanced codes,”
in Proc. 49th Annual ACM Symposium on Theory of Computing
(STOC), pp. 238–251, 2017. doi: 10.1145/3055399.3055408.

[218] A. Ta-Shma, “Space-bounded computation,” 2018. URL: http:
//www.cs.tau.ac.il/~amnon/Classes/2018-Space/class.htm.

[219] A. Ta-Shma, “A first course in derandomization,” 2019. URL:
http : / / www . cs . tau . ac . il / ~amnon / Classes / 2019 -
Derandomization/class.htm.

[220] J. Šíma and S. Žák, “A polynomial-time construction of a hitting
set for read-once branching programs of width 3,” Fund. Inform.,
vol. 184, no. 4, 2021, pp. 307–354. doi: 10.3233/fi-2021-2101.

[221] M. Skorski, “Tight Chernoff-Like Bounds Under Limited In-
dependence,” in Proc. 26th International Workshop on Ran-
domization and Approximation Techniques in Computer Science
(RANDOM), 15:1–15:14, 2022. doi: 10.4230/LIPIcs.APPROX/
RANDOM.2022.15.

[222] R. Smolensky, “On representations by low-degree polynomials,”
in Proc. 34th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 130–138, 1993. doi: 10.1109/SFCS.
1993.366874.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/978-3-642-22012-8_2
https://doi.org/10.1007/978-3-642-22012-8_2
https://doi.org/10.1145/1059513.1059516
https://doi.org/10.1145/357353.357357
http://www.cs.tau.ac.il/~amnon/Classes/2015-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2015-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2016-PRG/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2016-PRG/class.htm
https://doi.org/10.1145/3055399.3055408
http://www.cs.tau.ac.il/~amnon/Classes/2018-Space/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2018-Space/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2019-Derandomization/class.htm
http://www.cs.tau.ac.il/~amnon/Classes/2019-Derandomization/class.htm
https://doi.org/10.3233/fi-2021-2101
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.15
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.15
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/SFCS.1993.366874

208 References

[223] R. Smolensky, “Algebraic methods in the theory of lower bounds
for Boolean circuit complexity,” in Proc. 19th Annual ACM
Symposium on Theory of Computing (STOC), pp. 77–82, 1987.
doi: 10.1145/28395.28404.

[224] T. Steinke, Pseudorandomness for permutation branching pro-
grams without the group theory, ECCC preprint TR12-083, 2012.
URL: https://eccc.weizmann.ac.il/report/2012/083/.

[225] T. Steinke, S. Vadhan, and A. Wan, “Pseudorandomness and
Fourier-growth bounds for width-3 branching programs,” Theory
Comput., vol. 13, 2017, Paper No. 12. doi: 10.4086/toc.2017.
v013a012.

[226] B. A. Subbotovskaya, “Realizations of linear function by formulas
using +, ·,−,” Doklady Akademii Nauk SSSR, vol. 136:3, 1961,
pp. 553–555. URL: http://mi.mathnet.ru/eng/dan/v136/i3/
p553.

[227] M. Sudan, L. Trevisan, and S. Vadhan, “Pseudorandom gener-
ators without the xor lemma,” J. Comput. Syst. Sci., vol. 62,
no. 2, 2001, pp. 236–266. doi: 10.1006/jcss.2000.1730.

[228] A. Tal, “Tight Bounds on the Fourier Spectrum of AC0,” in Proc.
32nd Computational Complexity Conference (CCC), 15:1–15:31,
2017. doi: 10.4230/LIPIcs.CCC.2017.15.

[229] A. Tal, “Pseudorandomness,” 2021. URL: https : / / www .
avishaytal.org/pseudorandomness.

[230] J. Tarui, “Probabilistic polynomials, AC0 functions and the
polynomial-time hierarchy,” Theoret. Comput. Sci., vol. 113,
no. 1, 1993, pp. 167–183. doi: 10.1016/0304-3975(93)90214-E.

[231] S. Toda and M. Ogiwara, “Counting classes are at least as hard
as the polynomial-time hierarchy,” SIAM J. Comput., vol. 21,
no. 2, 1992, pp. 316–328. doi: 10.1137/0221023.

[232] L. Trevisan, “Extractors and pseudorandom generators,” J. ACM,
vol. 48, no. 4, 2001, pp. 860–879. doi: 10.1145/502090.502099.

[233] L. Trevisan, “Pseudorandomness and combinatorial construc-
tions,” 2005. URL: https : / / web . archive . org / web /
20150115081847/http://www.cs.berkeley.edu/~luca/pacc/.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1145/28395.28404
https://eccc.weizmann.ac.il/report/2012/083/
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.4086/toc.2017.v013a012
http://mi.mathnet.ru/eng/dan/v136/i3/p553
http://mi.mathnet.ru/eng/dan/v136/i3/p553
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://www.avishaytal.org/pseudorandomness
https://www.avishaytal.org/pseudorandomness
https://doi.org/10.1016/0304-3975(93)90214-E
https://doi.org/10.1137/0221023
https://doi.org/10.1145/502090.502099
https://web.archive.org/web/20150115081847/http://www.cs.berkeley.edu/~luca/pacc/
https://web.archive.org/web/20150115081847/http://www.cs.berkeley.edu/~luca/pacc/

References 209

[234] L. Trevisan and S. Vadhan, “Pseudorandomness and average-case
complexity via uniform reductions,” Comput. Complexity, vol. 16,
no. 4, 2007, pp. 331–364. doi: 10.1007/s00037-007-0233-x.

[235] L. Trevisan and T. Xue, “A derandomized switching lemma and
an improved derandomization of AC0,” in Proc. 28th Annual
IEEE Conference on Computational Complexity (CCC), pp. 242–
247, 2013. doi: 10.1109/CCC.2013.32.

[236] C. Umans, “Pseudo-random generators for all hardnesses,” J. of
Computer and System Sciences, vol. 67, no. 2, 2003, pp. 419–440.
doi: 10.1016/S0022-0000(03)00046-1.

[237] S. Vadhan and C. J. Zheng, “Characterizing pseudoentropy and
simplifying pseudorandom generator constructions,” in Proc.
44th Annual ACM Symposium on Theory of Computing (STOC),
pp. 817–836, 2012. doi: 10.1145/2213977.2214051.

[238] S. P. Vadhan, “Pseudorandomness,” Foundations and Trends in
Theoretical Computer Science, vol. 7, no. 1-3, 2012, pp. 1–336.
doi: 10.1561/0400000010.

[239] L. G. Valiant and V. V. Vazirani, “NP is as easy as detecting
unique solutions,” Theoret. Comput. Sci., vol. 47, no. 1, 1986,
pp. 85–93. doi: 10.1016/0304-3975(86)90135-0.

[240] S. Vigna, “Further scramblings of Marsaglia’s xorshift genera-
tors,” J. Comput. Appl. Math., vol. 315, 2017, pp. 175–181. doi:
10.1016/j.cam.2016.11.006.

[241] E. Viola, “Pseudorandom bits for constant-depth circuits with
few arbitrary symmetric gates,” SIAM J. Comput., vol. 36, no. 5,
2007, pp. 1387–1403. doi: 10.1137/050640941.

[242] E. Viola, “The sum of D small-bias generators fools polynomials
of degree D,” Comput. Complexity, vol. 18, no. 2, 2009, pp. 209–
217. doi: 10.1007/s00037-009-0273-5.

[243] E. Viola, “Randomness buys depth for approximate counting,”
Comput. Complexity, vol. 23, no. 3, 2014, pp. 479–508. doi:
10.1007/s00037-013-0076-6.

[244] E. Viola, “Special topics in complexity theory,” 2017. URL:
https://www.ccs.neu.edu/home/viola/classes/spepf17.html.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1109/CCC.2013.32
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1145/2213977.2214051
https://doi.org/10.1561/0400000010
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/j.cam.2016.11.006
https://doi.org/10.1137/050640941
https://doi.org/10.1007/s00037-009-0273-5
https://doi.org/10.1007/s00037-013-0076-6
https://www.ccs.neu.edu/home/viola/classes/spepf17.html

210 References

[245] E. Viola, “Fourier conjectures, correlation bounds, and majority,”
in Proc. 48th International Colloquium on Automata, Languages
and Programming (ICALP), 111:1–111:15, 2021. doi: 10.4230/
LIPIcs.ICALP.2021.111.

[246] E. Viola, Correlation bounds against polynomials, ECCC preprint
TR22-142, 2022. URL: https://eccc.weizmann.ac.il/report/2022/
142/.

[247] I. Wegener, The complexity of Boolean functions, ser. Wiley-
Teubner Series in Computer Science. John Wiley & Sons, Inc.,
1987, pp. xii+457. URL: https://dl.acm.org/doi/10.5555/35517.

[248] A. Wigderson, Randomness and pseudorandomness, IAS Institute
Letter, 2009. URL: https://www.ias.edu/ideas/2009/wigderson-
randomness-pseudorandomness.

[249] A. C. Yao, “Theory and applications of trapdoor functions,” in
Proc. 23rd Annual ACM Symposium on Theory of Computing
(STOC), pp. 80–91, 1982. doi: 10.1109/SFCS.1982.45.

[250] Y. Yu, D. Gu, X. Li, and J. Weng, “The randomized iterate,
revisited—almost linear seed length PRGs from a broader class
of one-way functions,” in Proc. 12th Theory of Cryptography
Conference (TCC), pp. 7–35, 2015. doi: 10.1007/978-3-662-
46494-6_2.

[251] Y. Yu, X. Li, and J. Weng, “Pseudorandom generators from
regular one-way functions: New constructions with improved
parameters,” Theoret. Comput. Sci., vol. 569, 2015, pp. 58–69.
doi: 10.1016/j.tcs.2014.12.013.

[252] D. Zuckerman, “General weak random sources,” in Proc. 31st
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 534–543, 1990. doi: 10.1109/FSCS.1990.89574.

[253] D. Zuckerman, “Pseudorandomness and combinatorial construc-
tions,” 2001. URL: https://www.cs.utexas.edu/~diz/395T/01/.

The version of record is available at: http://dx.doi.org/10.1561/0400000109

https://doi.org/10.4230/LIPIcs.ICALP.2021.111
https://doi.org/10.4230/LIPIcs.ICALP.2021.111
https://eccc.weizmann.ac.il/report/2022/142/
https://eccc.weizmann.ac.il/report/2022/142/
https://dl.acm.org/doi/10.5555/35517
https://www.ias.edu/ideas/2009/wigderson-randomness-pseudorandomness
https://www.ias.edu/ideas/2009/wigderson-randomness-pseudorandomness
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1007/978-3-662-46494-6_2
https://doi.org/10.1007/978-3-662-46494-6_2
https://doi.org/10.1016/j.tcs.2014.12.013
https://doi.org/10.1109/FSCS.1990.89574
https://www.cs.utexas.edu/~diz/395T/01/

	Introduction
	Limited Independence and Small-Bias Generators
	Recycling Random Bits
	PRGs and Hardness
	Random Restrictions
	Acknowledgements
	Appendices
	Converse of the Sandwiching Lemma
	List of PRGs
	References

