Fooling Near-Maximal Decision Trees

@ UChicago CS Theory Lunch January 29, 2025

William M. Hoza

The University of Chicago

Pseudorandom generators

- A pseudorandom generator (PRG) is a function $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$
- The PRG fools $T: \{0, 1\}^n \rightarrow \{0, 1\}$ with error ε if

$$
\left|\Pr[T(U_n) = 1] - \Pr[T(G(U_s)) = 1]\right| \le \varepsilon
$$

- Notation: $U_n =$ uniform distribution over $\{0, 1\}^n$
- Today's talk: PRGs that fool decision trees

Decision trees

- In each step, the tree may observe any one bit of the input $x \in \{0,1\}^n$
- Eventually, the tree must halt and outputs a value $T(x) \in \{0, 1\}$
- Depth = maximum length of path from root to leaf
- Size = number of leaves

Example: Fooling depth-2 decision trees

- **Claim:** There exists a PRG $G: \{0, 1\}^2 \rightarrow \{0, 1\}^3$ that fools depth-2 decision trees with error 0
- **Proof sketch:** Let $G(a, b) = (a, b, a \bigoplus b)$
- Those three bits are pairwise independent

Fooling depth- k decision trees

Theorem [Naor, Naor 1993] [Alon, Goldreich, Håstad, Peralta 1992] [Kushilevitz, Mansour 1993]:

 $\forall n, k, \varepsilon$, ∃ explicit PRG $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$ that fools depth- k decision trees

with error ε and seed length $s = 2k + O(\log(k/\varepsilon) + \log \log n)$.

Incorpore **Theorem (this work):** Let $\alpha > 0$ be an arbitrarily small constant.

 $\forall n, k, \varepsilon$, \exists explicit PRG $G: \{0, 1\}^s \to \{0, 1\}^n$ that fools depth- k decision trees

 ϵ seed coord log the $\epsilon = (1 + \epsilon)$ l_{ϵ} l_{ϵ} with error ε and seed length $s = (1 + \alpha) \cdot k + O(\log(1/\varepsilon) + \log \log n)$.

Fooling size-2^k decision trees

Theorem [Naor, Naor 1993] [Alon, Goldreich, Håstad, Peralta 1992] [Kushilevitz, Mansour 1993]:

 $\forall n,k,\varepsilon$, ∃ explicit PRG G : $\{0,1\}^s \to \{0,1\}^n$ that fools size- 2^k decision trees

with error ε and seed length $s = 2k + O(\log(k/\varepsilon) + \log \log n)$.

Theorem (this work): Let $\alpha > 0$ be an arbitrarily small constant. $\forall n, k, \varepsilon$, ∃ explicit PRG G : $\{0, 1\}^s \rightarrow \{0, 1\}^n$ that fools size- 2^k decision trees with error ε and seed length $s = (1 + \alpha) \cdot k + O(\log(1/\varepsilon) + \log \log n)$.

Why care about this factor of two?

- Answer 1: It's a fundamental problem
- Answer 2: One can prove a lower bound of $1 \cdot k$
- Answer 3 (main): There is a connection with circuit complexity!

Circuits over the U_2 basis

- **Definition:** A U_2 -circuit is a network of AND/OR/NOT gates applied to Boolean variables
- Each AND/OR gate has only two incoming wires
- The size of the circuit is the total number of AND/OR gates
	- NOT gates are not counted

Circuits are poorly understood

- Theorem [Shannon 1949]: There exists a function h : $\{0,1\}^n \rightarrow \{0,1\}$ such that every U_2 -circuit computing h has size $\Omega(2^n/n)$
- What if we want an explicit hard function $h \in \mathbb{NP}$?
	- **Theorem** [Schnorr 1974]: $\exists h \in \mathbb{NP}$ such that every U_2 -circuit computing h has size $3n O(1)$
	- **Theorem** [Zwick 1991]: $\exists h \in \text{NP}$ such that every U_2 -circuit computing h has size $4n O(1)$
	- **Theorem** [Lachish and Raz 2001]: $\exists h \in \text{NP}$ such that every U_2 -circuit computing h has size $4.5n o(n)$
	- Theorem [Iwama and Morizumi 2002]: $\exists h \in \mathbb{NP}$ such that every U_2 -circuit computing h has size $5n o(n)$

Our contribution: A PRG that fools U_2 -circuits

Theorem (this work): $\forall n \in \mathbb{N}$, \exists explicit PRG $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$ that fools

 U_2 -circuits of size 2.99 \cdot n with error $2^{-\Omega(n)}$ and seed length $\left(1 - \Omega(1)\right) \cdot n$.

Theorem [Chen, Kabanets 2016]: If a function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ can be computed by a U_2 -circuit of size $(3 - \alpha) \cdot n$, then it can also be computed by

a decision tree of size 2^k where $k = (1 - \Omega(\alpha^2)) \cdot n$.

"It would be interesting to get pseudorandom generators for general boolean circuits" [Chen, Kabanets 2016]

How we construct our new PRG

- Our approach for fooling decision trees is based on a new kind of "almost k -wise independence"
- Let's start by reviewing exact k -wise independence

-wise uniform bits

- Let X be a distribution over $\{0, 1\}^n$
- **Definition:** *X* is *k*-wise uniform if, for every set $S \subseteq [n]$ with $|S| = k$, the subsequence $X_{\mathcal{S}}$ is distributed uniformly over $\{0, 1\}^k$
- A k-wise uniform generator is a function $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$ such that $G(U_s)$ is k-wise uniform

A classic k -wise uniform generator

Theorem [Lancaster 1965, Joffe 1971, Joffe 1974, ...]: $\forall n, k$, \exists explicit k-wise uniform

generator $G: \{0, 1\}^s \to \{0, 1\}^n$ with seed length $s = O(k \cdot \log n)$.

- Proof sketch: (Assume WLOG that $n = 2^r \cdot r$ for some $r \in \mathbb{N}$)
	- Use the seed to pick a random polynomial $p: \mathbb{F} \to \mathbb{F}$ of degree less than k , where $\mathbb{F} = \text{GF}(2^r)$
	- Output $p(x)$ for every $x \in \mathbb{F}$
	- This works because of polynomial interpolation

The regime
$$
k = \Theta(n)
$$

- Any k-wise uniform generator fools depth- k decision trees with error 0
- **Theorem (good news)** [Cheng, Li 2021]: $\forall n, k$, \exists explicit k -wise uniform generator $G: \{0, 1\}^s \to \{0, 1\}^n$ with seed length $s = O(k \cdot \log(n/k)).$
- **Theorem (bad news)** [Karloff, Mansour 1997]: If $k \geq (1/2 + \Omega(1)) \cdot n$, then every k-wise uniform generator has seed length at least $n - O(1)$.

Almost k -wise uniformity

- Let X be a distribution over $\{0, 1\}^n$
- **Definition**: X is ε -almost k -wise uniform if, for every function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ that depends on at most k variables, we have $|\Pr[f(X) = 1] - \Pr[f(U_n) = 1]| \leq \varepsilon$
- **Equivalent:** For every set $S \subseteq [n]$ with $|S| = k$, the subsequence X_S is

uniform to within total variation distance ε

Almost k -wise uniformity

- **The good news:** There are constructions of ε -almost k -wise uniform generators with seed length $k + O(\log(k/\varepsilon) + \log \log n)$ [Alon, Goldreich, Håstad, Peralta 1992]
- **The bad news:** The condition of being ε -almost k -wise uniform is weaker than that of fooling depth- k decision trees, because depth- k decision trees can be adaptive

Key new concept: k -wise probable uniformity

• Let X be a distribution over $\{0, 1\}^n$

• **Definition (new)**: X is k -wise ε -probably uniform if, for every function

 $f: \{0, 1\}^n \rightarrow \{0, 1\}$ that depends on at most k variables, we have $Pr[f(X) = 1] \geq (1 - \varepsilon) \cdot Pr[f(U_n) = 1]$

• **Equivalent**: For every set $S \subseteq [n]$ with $|S| = k$, the subsequence X_S has a mixture distribution: sample from U_k with probability $1 - \varepsilon$, and sample from some other distribution with probability $\varepsilon \, \subset \,$ "Probably uniform"

Main technical contribution

Theorem (this work): $\forall n, k, \varepsilon$, \exists explicit k-wise ε -probably uniform generator $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$ with seed length $s = k + O(k^{2/3} \cdot \log^{1/3}(k/\varepsilon) + \log(1/\varepsilon) + \log \log n).$

• Today's talk: A couple of elements of the construction

Pairwise uniform hash functions $\frac{1}{2}$ $\frac{1}{2}$

- Let H be a family of hash functions $h: \{0, 1\}^s \rightarrow \{0, 1\}^n$
- **Definition:** H is pairwise uniform (aka "strongly universal") if, for every pair of distinct $x_1, x_2 \in \{0, 1\}^s$, when we sample $h \sim \mathcal{H}$, the pair $\big(h(x_1), h(x_2)\big)$ is distributed uniformly over $\{0,1\}^{2n}$
- **Fact:** $\forall s, n$, \exists explicit pairwise uniform family H such that sampling $h \sim H$ costs $O(s + n)$ truly random bits

A sampling lemma

- Let H be a pairwise uniform family of hash functions $h: \{0, 1\}^s \rightarrow \{0, 1\}^n$
- Let $f: \{0, 1\}^n \to \{0, 1\}$ and let $\mu = \mathbb{E}[f(U_n)]$
- Think of a single h in H as a PRG that we can use to try to fool f
- **Lemma** (standard): If we sample $h \sim H$, then for any $\varepsilon \in (0,1)$,

$$
\Pr_{h}[h \text{ fools } f \text{ with error } \varepsilon \cdot \mu] \ge 1 - \frac{1}{2^{s} \cdot \varepsilon^{2} \cdot \mu}.
$$

Proof of sampling lemma

- For each fixed $x \in \{0,1\}^s$, define a random variable $Z_x = f\big(h(x))$
- Then $\mathbb{E}[Z_{\chi}] = \mu$ and $\text{Var}[Z_{\chi}] = \mu \cdot (1 \mu) \leq \mu$
- Let $Z = \sum_{\alpha} Z_{\alpha}$
- Then $\mathbb{E}[Z] = \mu \cdot 2^s$ and $\text{Var}[Z] \leq \mu \cdot 2^s$ by pairwise independence
- Now apply Chebyshev's inequality:

$$
\Pr\left[\left|\frac{Z}{2^s}-\mu\right|>\varepsilon\cdot\mu\right]\leq \frac{\text{Var}[Z]}{(2^s\cdot\varepsilon\cdot\mu)^2}\leq \frac{1}{2^s\cdot\varepsilon^2\cdot\mu}.
$$

We can tolerate "bad events"

- Our k -wise probably uniform generator involves sampling a hash function $h \sim H$ and then using it several times (see paper for more)
- There is some "bad event" B where $Pr[B] \approx \varepsilon$
- This is okay: $\mathbb{E}[f(X)] \geq \Pr[\neg B] \cdot \mathbb{E}[f(X)] B] \geq (1 \varepsilon) \cdot \mathbb{E}[f]$
- Crucially, we do not claim $\mathbb{E}[f(X)] \leq (1 + \varepsilon) \cdot \mathbb{E}[f]!$

Fooling decision trees

- **Claim:** If X is k -wise ε -probably uniform, then X fools depth- k decision trees with error ε
- **Proof:** Let A be the set of accepting leaves in a depth- k decision tree T
- For each leaf $u \in A$, let $T_u(x)$ indicate whether $T(x)$ reaches u

$$
\mathbb{E}[T(X)] = \sum_{u \in A} \mathbb{E}[T_u(X)] \ge \sum_{u \in A} (1 - \varepsilon) \cdot \mathbb{E}[T_u(U_n)] \ge \mathbb{E}[T(U_n)] - \varepsilon
$$

• $\mathbb{E}[T(X)] \leq \mathbb{E}[T(U_n)] + \varepsilon$, because $1 - T$ is another depth-k decision tree

Conclusions

- We construct PRGs fooling near-maximal decision trees and U_2 -circuits of size 2.99 $\cdot n$
- The construction is based on a new kind of almost k -wise independence, called k -wise probable uniformity
- Open problem: Find more applications of k -wise probable uniformity
- **Thank you!**