
Typically-Correct Derandomization for Small
Time and Space

William M. Hoza1

The University of Texas at Austin

3/21/18
HUJI CS Theory Seminar

1
Supported by the NSF GRFP under Grant No. DGE1610403.

Time, space, and randomness

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:
I Assume SAT has exponential circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:
I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:
I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:
I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:
I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:
I Assume SAT has exponential circuit complexity
I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:
I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Main result

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem:

I Suppose T ≤ n · poly(S)
I Then there is a DSPACE(S) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem:

I Suppose T ≤ n · poly(S)
I Then there is a DSPACE(S) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem:
I Suppose T ≤ n · poly(S)

I Then there is a DSPACE(S) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem:
I Suppose T ≤ n · poly(S)
I Then there is a DSPACE(S) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem:
I Suppose T ≤ n · poly(S)
I Then there is a DSPACE(S) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)
I T = T (n) ≥ n
I S = S(n) ≥ log n

I Theorem:
I Suppose T ≤ n · poly(S)
I Then there is a DSPACE(S) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)
I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?

I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?
I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?
I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?
I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?
I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity

I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms

I [Shaltiel ’11]: Two-party communication protocols, streaming
algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Our technique: “Out of sight, out of mind”

I Use part of the input as a source of randomness while A is
processing the rest of the input

A

110100001101001111001010110111011010100011100

T

H

H

T

H

TTHHTHTH

I (Additional ideas needed to make this work...)

Our technique: “Out of sight, out of mind”

I Use part of the input as a source of randomness while A is
processing the rest of the input

A

110100001101001111001010110111011010100011100

T

H

H

T

H

TTHHTHTH

I (Additional ideas needed to make this work...)

Our technique: “Out of sight, out of mind”

I Use part of the input as a source of randomness while A is
processing the rest of the input

A

110100001101001111001010110111011010100011100

T

H

H

T

H

TTHHTHTH

I (Additional ideas needed to make this work...)

Randomness extractors

Ext

weak random source

near uniform

seed

I (k , ε)-extractor Ext : {0, 1}` × {0, 1}d → {0, 1}s

I Assume X has “at least k bits of randomness” (min-entropy)

I Assume Y is uniform random, independent of X

I Then Ext(X ,Y) ∼ε Us

I Think s ≈ k and d ≈ log(`/ε).

Randomness extractors

Ext

weak random source

near uniform

seed

I (k , ε)-extractor Ext : {0, 1}` × {0, 1}d → {0, 1}s

I Assume X has “at least k bits of randomness” (min-entropy)

I Assume Y is uniform random, independent of X

I Then Ext(X ,Y) ∼ε Us

I Think s ≈ k and d ≈ log(`/ε).

Randomness extractors

Ext

weak random source

near uniform

seed

I (k , ε)-extractor Ext : {0, 1}` × {0, 1}d → {0, 1}s

I Assume X has “at least k bits of randomness” (min-entropy)

I Assume Y is uniform random, independent of X

I Then Ext(X ,Y) ∼ε Us

I Think s ≈ k and d ≈ log(`/ε).

Randomness extractors

Ext

weak random source

near uniform

seed

I (k , ε)-extractor Ext : {0, 1}` × {0, 1}d → {0, 1}s

I Assume X has “at least k bits of randomness” (min-entropy)

I Assume Y is uniform random, independent of X

I Then Ext(X ,Y) ∼ε Us

I Think s ≈ k and d ≈ log(`/ε).

Randomness extractors

Ext

weak random source

near uniform

seed

I (k , ε)-extractor Ext : {0, 1}` × {0, 1}d → {0, 1}s

I Assume X has “at least k bits of randomness” (min-entropy)

I Assume Y is uniform random, independent of X

I Then Ext(X ,Y) ∼ε Us

I Think s ≈ k and d ≈ log(`/ε).

Randomized branching programs

x3

x1

x2

0H

0T

1H

1T

0H

0T

1H

1T

0H

0T

1H

1T

Randomized branching programs (2)

I Length = length of longest path

I Size = # vertices

I Time Õ(n), space O(log n) =⇒ length Õ(n), size poly(n)

I P(v ; x , y) = the terminal vertex reached if you start from
vertex v , read input x ∈ {0, 1}n, use random bits y ∈ {0, 1}T

Randomized branching programs (2)

I Length = length of longest path

I Size = # vertices

I Time Õ(n), space O(log n) =⇒ length Õ(n), size poly(n)

I P(v ; x , y) = the terminal vertex reached if you start from
vertex v , read input x ∈ {0, 1}n, use random bits y ∈ {0, 1}T

Randomized branching programs (2)

I Length = length of longest path

I Size = # vertices

I Time Õ(n), space O(log n) =⇒ length Õ(n), size poly(n)

I P(v ; x , y) = the terminal vertex reached if you start from
vertex v , read input x ∈ {0, 1}n, use random bits y ∈ {0, 1}T

Randomized branching programs (2)

I Length = length of longest path

I Size = # vertices

I Time Õ(n), space O(log n) =⇒ length Õ(n), size poly(n)

I P(v ; x , y) = the terminal vertex reached if you start from
vertex v , read input x ∈ {0, 1}n, use random bits y ∈ {0, 1}T

Nisan’s generator

I Theorem (Nisan ’92): There is a pseudorandom generator

NisGen : {0, 1}s → {0, 1}T (1)

that fools programs of size poly(n):

P(v ; x ,UT) ∼ε P(v ; x ,NisGen(Us)) (2)

I Seed length s = O(log2 n)
I Runs in space O(log n) given two-way access to seed

Nisan’s generator

I Theorem (Nisan ’92): There is a pseudorandom generator

NisGen : {0, 1}s → {0, 1}T (1)

that fools programs of size poly(n):

P(v ; x ,UT) ∼ε P(v ; x ,NisGen(Us)) (2)

I Seed length s = O(log2 n)

I Runs in space O(log n) given two-way access to seed

Nisan’s generator

I Theorem (Nisan ’92): There is a pseudorandom generator

NisGen : {0, 1}s → {0, 1}T (1)

that fools programs of size poly(n):

P(v ; x ,UT) ∼ε P(v ; x ,NisGen(Us)) (2)

I Seed length s = O(log2 n)
I Runs in space O(log n) given two-way access to seed

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n

(one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n (one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Main technical result

I Theorem: Suppose we’re given

I Program P of size poly(n), length T = Õ(n)

I Input x ∈ {0, 1}n

I Initial vertex v0.

Can approximately sample from P(v0; x ,UT) using

I Space O(log n)

I Randomness polylog n (one-way access!)

Caveat: Sampling error is large for tiny fraction of x values

Restriction of a program

x3

x1

x2

0H

0T

1H

1T

0H

0T

1H

1T

P =

0H

0T

1H

1T

Restriction of a program

x3

x1

x2

0H

0T

1H

1T

0H

0T

1H

1T

0H

0T

1H

1T

P|{1,3} =

Restriction of a program

x3

x1

0H

0T

1H

1T

0H

0T

1H

1T

P|{1,3} =

Main algorithm

log100 n

Ext

NisGen

110100001101001111001010110111011010100011100

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

Main algorithm

log100 n

Ext

NisGen

110100001101001111001010110111011010100011100

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

Main algorithm

log100 n

Ext

NisGen

110100001101001111001010110111011010100011100

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]

1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

Main algorithm

log100 n

Ext

NisGen

110100001101001111001010110111011010100011100

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

Main algorithm

log100 n

Ext

NisGen

110100001101001111001010110111011010100011100

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))

1.4 Update
v := P|[n]\I (v ; x , z)

2. Output v

Main algorithm

log100 n

Ext

NisGen

110100001101001111001010110111011010100011100

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

Efficiency analysis

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

I Runs in O(log n) space!

I O(log n) bits to store I , y , v
I O(log n) bits to run Ext, NisGen

I We can give NisGen two-way access to its seed, because we
have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

I Runs in O(log n) space!

I O(log n) bits to store I , y , v
I O(log n) bits to run Ext, NisGen

I We can give NisGen two-way access to its seed, because we
have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

I Runs in O(log n) space!
I O(log n) bits to store I , y , v

I O(log n) bits to run Ext, NisGen

I We can give NisGen two-way access to its seed, because we
have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

I Runs in O(log n) space!
I O(log n) bits to store I , y , v
I O(log n) bits to run Ext, NisGen

I We can give NisGen two-way access to its seed, because we
have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

I Runs in O(log n) space!
I O(log n) bits to store I , y , v
I O(log n) bits to run Ext, NisGen

I We can give NisGen two-way access to its seed, because we
have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Initialize v := v0. Repeat polylog(n) times:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(Ext(x |I , y))
1.4 Update

v := P|[n]\I (v ; x , z)

2. Output v

I Runs in O(log n) space!
I O(log n) bits to store I , y , v
I O(log n) bits to run Ext, NisGen

I We can give NisGen two-way access to its seed, because we
have two-way access to x

I Randomness polylog n (one-way access!)

Extractors are good samplers

I Lemma [Zuckerman ’97]:

I Suppose Ext : {0, 1}` × {0, 1}d → {0, 1}s is a (k, ε)-extractor

I For any F : {0, 1}s → V , for most x ,

F (Us) ∼ε·|V |/2 F (Ext(x ,Ud)).

I (# bad x ≤ 2k+1|V |)

Extractors are good samplers

I Lemma [Zuckerman ’97]:
I Suppose Ext : {0, 1}` × {0, 1}d → {0, 1}s is a (k, ε)-extractor

I For any F : {0, 1}s → V , for most x ,

F (Us) ∼ε·|V |/2 F (Ext(x ,Ud)).

I (# bad x ≤ 2k+1|V |)

Extractors are good samplers

I Lemma [Zuckerman ’97]:
I Suppose Ext : {0, 1}` × {0, 1}d → {0, 1}s is a (k, ε)-extractor

I For any F : {0, 1}s → V , for most x ,

F (Us) ∼ε·|V |/2 F (Ext(x ,Ud)).

I (# bad x ≤ 2k+1|V |)

Extractors are good samplers

I Lemma [Zuckerman ’97]:
I Suppose Ext : {0, 1}` × {0, 1}d → {0, 1}s is a (k, ε)-extractor

I For any F : {0, 1}s → V , for most x ,

F (Us) ∼ε·|V |/2 F (Ext(x ,Ud)).

I (# bad x ≤ 2k+1|V |)

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

·

(2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

·

(n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

·

(poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

True algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(Ext(x |I , y))

3. Update v := P|[n]\I (v ; x , z)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

I Consider F (y ′) = P|[n]\I (v ; x ,NisGen(y ′))

I # bad x bounded by

(2O(log2 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch (2)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Update v := P|[n]\I (v ; x , z)

Correctness proof sketch (2)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Update v := P|[n]\I (v ; x , z)

Correctness proof sketch (2)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Update v := P|[n]\I (v ; x , z)

Correctness proof sketch (2)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Update v := P|[n]\I (v ; x , z)

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Update v := P|[n]\I (v ; x , z)

Correctness proof sketch (3)

Second hybrid distribution

1. Initialize v := v0

2. Repeat polylog(n) times:

2.1 Pick random I ⊆ [n]
2.2 Pick random z ∈ {0, 1}T
2.3 Update v := P|[n]\I (v ; x , z)

3. Output v

Target distribution

1. Pick random z ∈ {0, 1}T

2. Output P(v0; x , z)

I In each phase, make n/ log100 n steps through program w.h.p.

I After polylog(n) phases, reach terminal vertex w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Initialize v := v0

2. Repeat polylog(n) times:

2.1 Pick random I ⊆ [n]
2.2 Pick random z ∈ {0, 1}T
2.3 Update v := P|[n]\I (v ; x , z)

3. Output v

Target distribution

1. Pick random z ∈ {0, 1}T

2. Output P(v0; x , z)

I In each phase, make n/ log100 n steps through program w.h.p.

I After polylog(n) phases, reach terminal vertex w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Initialize v := v0

2. Repeat polylog(n) times:

2.1 Pick random I ⊆ [n]
2.2 Pick random z ∈ {0, 1}T
2.3 Update v := P|[n]\I (v ; x , z)

3. Output v

Target distribution

1. Pick random z ∈ {0, 1}T

2. Output P(v0; x , z)

I In each phase, make n/ log100 n steps through program w.h.p.

I After polylog(n) phases, reach terminal vertex w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Initialize v := v0

2. Repeat polylog(n) times:

2.1 Pick random I ⊆ [n]
2.2 Pick random z ∈ {0, 1}T
2.3 Update v := P|[n]\I (v ; x , z)

3. Output v

Target distribution

1. Pick random z ∈ {0, 1}T

2. Output P(v0; x , z)

I In each phase, make n/ log100 n steps through program w.h.p.

I After polylog(n) phases, reach terminal vertex w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Initialize v := v0

2. Repeat polylog(n) times:

2.1 Pick random I ⊆ [n]
2.2 Pick random z ∈ {0, 1}T
2.3 Update v := P|[n]\I (v ; x , z)

3. Output v

Target distribution

1. Pick random z ∈ {0, 1}T

2. Output P(v0; x , z)

I In each phase, make n/ log100 n steps through program w.h.p.

I After polylog(n) phases, reach terminal vertex w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Initialize v := v0

2. Repeat polylog(n) times:

2.1 Pick random I ⊆ [n]
2.2 Pick random z ∈ {0, 1}T
2.3 Update v := P|[n]\I (v ; x , z)

3. Output v

Target distribution

1. Pick random z ∈ {0, 1}T

2. Output P(v0; x , z)

I In each phase, make n/ log100 n steps through program w.h.p.

I After polylog(n) phases, reach terminal vertex w.h.p.

Uniform consequence

I Corollary:

I Suppose L ∈ BPTISP(Õ(n), log n)
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

polylog n random bits...
I ...that succeeds on the vast majority of inputs of each length.

Uniform consequence

I Corollary:
I Suppose L ∈ BPTISP(Õ(n), log n)

I There is a BPTISP(Õ(n), log n) algorithm for L that uses just
polylog n random bits...

I ...that succeeds on the vast majority of inputs of each length.

Uniform consequence

I Corollary:
I Suppose L ∈ BPTISP(Õ(n), log n)
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

polylog n random bits...

I ...that succeeds on the vast majority of inputs of each length.

Uniform consequence

I Corollary:
I Suppose L ∈ BPTISP(Õ(n), log n)
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

polylog n random bits...
I ...that succeeds on the vast majority of inputs of each length.

The Nisan-Zuckerman generator

I Theorem (Nisan, Zuckerman ’96): For every constant c , there
is a pseudorandom generator

NZGen : {0, 1}d → {0, 1}logc n

that fools programs of size poly(n):

P(v ; x ,Ulogc n) ∼ε P(v ; x ,NZGen(Ud)).

I Seed length d ≤ O(log n)
I Runs in space O(log n)

The Nisan-Zuckerman generator

I Theorem (Nisan, Zuckerman ’96): For every constant c , there
is a pseudorandom generator

NZGen : {0, 1}d → {0, 1}logc n

that fools programs of size poly(n):

P(v ; x ,Ulogc n) ∼ε P(v ; x ,NZGen(Ud)).

I Seed length d ≤ O(log n)

I Runs in space O(log n)

The Nisan-Zuckerman generator

I Theorem (Nisan, Zuckerman ’96): For every constant c , there
is a pseudorandom generator

NZGen : {0, 1}d → {0, 1}logc n

that fools programs of size poly(n):

P(v ; x ,Ulogc n) ∼ε P(v ; x ,NZGen(Ud)).

I Seed length d ≤ O(log n)
I Runs in space O(log n)

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPTISP(Õ(n), log n) algorithm for L that uses just
O(log n) random bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPTISP(Õ(n), log n) algorithm for L that uses just
O(log n) random bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

O(log n) random bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

O(log n) random bits...
I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

O(log n) random bits...
I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

O(log n) random bits...
I ...that succeeds on the vast majority of inputs of each length.

I Corollary:
I There is a DSPACE(log n) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:
I There is a BPTISP(Õ(n), log n) algorithm for L that uses just

O(log n) random bits...
I ...that succeeds on the vast majority of inputs of each length.

I Corollary:
I There is a DSPACE(log n) algorithm for L...
I ...that succeeds on the vast majority of inputs of each length.

Derandomization with advice

I Adleman’s argument shows BPL ⊆ L/ poly

I Fortnow, Klivans ’06: BPL ⊆ L/O(n)
I Goldreich, Wigderson ’02: Critical threshold at n bits of advice

I Roughly: Derandomization with < n bits of advice =⇒
typically-correct derandomization with no advice

Derandomization with advice

I Adleman’s argument shows BPL ⊆ L/ poly

I Fortnow, Klivans ’06: BPL ⊆ L/O(n)

I Goldreich, Wigderson ’02: Critical threshold at n bits of advice

I Roughly: Derandomization with < n bits of advice =⇒
typically-correct derandomization with no advice

Derandomization with advice

I Adleman’s argument shows BPL ⊆ L/ poly

I Fortnow, Klivans ’06: BPL ⊆ L/O(n)
I Goldreich, Wigderson ’02: Critical threshold at n bits of advice

I Roughly: Derandomization with < n bits of advice =⇒
typically-correct derandomization with no advice

Derandomization with advice

I Adleman’s argument shows BPL ⊆ L/ poly

I Fortnow, Klivans ’06: BPL ⊆ L/O(n)
I Goldreich, Wigderson ’02: Critical threshold at n bits of advice

I Roughly: Derandomization with < n bits of advice =⇒
typically-correct derandomization with no advice

Contribution 1: Derandomizing BPL with less advice

I Theorem: BPL ⊆ L/(n + O(log2 n)).

I The algorithm: Given x ∈ {0, 1}n, a ∈ {0, 1}n+O(log2 n):

I For every y ∈ {0, 1}O(log n), run BPL algorithm with
randomness NisGen(Ext(a, y))

I Output majority answer

I Proof of correctness: # bad a bounded by

(2O(log2 n))︸ ︷︷ ︸
bad a for each x

· (2n)︸︷︷︸
x

< 2|a|

Contribution 1: Derandomizing BPL with less advice

I Theorem: BPL ⊆ L/(n + O(log2 n)).

I The algorithm: Given x ∈ {0, 1}n, a ∈ {0, 1}n+O(log2 n):

I For every y ∈ {0, 1}O(log n), run BPL algorithm with
randomness NisGen(Ext(a, y))

I Output majority answer

I Proof of correctness: # bad a bounded by

(2O(log2 n))︸ ︷︷ ︸
bad a for each x

· (2n)︸︷︷︸
x

< 2|a|

Contribution 1: Derandomizing BPL with less advice

I Theorem: BPL ⊆ L/(n + O(log2 n)).

I The algorithm: Given x ∈ {0, 1}n, a ∈ {0, 1}n+O(log2 n):

I For every y ∈ {0, 1}O(log n), run BPL algorithm with
randomness NisGen(Ext(a, y))

I Output majority answer

I Proof of correctness: # bad a bounded by

(2O(log2 n))︸ ︷︷ ︸
bad a for each x

· (2n)︸︷︷︸
x

< 2|a|

Contribution 1: Derandomizing BPL with less advice

I Theorem: BPL ⊆ L/(n + O(log2 n)).

I The algorithm: Given x ∈ {0, 1}n, a ∈ {0, 1}n+O(log2 n):

I For every y ∈ {0, 1}O(log n), run BPL algorithm with
randomness NisGen(Ext(a, y))

I Output majority answer

I Proof of correctness: # bad a bounded by

(2O(log2 n))︸ ︷︷ ︸
bad a for each x

· (2n)︸︷︷︸
x

< 2|a|

Contribution 1: Derandomizing BPL with less advice

I Theorem: BPL ⊆ L/(n + O(log2 n)).

I The algorithm: Given x ∈ {0, 1}n, a ∈ {0, 1}n+O(log2 n):

I For every y ∈ {0, 1}O(log n), run BPL algorithm with
randomness NisGen(Ext(a, y))

I Output majority answer

I Proof of correctness: # bad a bounded by

(2O(log2 n))︸ ︷︷ ︸
bad a for each x

· (2n)︸︷︷︸
x

< 2|a|

Contribution 2: Converse to GW ’02

I Theorem: If L ∈ BPL admits a DSPACE(log n) algorithm A
that fails on ε-fraction of inputs, then

L ∈ L/(n− log2(1/ε) + O(log2 n)).

I Idea: Run A and algorithm with advice

I Advice only needs to be good for atypical x

I (Detail: Make advice algorithm “zero-error” using RL ⊆ SC trick)

Contribution 2: Converse to GW ’02

I Theorem: If L ∈ BPL admits a DSPACE(log n) algorithm A
that fails on ε-fraction of inputs, then

L ∈ L/(n− log2(1/ε) + O(log2 n)).

I Idea: Run A and algorithm with advice

I Advice only needs to be good for atypical x

I (Detail: Make advice algorithm “zero-error” using RL ⊆ SC trick)

Contribution 2: Converse to GW ’02

I Theorem: If L ∈ BPL admits a DSPACE(log n) algorithm A
that fails on ε-fraction of inputs, then

L ∈ L/(n− log2(1/ε) + O(log2 n)).

I Idea: Run A and algorithm with advice

I Advice only needs to be good for atypical x

I (Detail: Make advice algorithm “zero-error” using RL ⊆ SC trick)

Contribution 2: Converse to GW ’02

I Theorem: If L ∈ BPL admits a DSPACE(log n) algorithm A
that fails on ε-fraction of inputs, then

L ∈ L/(n− log2(1/ε) + O(log2 n)).

I Idea: Run A and algorithm with advice

I Advice only needs to be good for atypical x

I (Detail: Make advice algorithm “zero-error” using RL ⊆ SC trick)

Derandomizing quasilinear-time, log-space with advice

I Corollary: For every constant c ,

BPTISP(Õ(n), log n) ⊆ L/(n − logc n).

Sublinear advice

I BPTISPTM(T , S): Time-T space-S multitape Turing
machines

I Theorem: For every constant c ,

BPTISPTM(Õ(n), log n) ⊆ L/

(
n

logc n

)
.

Beyond quasilinear time

I Theorem:

BPTISPTM(n1.99, log n) ⊆ L/(n − nΩ(1)).

Disambiguating nondeterministic algorithms

I Allender et al. ’99: Circuit lower bounds =⇒ NL = UL

I Reinhard, Allender ’00: NL ⊆ UL/ poly

I van Melkebeek, Prakriya ’17: NL ⊆ USPACE(log3/2 n)

I Theorem: NL ⊆ UL/(n + log2 n)

I Theorem: For every constant c ,

NTISP(Õ(n), log n) ⊆ USPACE(Õ(log n))/(n − logc n).

Disambiguating nondeterministic algorithms

I Allender et al. ’99: Circuit lower bounds =⇒ NL = UL

I Reinhard, Allender ’00: NL ⊆ UL/ poly

I van Melkebeek, Prakriya ’17: NL ⊆ USPACE(log3/2 n)

I Theorem: NL ⊆ UL/(n + log2 n)

I Theorem: For every constant c ,

NTISP(Õ(n), log n) ⊆ USPACE(Õ(log n))/(n − logc n).

Disambiguating nondeterministic algorithms

I Allender et al. ’99: Circuit lower bounds =⇒ NL = UL

I Reinhard, Allender ’00: NL ⊆ UL/ poly

I van Melkebeek, Prakriya ’17: NL ⊆ USPACE(log3/2 n)

I Theorem: NL ⊆ UL/(n + log2 n)

I Theorem: For every constant c ,

NTISP(Õ(n), log n) ⊆ USPACE(Õ(log n))/(n − logc n).

Disambiguating nondeterministic algorithms

I Allender et al. ’99: Circuit lower bounds =⇒ NL = UL

I Reinhard, Allender ’00: NL ⊆ UL/ poly

I van Melkebeek, Prakriya ’17: NL ⊆ USPACE(log3/2 n)

I Theorem: NL ⊆ UL/(n + log2 n)

I Theorem: For every constant c ,

NTISP(Õ(n), log n) ⊆ USPACE(Õ(log n))/(n − logc n).

Disambiguating nondeterministic algorithms

I Allender et al. ’99: Circuit lower bounds =⇒ NL = UL

I Reinhard, Allender ’00: NL ⊆ UL/ poly

I van Melkebeek, Prakriya ’17: NL ⊆ USPACE(log3/2 n)

I Theorem: NL ⊆ UL/(n + log2 n)

I Theorem: For every constant c ,

NTISP(Õ(n), log n) ⊆ USPACE(Õ(log n))/(n − logc n).

Main open problem

I Typically-correct derandomization of BPL?

I Thanks! Questions?

Main open problem

I Typically-correct derandomization of BPL?

I Thanks! Questions?

