Universal Bell Correlations Do Not Exist

Cole A. Graham¹ William M. Hoza²

December 4, 2016 CS395T – Quantum Complexity Theory

¹Department of Mathematics, Stanford University 2Department of Computer Science, UT Austin Austin Austral Australian August 2010

Quantum nonlocality

 \triangleright Recall Bell's theorem: Entanglement allows interactions that can't be simulated using shared randomness / hidden variables

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Quantum nonlocality

- \triangleright Recall Bell's theorem: Entanglement allows interactions that can't be simulated using shared randomness / hidden variables
- \triangleright Recall the no-communication theorem: Entanglement can't be used to send signals

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Quantum nonlocality

- \triangleright Recall Bell's theorem: Entanglement allows interactions that can't be simulated using shared randomness / hidden variables
- \triangleright Recall the no-communication theorem: Entanglement can't be used to send signals

KORK ERKER ADE YOUR

 \blacktriangleright Contradictory?

K ロ > K @ ▶ K 할 > K 할 > 1 할 | © 9 Q @

K ロ > K @ ▶ K 할 > K 할 > 1 할 | © 9 Q @

イロト イ母 トイミト イミト ニヨー りんぴ

 $(a, b) = \begin{cases} (0, xy) & \text{with probability } 1/2 \\ (a, b) & \text{otherwise} \end{cases}$ $(1, 1 - xy)$ with probability 1/2

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 $(a, b) = \begin{cases} (0, xy) & \text{with probability } 1/2 \\ (a, b) & \text{otherwise} \end{cases}$ $(1, 1 - xy)$ with probability 1/2

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright Cannot be used to communicate

- $(a, b) = \begin{cases} (0, xy) & \text{with probability } 1/2 \\ (a, b) & \text{otherwise} \end{cases}$ $(1, 1 - xy)$ with probability 1/2
- \blacktriangleright Cannot be used to communicate
- But can be used to win CHSH game: $a + b = xy$ (mod 2)

KORK ERKER ADE YOUR

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright A correlation box is a map

Cor : $X \times Y \rightarrow \{\mu : \mu \text{ is a probability distribution over } A \times B\}$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

 \triangleright A correlation box is a map

Cor : $X \times Y \rightarrow \{\mu : \mu \text{ is a probability distribution over } A \times B\}$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

$$
\blacktriangleright
$$
 Assume X, Y, A, B are countable

 \triangleright A correlation box is a map

Cor : $X \times Y \rightarrow \{\mu : \mu \text{ is a probability distribution over } A \times B\}$

KORK ERKER ADE YOUR

- Assume X, Y, A, B are countable
- Abuse notation and write Cor : $X \times Y \rightarrow A \times B$

Distributed sampling problems

 \triangleright Can think of a correlation box as a distributed sampling $problem - the problem of simulating the box$

KORK STRAIN A BAR SHOP

 \triangleright SR: class of correlation boxes that can be simulated using just shared randomness

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright SR: class of correlation boxes that can be simulated using just shared randomness

KORK ERKER ADE YOUR

 \triangleright Q: class of correlation boxes that can be simulated using shared randomness $+$ arbitrary bipartite quantum state

 \triangleright SR: class of correlation boxes that can be simulated using just shared randomness

KORK ERKER ADE YOUR

- \triangleright Q: class of correlation boxes that can be simulated using shared randomness $+$ arbitrary bipartite quantum state
- \blacktriangleright Obviously SR \subseteq Q

 \triangleright SR: class of correlation boxes that can be simulated using just shared randomness

KORK ERKER ADE YOUR

- \triangleright Q: class of correlation boxes that can be simulated using shared randomness $+$ arbitrary bipartite quantum state
- \blacktriangleright Obviously SR \subseteq Q
- \blacktriangleright Bell's theorem: $\mathsf{SR} \neq \mathsf{Q}$

 \triangleright NS: class of non-signalling correlation boxes

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

 \triangleright NS: class of non-signalling correlation boxes

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

► No-communication theorem: Q \subset NS

 \triangleright NS: class of non-signalling correlation boxes

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright No-communication theorem: $Q \subset NS$
- ► Tsierelson bound: PR \notin Q, so Q \neq NS

Goal: Understand Q

Bell pair

- \triangleright Goal: Understand Q
- Baby step: Understand BELL: class of correlation boxes that can be simulated using shared randomness + $\frac{1}{\sqrt{2}}$ $\frac{1}{2}(|00\rangle + |11\rangle)$ $+$ projective measurements

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Bell pair

- \triangleright Goal: Understand Q
- \triangleright Baby step: Understand BELL: class of correlation boxes that can be simulated using shared randomness + $\frac{1}{\sqrt{2}}$ $\frac{1}{2}(|00\rangle + |11\rangle)$ + projective measurements

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright SR \subsetneq BELL \subsetneq Q

Toner-Bacon theorem

 \triangleright Theorem (Toner, Bacon '03): BELL can be simulated using shared randomness $+1$ bit of communication

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Toner-Bacon theorem

 \triangleright Theorem (Toner, Bacon '03): BELL can be simulated using shared randomness $+1$ bit of communication

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright This is an upper bound on the power of **BELL**

Toner-Bacon theorem

 \triangleright Theorem (Toner, Bacon '03): BELL can be simulated using shared randomness $+1$ bit of communication

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \triangleright This is an upper bound on the power of **BELL**
- ► Loose upper bound, since BELL \subset NS

PR box is BELL-hard

Theorem (Cerf et al. '05): **BELL** can be simulated using shared randomness $+ 1$ PR box

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

PR box is BELL-hard

- \triangleright Theorem (Cerf et al. '05): **BELL** can be simulated using shared randomness $+ 1$ PR box
- In other words, PR is **BELL**-hard with respect to 1-query reductions

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Distributed sampling complexity zoo

È 299 \blacktriangleright Theorem: There does not exist a finite-alphabet BELL-complete correlation box

KO KKOK KEK KEK LE I KORO

 \blacktriangleright Theorem: There does not exist a finite-alphabet BELL-complete correlation box

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright Theorem: There does not exist a finite-alphabet BELL-complete correlation box

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

\cdot \odot

 \blacktriangleright Theorem:

 \triangleright Theorem: There does not exist a finite-alphabet BELL-complete correlation box

- \blacktriangleright Theorem:
	- ► Suppose Cor : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y countable; A, B finite

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright Theorem: There does not exist a finite-alphabet BELL-complete correlation box

- \blacktriangleright Theorem:
	- ► Suppose Cor : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y countable; A, B finite
	- \triangleright Then there exists a binary correlation box in **BELL** that does not reduce to Cor

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

 \triangleright Theorem: There does not exist a finite-alphabet BELL-complete correlation box

- \blacktriangleright Theorem:
	- ► Suppose Cor : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y countable; A, B finite
	- \triangleright Then there exists a binary correlation box in **BELL** that does not reduce to Cor

KORK ERKER ADE YOUR

Distributed sampling complexity zoo (2)

 299 Ε

Goal: $a + b = xy \pmod{2}$

KORK STRAIN A BAR SHOP

Goal: $a + b = xy \pmod{2}$

Inputs x, y are chosen independently at random

KORK ERKER ADE YOUR

Goal: $a + b = xy \pmod{2}$

Inputs x, y are chosen independently at random

▶ y is uniform, x is biased: $Pr[x = 1] = p \in [1/2, 1]$

Goal: $a + b = xy \pmod{2}$

Inputs x, y are chosen independently at random

- ▶ y is uniform, x is biased: $Pr[x = 1] = p \in [1/2, 1]$
- \blacktriangleright Theorem (Lawson, Linden, Popescu '10): Optimal quantum strategy can be implemented in BELL, wins with probability

$$
f(p) \stackrel{\text{def}}{=} \frac{1}{2} + \frac{1}{2}\sqrt{p^2 + (1-p)^2}
$$

KORK ERKER ADE YOUR

Quantum value of biased CHSH game

イロメ イ団メ イミメ イミメー 重 2990

► Let $S_p \in \mathbf{BEL}$ be optimal quantum strategy

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

► Let $S_p \in \mathbf{BEL}$ be optimal quantum strategy

Assume there is a reduction from S_p to Cor

- ► Let $S_p \in \mathbf{BEL}$ be optimal quantum strategy
- Assume there is a reduction from S_p to Cor
- \triangleright Probability that reduction wins biased CHSH game is of form

$$
\frac{1-p}{2}P_{00} + \frac{p}{2}P_{10} + \frac{1-p}{2}P_{01} + \frac{p}{2}P_{11}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- ► Let $S_p \in \mathbf{BEL}$ be optimal quantum strategy
- Assume there is a reduction from S_p to Cor
- \triangleright Probability that reduction wins biased CHSH game is of form

$$
\frac{1-p}{2}P_{00} + \frac{p}{2}P_{10} + \frac{1-p}{2}P_{01} + \frac{p}{2}P_{11}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright Affine function of p, for fixed reduction

 \blacktriangleright Fix shared randomness without decreasing win probability

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

 \blacktriangleright Fix shared randomness without decreasing win probability

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

► Recall Cor \in Q

- \triangleright Fix shared randomness without decreasing win probability
- ► Recall Cor \in Q
- \triangleright Win probability still exactly $f(p)$ (Q is closed under reductions)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright Fix shared randomness without decreasing win probability
- ► Recall Cor \in Q
- \triangleright Win probability still exactly $f(p)$ (Q is closed under reductions)
- Recall Cor : $X \times Y \rightarrow A \times B$ with X, Y countable, A, B finite

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright Fix shared randomness without decreasing win probability
- ► Recall Cor \in Q
- \triangleright Win probability still exactly $f(p)$ (Q is closed under reductions)
- Recall Cor : $X \times Y \rightarrow A \times B$ with X, Y countable, A, B finite

KORK ERKER ADE YOUR

 \triangleright Only countably many deterministic reductions!

- \triangleright Fix shared randomness without decreasing win probability
- ► Recall Cor \in Q
- \triangleright Win probability still exactly $f(p)$ (Q is closed under reductions)
- ► Recall Cor : $X \times Y \rightarrow A \times B$ with X, Y countable, A, B finite
- \triangleright Only countably many deterministic reductions!
- \triangleright Countably many affine functions, so $\exists p$ where all the affine functions disagree with $f(p)$

KORK ERKER ADE YOUR

 \blacktriangleright Theorem:

 \blacktriangleright Theorem:

▶ Suppose Cor₂ : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Theorem[.]

▶ Suppose Cor₂ : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

► Then \exists binary correlation box $Cor_1 \in \mathbf{BELL}$ such that

Theorem[.]

- ▶ Suppose Cor₂ : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
- \triangleright Then \exists binary correlation box Cor₁ \in **BELL** such that
- If there is a k-query ε -error reduction from Cor₁ to Cor₂, then

$$
k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)
$$

KORKA SERKER ORA

Ineorem:

- ► Suppose Cor₂ : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
- \triangleright Then \exists binary correlation box Cor₁ \in **BELL** such that
- If there is a k-query ε -error reduction from Cor₁ to Cor₂, then

$$
k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)
$$

KORK ERKER ADE YOUR

 \triangleright Upper bound: $\forall \varepsilon > 0$, $\exists \text{Cor}_2 : [T] \times [T] \rightarrow \{0, 1\} \times \{0, 1\}$ such that

Ineorem:

- ► Suppose Cor₂ : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
- \triangleright Then \exists binary correlation box Cor₁ \in **BELL** such that
- If there is a k-query ε -error reduction from Cor₁ to Cor₂, then

$$
k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)
$$

KORK ERKER ADE YOUR

 \triangleright Upper bound: $\forall \varepsilon > 0$, $\exists \text{Cor}_2 : [T] \times [T] \rightarrow \{0, 1\} \times \{0, 1\}$ such that

 \blacktriangleright $\top \leq O(1/\varepsilon^4)$

Ineorem:

- ► Suppose Cor₂ : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
- \triangleright Then \exists binary correlation box Cor₁ \in **BELL** such that
- If there is a k-query ε -error reduction from Cor₁ to Cor₂, then

$$
k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)
$$

KORK ERKER ADE YOUR

- \triangleright Upper bound: $\forall \varepsilon > 0$, $\exists \text{Cor}_2 : [T] \times [T] \rightarrow \{0, 1\} \times \{0, 1\}$ such that
	- \blacktriangleright $\top \leq O(1/\varepsilon^4)$
	- \triangleright Cor₂ \in **BELL**

Ineorem:

- ► Suppose Cor₂ : $X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
- \triangleright Then \exists binary correlation box Cor₁ \in **BELL** such that
- If there is a k-query ε -error reduction from Cor₁ to Cor₂, then

$$
k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)
$$

- **►** Upper bound: $\forall \epsilon > 0$, $\exists \text{Cor}_2 : [T] \times [T] \rightarrow \{0, 1\} \times \{0, 1\}$ such that
	- \blacktriangleright $\top \leq O(1/\varepsilon^4)$
	- \triangleright Cor₂ \in **BELL**
	- **►** For every Cor₁ \in **BELL**, there is a 1-query ε -error reduction from Cor_1 to Cor_2

KORK ERKER ADE YOUR

Conclusions

 \triangleright Is there a countable-alphabet BELL-complete correlation box?

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Conclusions

- In Its there a countable-alphabet BELL-complete correlation box?
- \triangleright What is the right relationship between $|X|, |Y|, |A|, |B|, k, \varepsilon$?

Conclusions

- If Is there a countable-alphabet **BELL**-complete correlation box?
- \triangleright What is the right relationship between $|X|, |Y|, |A|, |B|, k, \varepsilon$?

. Thanks for listening! Questions?

- \blacktriangleright This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1610403.
- \triangleright Cole Graham gratefully acknowledges the support of the Fannie and John Hertz Foundation.

KORK ERKER ADE YOUR