
Typically-Correct Derandomization for Small
Time and Space

William M. Hoza1

University of Texas at Austin

July 18
CCC 2019

1
Supported by the NSF GRFP under Grant No. DGE1610403 and by a Harrington fellowship from UT Austin

Time, space, and randomness

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Derandomization

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem [Klivans, van Melkebeek ’02]:

I Assume some language in DSPACE(O(n)) has exponential
circuit complexity

I Then L ∈ DTISP(poly(T),S)

I Theorem [Nisan, Zuckerman ’96]:

I Suppose S ≥ TΩ(1)

I Then L ∈ DSPACE(S) (runtime 2Θ(S))

Main result

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem:

I Suppose T ≤ n · poly(S)

I Then there is a DSPACE(S) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem:

I Suppose T ≤ n · poly(S)

I Then there is a DSPACE(S) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem:

I Suppose T ≤ n · poly(S)

I Then there is a DSPACE(S) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem:

I Suppose T ≤ n · poly(S)

I Then there is a DSPACE(S) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem:

I Suppose T ≤ n · poly(S)

I Then there is a DSPACE(S) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Main result

I Suppose L ∈ BPTISP(T ,S)

I T = T (n) ≥ n

I S = S(n) ≥ log n

I Theorem:

I Suppose T ≤ n · poly(S)

I Then there is a DSPACE(S) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

I Think T = Õ(n), S = O(log n)

I [Saks, Zhou ’95]: Space Θ(log1.5 n)

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?

I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?

I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?

I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?

I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Typically-correct derandomizations

I Is 110100001101001111001010110111011010100011100 ∈ L?

I If only we had some randomness...

I Let A be a randomized algorithm

I Näıve derandomization: Run A(x , x)

I Might fail on all x because of correlations between input, coins

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity

I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms

I [Shaltiel ’11]: Two-party communication protocols, streaming
algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

I [Goldreich, Wigderson ’02]: Undirected s-t connectivity
I [Arvind, Torán ’04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

I [Zimand ’08]: Sublinear time algorithms
I [Shaltiel ’11]: Two-party communication protocols, streaming

algorithms, BPAC0

3. Plug input into seed-extending pseudorandom generator

I [Kinne, van Melkebeek, Shaltiel ’12]: Multiparty communication
protocols, BPAC0 with symmetric gates

Our technique: “Out of sight, out of mind”

I Use part of the input as a source of randomness while A is
processing the rest of the input

A

110100001101001111001010110111011010100011100

T

H

H

T

H

TTHHTHTH

I (Additional ideas needed to make this work...)

Our technique: “Out of sight, out of mind”

I Use part of the input as a source of randomness while A is
processing the rest of the input

A

110100001101001111001010110111011010100011100

T

H

H

T

H

TTHHTHTH

I (Additional ideas needed to make this work...)

Our technique: “Out of sight, out of mind”

I Use part of the input as a source of randomness while A is
processing the rest of the input

A

110100001101001111001010110111011010100011100

T

H

H

T

H

TTHHTHTH

I (Additional ideas needed to make this work...)

Restriction of algorithm

110100001101001111001010110111011010100011100

I Let I ⊆ [n]

I Algorithm A|[n]\I :

1. Run A like normal...

2. ...except, if A is about to query xi for some i ∈ I , halt
immediately.

Restriction of algorithm

110100001101001111001010110111011010100011100

I Let I ⊆ [n]

I Algorithm A|[n]\I :

1. Run A like normal...

2. ...except, if A is about to query xi for some i ∈ I , halt
immediately.

Restriction of algorithm

110100001101001111001010110111011010100011100

I Let I ⊆ [n]

I Algorithm A|[n]\I :

1. Run A like normal...

2. ...except, if A is about to query xi for some i ∈ I , halt
immediately.

Restriction of algorithm

110100001101001111001010110111011010100011100

I Let I ⊆ [n]

I Algorithm A|[n]\I :

1. Run A like normal...

2. ...except, if A is about to query xi for some i ∈ I , halt
immediately.

Restriction of algorithm

110100001101001111001010110111011010100011100

I Let I ⊆ [n]

I Algorithm A|[n]\I :

1. Run A like normal...

2. ...except, if A is about to query xi for some i ∈ I , halt
immediately.

Main Lemma: Reducing randomness to polylog n

I Main Lemma:

I Suppose L ∈ BPTISP(Õ(n), log n)

I There is a BPL algorithm for L that uses just polylog n random
bits (one-way access)...

I ...that succeeds on the vast majority of inputs of each length.

Main Lemma: Reducing randomness to polylog n

I Main Lemma:

I Suppose L ∈ BPTISP(Õ(n), log n)

I There is a BPL algorithm for L that uses just polylog n random
bits (one-way access)...

I ...that succeeds on the vast majority of inputs of each length.

Main Lemma: Reducing randomness to polylog n

I Main Lemma:

I Suppose L ∈ BPTISP(Õ(n), log n)

I There is a BPL algorithm for L that uses just polylog n random
bits (one-way access)...

I ...that succeeds on the vast majority of inputs of each length.

Main Lemma: Reducing randomness to polylog n

I Main Lemma:

I Suppose L ∈ BPTISP(Õ(n), log n)

I There is a BPL algorithm for L that uses just polylog n random
bits (one-way access)...

I ...that succeeds on the vast majority of inputs of each length.

Tool 1: Nisan’s Pseudorandom Generator

NisGen T = Õ(n) bitss = Θ(log2 n) bits

I For any O(log n)-space A, input x ,

A(x ,NisGen(Us)) ≈ A(x ,UT)

I Runs in space O(log n)...

I ...given two-way access to seed

Tool 1: Nisan’s Pseudorandom Generator

NisGen T = Õ(n) bitss = Θ(log2 n) bits

I For any O(log n)-space A, input x ,

A(x ,NisGen(Us)) ≈ A(x ,UT)

I Runs in space O(log n)...

I ...given two-way access to seed

Tool 1: Nisan’s Pseudorandom Generator

NisGen T = Õ(n) bitss = Θ(log2 n) bits

I For any O(log n)-space A, input x ,

A(x ,NisGen(Us)) ≈ A(x ,UT)

I Runs in space O(log n)...

I ...given two-way access to seed

Tool 2: Shaltiel-Umans Averaging Sampler

SUSamp

O(log100 n) bits

s = Θ(log2 n) bits

d = O(log n) bits

I For any F : {0, 1}s → V , for most x ,

F (SUSamp(x ,Ud)) ≈ F (Us)

I # bad x : at most 2O(log6 n) · |V |

I Runs in space O(log n) given two-way access to x

Tool 2: Shaltiel-Umans Averaging Sampler

SUSamp

O(log100 n) bits

s = Θ(log2 n) bits

d = O(log n) bits

I For any F : {0, 1}s → V , for most x ,

F (SUSamp(x ,Ud)) ≈ F (Us)

I # bad x : at most 2O(log6 n) · |V |

I Runs in space O(log n) given two-way access to x

Tool 2: Shaltiel-Umans Averaging Sampler

SUSamp

O(log100 n) bits

s = Θ(log2 n) bits

d = O(log n) bits

I For any F : {0, 1}s → V , for most x ,

F (SUSamp(x ,Ud)) ≈ F (Us)

I # bad x : at most 2O(log6 n) · |V |

I Runs in space O(log n) given two-way access to x

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Algorithm of Main Lemma

log100 n

SUSamp

NisGen

110100001101001111001010110111011010100011100

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block I ⊆ [n]

2.2 Pick a random y ∈ {0, 1}O(log n)

2.3 Let z = NisGen(SUSamp(x |I , y))

2.4 Run A|[n]\I (x , z) from configuration v until it halts

2.5 Update v to be the final configuration

3. Accept if v is an accepting configuration, else reject

Efficiency analysis

1. Loop for polylog(n) iterations:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(SUSamp(x |I , y))
1.4 Run A|[n]\I (x , z) from configuration v until it halts
1.5 Update v to be the final configuration

2. Accept iff v accepts

I Runs in O(log n) space!

I O(log n) bits to store I , y , v

I O(log n) bits to run SUSamp, NisGen, A|[n]\I

I We can give SUSamp, NisGen two-way access to their inputs,
because we have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Loop for polylog(n) iterations:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(SUSamp(x |I , y))
1.4 Run A|[n]\I (x , z) from configuration v until it halts
1.5 Update v to be the final configuration

2. Accept iff v accepts

I Runs in O(log n) space!

I O(log n) bits to store I , y , v

I O(log n) bits to run SUSamp, NisGen, A|[n]\I

I We can give SUSamp, NisGen two-way access to their inputs,
because we have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Loop for polylog(n) iterations:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(SUSamp(x |I , y))
1.4 Run A|[n]\I (x , z) from configuration v until it halts
1.5 Update v to be the final configuration

2. Accept iff v accepts

I Runs in O(log n) space!

I O(log n) bits to store I , y , v

I O(log n) bits to run SUSamp, NisGen, A|[n]\I

I We can give SUSamp, NisGen two-way access to their inputs,
because we have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Loop for polylog(n) iterations:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(SUSamp(x |I , y))
1.4 Run A|[n]\I (x , z) from configuration v until it halts
1.5 Update v to be the final configuration

2. Accept iff v accepts

I Runs in O(log n) space!

I O(log n) bits to store I , y , v

I O(log n) bits to run SUSamp, NisGen, A|[n]\I

I We can give SUSamp, NisGen two-way access to their inputs,
because we have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Loop for polylog(n) iterations:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(SUSamp(x |I , y))
1.4 Run A|[n]\I (x , z) from configuration v until it halts
1.5 Update v to be the final configuration

2. Accept iff v accepts

I Runs in O(log n) space!

I O(log n) bits to store I , y , v

I O(log n) bits to run SUSamp, NisGen, A|[n]\I

I We can give SUSamp, NisGen two-way access to their inputs,
because we have two-way access to x

I Randomness polylog n (one-way access!)

Efficiency analysis

1. Loop for polylog(n) iterations:

1.1 Pick a random contiguous block I ⊆ [n]
1.2 Pick a random y ∈ {0, 1}O(log n)

1.3 Let z = NisGen(SUSamp(x |I , y))
1.4 Run A|[n]\I (x , z) from configuration v until it halts
1.5 Update v to be the final configuration

2. Accept iff v accepts

I Runs in O(log n) space!

I O(log n) bits to store I , y , v

I O(log n) bits to run SUSamp, NisGen, A|[n]\I

I We can give SUSamp, NisGen two-way access to their inputs,
because we have two-way access to x

I Randomness polylog n (one-way access!)

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

·

(2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

·

(n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

·

(poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch

Our algorithm

1. Pick random y ∈ {0, 1}O(log n)

2. Let z = NisGen(SUSamp(x |I , y))

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

I Let F (y ′) = final configuration when running
A|[n]\I (x ,NisGen(y ′)) from v

I # bad x bounded by

(2O(log6 n) · poly(n))︸ ︷︷ ︸
bad x |I

· (2n−log100 n)︸ ︷︷ ︸
x |[n]\I

· (n)︸︷︷︸
I

· (poly(n))︸ ︷︷ ︸
v

� 2n

Correctness proof sketch (2)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Run A|[n]\I (x , z) from v

3. Update v := final configuration

Correctness proof sketch (2)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Run A|[n]\I (x , z) from v

3. Update v := final configuration

Correctness proof sketch (2)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Run A|[n]\I (x , z) from v

3. Update v := final configuration

Correctness proof sketch (2)

First hybrid distribution

1. Pick random y ′ ∈ {0, 1}O(log2 n)

2. Let z = NisGen(y ′)

3. Run A|[n]\I (x , z) from v

4. Update v := final configuration

Second hybrid distribution

1. Pick random z ∈ {0, 1}T

2. Run A|[n]\I (x , z) from v

3. Update v := final configuration

Correctness proof sketch (3)

Second hybrid distribution

1. Repeat polylog(n) times:

1.1 Pick random I ⊆ [n]
1.2 Pick random z ∈ {0, 1}T
1.3 Run A|[n]\I (x , z) from v
1.4 Update v := final conf.

2. Accept iff v accepts

Target distribution

1. Pick random z ∈ {0, 1}T

2. Accept iff A(x , z) accepts

I In each phase, simulate Ω(n/ log100 n) steps of A w.h.p.

I After polylog(n) phases, reach halting configuration w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Repeat polylog(n) times:

1.1 Pick random I ⊆ [n]
1.2 Pick random z ∈ {0, 1}T
1.3 Run A|[n]\I (x , z) from v
1.4 Update v := final conf.

2. Accept iff v accepts

Target distribution

1. Pick random z ∈ {0, 1}T

2. Accept iff A(x , z) accepts

I In each phase, simulate Ω(n/ log100 n) steps of A w.h.p.

I After polylog(n) phases, reach halting configuration w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Repeat polylog(n) times:

1.1 Pick random I ⊆ [n]
1.2 Pick random z ∈ {0, 1}T
1.3 Run A|[n]\I (x , z) from v
1.4 Update v := final conf.

2. Accept iff v accepts

Target distribution

1. Pick random z ∈ {0, 1}T

2. Accept iff A(x , z) accepts

I In each phase, simulate Ω(n/ log100 n) steps of A w.h.p.

I After polylog(n) phases, reach halting configuration w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Repeat polylog(n) times:

1.1 Pick random I ⊆ [n]
1.2 Pick random z ∈ {0, 1}T
1.3 Run A|[n]\I (x , z) from v
1.4 Update v := final conf.

2. Accept iff v accepts

Target distribution

1. Pick random z ∈ {0, 1}T

2. Accept iff A(x , z) accepts

I In each phase, simulate Ω(n/ log100 n) steps of A w.h.p.

I After polylog(n) phases, reach halting configuration w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Repeat polylog(n) times:

1.1 Pick random I ⊆ [n]
1.2 Pick random z ∈ {0, 1}T
1.3 Run A|[n]\I (x , z) from v
1.4 Update v := final conf.

2. Accept iff v accepts

Target distribution

1. Pick random z ∈ {0, 1}T

2. Accept iff A(x , z) accepts

I In each phase, simulate Ω(n/ log100 n) steps of A w.h.p.

I After polylog(n) phases, reach halting configuration w.h.p.

Correctness proof sketch (3)

Second hybrid distribution

1. Repeat polylog(n) times:

1.1 Pick random I ⊆ [n]
1.2 Pick random z ∈ {0, 1}T
1.3 Run A|[n]\I (x , z) from v
1.4 Update v := final conf.

2. Accept iff v accepts

Target distribution

1. Pick random z ∈ {0, 1}T

2. Accept iff A(x , z) accepts

I In each phase, simulate Ω(n/ log100 n) steps of A w.h.p.

I After polylog(n) phases, reach halting configuration w.h.p.

Tool 3: The Nisan-Zuckerman PRG

NZGen logc n bitsd = O(log n) bits

I c = arbitrarily large constant

I For any O(log n)-space A, input x ,

A(x ,NZGen(Ud)) ≈ A(x ,Ulogc n)

I Runs in space O(log n)

Tool 3: The Nisan-Zuckerman PRG

NZGen logc n bitsd = O(log n) bits

I c = arbitrarily large constant

I For any O(log n)-space A, input x ,

A(x ,NZGen(Ud)) ≈ A(x ,Ulogc n)

I Runs in space O(log n)

Tool 3: The Nisan-Zuckerman PRG

NZGen logc n bitsd = O(log n) bits

I c = arbitrarily large constant

I For any O(log n)-space A, input x ,

A(x ,NZGen(Ud)) ≈ A(x ,Ulogc n)

I Runs in space O(log n)

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPL algorithm for L that uses just O(log n) random
bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPL algorithm for L that uses just O(log n) random
bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPL algorithm for L that uses just O(log n) random
bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPL algorithm for L that uses just O(log n) random
bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPL algorithm for L that uses just O(log n) random
bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPL algorithm for L that uses just O(log n) random
bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

Eliminating randomness

I Suppose L ∈ BPTISP(Õ(n), log n)

I Corollary:

I There is a BPL algorithm for L that uses just O(log n) random
bits...

I ...that succeeds on the vast majority of inputs of each length.

I Corollary:

I There is a DSPACE(log n) algorithm for L...

I ...that succeeds on the vast majority of inputs of each length.

Main open problem

I Typically-correct derandomization of BPL?

I Thanks! Questions?

Main open problem

I Typically-correct derandomization of BPL?

I Thanks! Questions?

