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Time, space, and randomness



Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T ),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))
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I Theorem:

I Suppose T ≤ n · poly(S)
I Then there is a DSPACE(S) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)
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Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?

I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins
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Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates
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Our technique: “Out of sight, out of mind”

I Use part of the input as a source of randomness while A is
processing the rest of the input
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I (Additional ideas needed to make this work...)
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Randomness extractors

Ext

weak random source

near uniform

seed

I (k , ε)-extractor Ext : {0, 1}` × {0, 1}d → {0, 1}s

I Assume X has “at least k bits of randomness” (min-entropy)

I Assume Y is uniform random, independent of X

I Then Ext(X ,Y ) ∼ε Us

I Think s ≈ k and d ≈ log(`/ε).
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Randomized branching programs (2)

I Length = length of longest path

I Size = # vertices

I Time Õ(n), space O(log n) =⇒ length Õ(n), size poly(n)

I P(v ; x , y) = the terminal vertex reached if you start from
vertex v , read input x ∈ {0, 1}n, use random bits y ∈ {0, 1}T



Randomized branching programs (2)

I Length = length of longest path

I Size = # vertices
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Nisan’s generator

I Theorem (Nisan ’92): There is a pseudorandom generator

NisGen : {0, 1}s → {0, 1}T (1)

that fools programs of size poly(n):

P(v ; x ,UT ) ∼ε P(v ; x ,NisGen(Us)) (2)

I Seed length s = O(log2 n)
I Runs in space O(log n) given two-way access to seed
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Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT ) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values
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I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT ) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values



Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)
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Main algorithm

log100 n

Ext

NisGen

110100001101001111001010110111011010100011100

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v
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Efficiency analysis

1. Initialize v := v0. Repeat polylog(n) times:
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v := P|[n]\I (v ; x , z)

2. Output v

I Runs in O(log n) space!

I O(log n) bits to store I , y , v
I O(log n) bits to run Ext, NisGen

I We can give NisGen two-way access to its seed, because we
have two-way access to x

I Randomness polylog n (one-way access!)
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Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
# bad x |I

· (2n−log100 n)︸ ︷︷ ︸
# x |[n]\I

· (n)︸︷︷︸
# I

· (poly(n))︸ ︷︷ ︸
# v
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2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Update v := P|[n]\I (v ; x , z)
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Second hybrid distribution

1. Initialize v := v0

2. Repeat polylog(n) times:

2.1 Pick random I ⊆ [n]
2.2 Pick random z ∈ {0, 1}T
2.3 Update v := P|[n]\I (v ; x , z)

3. Output v

Target distribution

1. Pick random z ∈ {0, 1}T

2. Output P(v0; x , z)

I In each phase, make n/ log100 n steps through program w.h.p.

I After polylog(n) phases, reach terminal vertex w.h.p.
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Uniform consequence

I Corollary:

I Suppose L ∈ BPTISP(Õ(n), log n)
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

polylog n random bits...
I ...that succeeds on the vast majority of inputs of each length.
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The Nisan-Zuckerman generator

I Theorem (Nisan, Zuckerman ’96): For every constant c , there
is a pseudorandom generator

NZGen : {0, 1}d → {0, 1}logc n

that fools programs of size poly(n):

P(v ; x ,Ulogc n) ∼ε P(v ; x ,NZGen(Ud)).

I Seed length d ≤ O(log n)
I Runs in space O(log n)
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I Adleman’s argument shows BPL ⊆ L/ poly
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I Goldreich, Wigderson ’02: Critical threshold at n bits of advice

I Roughly: Derandomization with < n bits of advice =⇒
typically-correct derandomization with no advice
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Contribution 1: Derandomizing BPL with less advice

I Theorem: BPL ⊆ L/(n + O(log2 n)).

I The algorithm: Given x ∈ {0, 1}n, a ∈ {0, 1}n+O(log2 n):

I For every y ∈ {0, 1}O(log n), run BPL algorithm with
randomness NisGen(Ext(a, y))

I Output majority answer

I Proof of correctness: # bad a bounded by

(2O(log2 n))︸ ︷︷ ︸
# bad a for each x

· (2n)︸︷︷︸
# x

< 2|a|
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I Theorem: If L ∈ BPL admits a DSPACE(log n) algorithm A
that fails on ε-fraction of inputs, then

L ∈ L/(n− log2(1/ε) + O(log2 n)).

I Idea: Run A and algorithm with advice

I Advice only needs to be good for atypical x

I (Detail: Make advice algorithm “zero-error” using RL ⊆ SC trick)
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Derandomizing quasilinear-time, log-space with advice

I Corollary: For every constant c ,

BPTISP(Õ(n), log n) ⊆ L/(n − logc n).



Sublinear advice

I BPTISPTM(T , S): Time-T space-S multitape Turing
machines

I Theorem: For every constant c ,

BPTISPTM(Õ(n), log n) ⊆ L/

(
n

logc n

)
.



Beyond quasilinear time

I Theorem:

BPTISPTM(n1.99, log n) ⊆ L/(n − nΩ(1)).
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