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Time, space, and randomness
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Derandomization

» Suppose L € BPTISP(T,S)
> T=T(n)>n
> S=15(n)>logn

» Theorem [Klivans, van Melkebeek '02]:

» Assume some language in DSPACE(O(n)) has exponential
circuit complexity

> Then L € DTISP(poly(T), S)

» Theorem [Nisan, Zuckerman '96]:
» Suppose S > T2
»> Then L € DSPACE(S) (runtime 29(5))
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Main result

» Suppose L € BPTISP(T,S)
> T=T(n)>n
> S=15(n)>logn

» Theorem:

» Suppose T < n- poly(S)
» Then there is a DSPACE(S) algorithm for L...

» ...that succeeds on the vast majority of inputs of each length.

» Think T = O(n), S = O(log n)
> [Saks, Zhou '95]: Space ©(log"* n)
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Typically-correct derandomizations

> |5 110100001101001111001010110111011010100011100 € L?

» |If only we had some randomness...

> Let A be a randomized algorithm
» Naive derandomization: Run A(x, x)

> Might fail on all x because of correlations between input, coins
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Prior techniques for dealing with correlations

1. Find algorithm A where most random strings are good for all
inputs simultaneously

> [Goldreich, Wigderson '02]: Undirected s-t connectivity
» [Arvind, Tordn '04]: Solvable group isomorphism

2. Extract randomness from input using specialized extractor

» [Zimand '08]: Sublinear time algorithms

> [Shaltiel '11]: Two-party communication protocols, streaming
algorithms, BPAC®

3. Plug input into seed-extending pseudorandom generator

» [Kinne, van Melkebeek, Shaltiel '12]: Multiparty communication
protocols, BPAC® with symmetric gates
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Our technique: “Out of sight, out of mind”

» Use part of the input as a source of randomness while A is
processing the rest of the input

> (Additional ideas needed to make this work...)
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> Let | C[n]
> Algorithm Alj\;:
1. Run A like normal...

2. ...except, if A is about to query x; for some i € /, halt
immediately.
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s = O(log? n) bits — NisGen || T = O(n) bits

» For any O(log n)-space A, input x,
A(x, NisGen(Us)) = A(x, UT)
» Runs in space O(log n)...

> ...given two-way access to seed
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O(log! n) bits —

d = O(log n) bits —»

SUSamp

s = O(log? n) bits

» For any F: {0,1}°* — V, for most x,

F(SUSamp(x, Uy)) ~ F(Us)

> # bad x: at most 20(og" n) . |V

» Runs in space O(log n) given two-way access to x
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NisGen

—— SUSamp

—

1. Let v be the initial configuration of A

2. Loop for polylog(n) iterations:

2.1 Pick a random contiguous block / C [n]

2.2 Pick a random y € {0,1}©(ogn)
2.3 Let z = NisGen(SUSamp(x|/, y))
2.4 Run Al (x, z) from configuration
2.5 Update v to be the final configurati

v until it halts

on

3. Accept if v is an accepting configuration, else reject
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1. Loop for polylog(n) iterations:
1.1 Pick a random contiguous block I C [n]
1.2 Pick a random y € {0,1}©(en)
1.3 Let z = NisGen(SUSamp(x|;, y))
1.4 Run Af\(x, z) from configuration v until it halts
1.5 Update v to be the final configuration

2. Accept iff v accepts

» Runs in O(log n) space!
» O(log n) bits to store I, y, v
» O(log n) bits to run SUSamp, NisGen, A|j\;

» We can give SUSamp, NisGen two-way access to their inputs,
because we have two-way access to x

» Randomness polylog n (one-way access!)
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Correctness proof sketch
Our algorithm First hybrid distribution
Pick random y’ € {0,1}©(g" )

Let z = NisGen(y’)
Run Al(q\i(x, ) from v

Pick random y € {0, 1}0(|0gn)
Let z = NisGen(SUSamp(x|;,y))
Run Al i(x, z) from v

Ll A
Ll

Update v := final configuration Update v := final configuration

» Let F(y’) = final configuration when running
Aliapv i (x, NisGen(y")) from v

» # bad x bounded by

(20002° M) . poly(n)) - (277°6™ ) . (n) - (poly(n)) < 2"
# bad x|; # X\ # 1 # v
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il

First hybrid distribution

Pick random y’ € {0,1}0og’ ")
Let z = NisGen(y’)
Run Al (x, ) from v

Update v := final configuration

Second hybrid distribution

1. Pick random z € {0,1} "
2. Run Al (x, ) from v

3. Update v := final configuration
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Second hybrid distribution Target distribution

1. Repeat polylog(n) times: 1. Pick random z € {0,1}7
1.1 Pick random [ C [n]
1.2 Pick random z € {0,1}7
1.3 Run Al (x, z) from v
1.4 Update v := final conf.

2. Accept iff A(x, z) accepts

2. Accept iff v accepts

> In each phase, simulate Q(n/log!® n) steps of A w.h.p.
» After polylog(n) phases, reach halting configuration w.h.p. [
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Tool 3: The Nisan-Zuckerman PRG

d = O(logn) bits — NZGen | log® n bits

» ¢ = arbitrarily large constant
» For any O(log n)-space A, input x,
A(x,NZGen(Uq)) = A(x, Uioge n)

» Runs in space O(log n)
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