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Quantum nonlocality

I Recall Bell’s theorem: Entanglement allows interactions that
can’t be simulated using shared randomness / hidden variables

I Recall the no-communication theorem: Entanglement can’t be
used to send signals

I Contradictory?
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(1, 1− xy) with probability 1/2

I Cannot be used to communicate

I But can be used to win CHSH game: a + b = xy (mod 2)
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Alice BobCor

x ∈ X y ∈ Y

a ∈ A b ∈ B

I A correlation box is a map

Cor : X ×Y → {µ : µ is a probability distribution over A×B}

I Assume X ,Y ,A,B are countable
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Distributed sampling problems

Alice Bob
Refereex ∈ X y ∈ Y

a ∈ A b ∈ B

I Can think of a correlation box as a distributed sampling
problem – the problem of simulating the box



Distributed sampling complexity classes

I SR: class of correlation boxes that can be simulated using just
shared randomness

I Q: class of correlation boxes that can be simulated using
shared randomness + arbitrary bipartite quantum state

I Obviously SR ⊆ Q

I Bell’s theorem: SR 6= Q
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can be simulated using shared randomness + 1√

2
(|00〉+ |11〉)

+ projective measurements

I SR $ BELL $ Q
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I Theorem: There does not exist a finite-alphabet
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I /
I Theorem:

I Suppose Cor : X × Y → A× B is in Q; X , Y countable; A, B
finite

I Then there exists a binary correlation box in BELL that does
not reduce to Cor
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Biased CHSH game

Alice Bob
Refx ∈ {0, 1} y ∈ {0, 1}

a ∈ {0, 1} b ∈ {0, 1}

I Goal: a + b = xy (mod 2)

I Inputs x , y are chosen independently at random

I y is uniform, x is biased: Pr[x = 1] = p ∈ [1/2, 1]

I Theorem (Lawson, Linden, Popescu ’10): Optimal quantum
strategy can be implemented in BELL, wins with probability

f (p)
def
=

1
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+

1

2

√
p2 + (1− p)2
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Quantum value of biased CHSH game

p

win prob
75%

100%

11/2

≈ 85%



Affine functions from reductions

I Let Sp ∈ BELL be optimal quantum strategy

I Assume there is a reduction from Sp to Cor

I Probability that reduction wins biased CHSH game is of form
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Countably many affine functions

I Fix shared randomness without decreasing win probability

I Recall Cor ∈ Q

I Win probability still exactly f (p) (Q is closed under reductions)

I Recall Cor : X × Y → A× B with X ,Y countable, A,B finite

I Only countably many deterministic reductions!

I Countably many affine functions, so ∃p where all the affine
functions disagree with f (p)
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Approximate simulations

I Theorem:

I Suppose Cor2 : X × Y → A× B is in Q; X ,Y ,A,B finite
I Then ∃ binary correlation box Cor1 ∈ BELL such that
I If there is a k-query ε-error reduction from Cor1 to Cor2, then

k4 · (2|X |)2|A|
k

· (2|Y |)2|B|k ≥ Ω(1/ε)

I Upper bound: ∀ε > 0, ∃Cor2 : [T ]× [T ]→ {0, 1} × {0, 1}
such that

I T ≤ O(1/ε4)
I Cor2 ∈ BELL
I For every Cor1 ∈ BELL, there is a 1-query ε-error reduction

from Cor1 to Cor2
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I Is there a countable-alphabet BELL-complete correlation box?
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I Thanks for listening!
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