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We prove that there is no finite-alphabet nonlocal box that generates exactly those correlations that can
be generated using a maximally entangled pair of qubits. More generally, we prove that if some finite-
alphabet nonlocal box is strong enough to simulate arbitrary local projective measurements of a maximally
entangled pair of qubits, then that nonlocal box cannot itself be simulated using any finite amount of
entanglement. We also give a quantitative version of this theorem for approximate simulations, along with a
corresponding positive result.

DOI: 10.1103/PhysRevLett.119.050402

A classic goal of quantum information research is to
understand the power of quantum nonlocality: Which
nonlocal tasks can be performed using quantum entangle-
ment? For example, quantum entanglement is helpful for
playing certain nonlocal games, but it cannot be used to
achieve faster-than-light communication. The notion of a
correlation box serves as a conceptual tool for reasoning
about this question. A correlation box is a hypothetical
randomized “channel” through which two separated par-
ties, Alice and Bob, can interact. Mathematically, a
correlation box is a function C∶X × Y → ΔðA × BÞ, where
X, Y, A, B are countable (finite or countably infinite)
alphabets and ΔðA × BÞ denotes the set of all probability
distributions over A × B. We imagine that Alice chooses
x ∈ X and Bob chooses y ∈ Y. A sample ða; bÞ is drawn
from Cðx; yÞ, and Alice is given a and Bob is given b. We
will abuse notation and write C∶X × Y → A × B.
The canonical example [1,2] is the Popescu-Rohrlich

(PR) box CPR∶f0;1g×f0;1g→f0;1g×f0;1g, defined by

CPRðx; yÞ ¼
� ð0; xyÞ with probability 1=2;

ð1; 1 − xyÞ with probability 1=2:
ð1Þ

PR boxes cannot be used to communicate, since the
marginal distributions of a and b are uniform regardless
of x and y. However, CPR is a nonlocal box: given access to
a PR box, Alice and Bob can perform tasks that would be
impossible if they were isolated in a classical world. The
standard example is winning the Clauser-Horne-Shimony-
Holt (CHSH) game [3] with certainty. As usual, we model
the classical scenario by assuming that each player’s
behavior is a function of his or her private input and a
random variable shared between the two players.
For any correlation box C, rather than analyzing the

capabilities of two parties with access to C, we can instead
analyze the problem of simulating C. That is, Alice is given
x ∈ X and Bob is given y ∈ Y. Alice is supposed to output

a ∈ A and Bob is supposed to output b ∈ B such that ða; bÞ
has the distribution Cðx; yÞ. Let Q be the class of all
correlation boxes that can be simulated if Alice and Bob
have unlimited shared randomness and an arbitrary but
finite amount of entanglement. The question at the begin-
ning of this Letter can now be sharpened: Which correla-
tion boxes are in Q? For example, the Tsirelson bound [4]
implies that CPR ∉ Q.
Let B be the class of all correlation boxes that can be

simulated if Alice and Bob have unlimited shared random-
ness, each holds one of a pair of maximally entangled
qubits, and they are only allowed to make projective
measurements. Clearly, B ⊆ Q; understanding B is a good
first step toward understanding Q. Bell [5] famously
showed that there are correlation boxes in B that cannot
be simulated using only shared randomness.
A long line of work [6–13] investigated the problem of

simulating Bell correlations using classical communica-
tion, culminating in a protocol by Toner and Bacon [13] for
simulating any correlation box in B using shared random-
ness and a single classical bit of one-way communication.
Cerf et al. [14] improved on the Toner-Bacon theorem
by showing that instead of a bit of communication, it
suffices to have a single PR box. (Taking a cue from
quantum mechanics, we think of correlation boxes as
“single use only.”)
In general, if every correlation box in B can be simulated

using a particular correlation box C, then C can be
interpreted as an upper bound on the power of B. Part
of what makes the result by Cerf et al. so appealing is that
CPR has finite alphabets, making it an extremely explicit
upper bound on the power of B: a PR box is a “discrete”
device. On the other hand, a “defect” of the result by Cerf
et al. is that CPR ∉ B, and hence CPR is a loose upper
bound. Local projective measurements of a Bell pair can be
simulated using a PR box, but not vice versa.
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It is natural, therefore, to hope to construct some finite-
alphabet correlation box C� such that every correlation box
in B can be simulated using C�, and C� is in B. Such a
correlation box C� would exactly characterize B, greatly
clarifying the power of quantum nonlocality. Unfortunately,
our main result is that no such correlation box C� exists.
Actually, the situation is even worse in several respects.

The simulations we have discussed so far are one-query
reductions. In general, if C1 and C2 are correlation boxes, a
k-query reduction from C1 to C2 is a protocol for simulat-
ing C1 in which Alice and Bob have unlimited shared
randomness and k copies of C2 that they use in a
prespecified order. We say that C1 reduces to C2 if there
is a k-query reduction from C1 to C2 for some finite k. We
prove that C� does not exist even if we allow countably
infinite input alphabets, we allow an arbitrary finite amount
of entanglement when simulating C�, we consider general
reductions, and we only try to simulate correlation boxes
in B with binary alphabets.
Theorem 1: Suppose C� ∈ Q has countable input

alphabets and finite output alphabets. Then, there is some
correlation box C∶f0; 1g × f0; 1g → f0; 1g × f0; 1g such
that C ∈ B, but C does not reduce to C�.
Adopting terminology from computational complexity

theory, if C is a correlation box and C is a class of
correlation boxes, we say that C is C-complete if C ∈ C
and every correlation box in C reduces to C.
Corollary 1: There does not exist a finite-alphabet

B-complete correlation box.
Corollary 2: There does not exist a finite-alphabet

Q-complete correlation box.
Our results can be thought of as “bad news” for the

project of understanding the power of quantum nonlocality.
In this respect, our results are in the same spirit as previous
work showing that certain information-theoretic conditions
fail to exactly characterize quantum correlations [15,16].
Our results should also be considered in the context of the
body of research [17–23] investigating the power of
correlation boxes in their own right, apart from quantum
entanglement. In particular, Barrett and Pironio [17] gave a
reduction from any nonsignaling correlation box with
binary output alphabets to CPR. Our result shows that there
is no corresponding phenomenon for B. Furthermore,
Dupuis et al. [19] showed that no finite-alphabet correlation
box is complete for the class of nonsignaling correlation
boxes; our result is analogous.
We now sketch a proof of a weaker version of Theorem 1.

We will consider a certain class of nonlocal games, para-
metrized by a real value p. Lawson, Linden, and Popescu
[24] showed that the optimal entangled success probability
for these games depends nonlinearly on p. On the other
hand, if C� is a finite-alphabet correlation box, the optimal
success probability of a strategy using shared randomness
and a single query toC� can be shown to be some piecewise-
linear function of p. Hence, C� is not Q-complete with

respect to one-query reductions. A more careful analysis will
justify the stronger claim expressed by Theorem 1. We
remark that our argument is similar in spirit to Bell’s original
proof [5] of his namesake theorem.
We also give a quantitative version of our result for

approximate simulations. An ε-error reduction is defined
like an ordinary reduction except that we allow ε total
variation error.
Theorem 2: Suppose C�∶X × Y → A × B is a finite-

alphabet correlation box in Q. Then, there is some
correlation box C∶f0; 1g × f0; 1g → f0; 1g × f0; 1g in B
such that for every k, if there is a k-query ε-error reduction
from C to C�, then

k4 × ð2jXjÞ4jAjk × ð2jYjÞ4jBjk ≥ Ωð1=εÞ: ð2Þ

Conversely, for any ε > 0, we give a simple construction
of C�∶X × Y → f1;−1g × f1;−1g with jXj ¼ jYj ≤
Oð1=ε2Þ such that C� ∈ B and every correlation box in
B reduces to C� via a one-query ε-error reduction. Note that
for jAj ¼ jBj ¼ 2, k ¼ 1, Theorem 2 implies that jXj × jYj
must be at least 1=εΩð1Þ. On the other hand, when jAj, jBj, k
are large, Theorem 2 might be very far from tight.
Proofs of negative results.—For 0 ≤ p, q ≤ 1, the biased

CHSH game CHSH½p; q� is defined as follows [24]. The
referee picks x, y ∈ f0; 1g independently at random, with
Pr½x ¼ 1� ¼ p, Pr½y ¼ 1� ¼ q. Alice gets x and Bob gets y.
Alice outputs a ∈ f0; 1g and Bob outputs b ∈ f0; 1g. They
win if aþ b ¼ xy (mod 2). Alice and Bob know p and q.
The standard CHSH game [3] is the case p ¼ q ¼ 1

2
.

We can think of a correlation box C∶f0; 1g × f0; 1g →
f0; 1g × f0; 1g as a strategy for the biased CHSH game.
The probability that C wins CHSH½p; q� is the probability
that aþ b ¼ xy (mod 2), where ða; bÞ ¼ Cðx; yÞ and the
probability is over both the internal randomness of C and
the inputs x, y. [The inputs ðx; yÞ are independent of the
internal randomness of C.] Lawson et al. computed the
optimal success probability for entangled strategies.
Lemma 1 [24]: If 1

2
≤ q ≤ 1=2p ≤ 1, then there exists

Cp;q ∈ B that wins CHSH½p; q� with probability 1
2
þ

1
2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ð1 − qÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ð1 − pÞ2

p
. Furthermore, no

correlation box in Q achieves higher win probability.
Throughout the rest of the Letter, we define

ωðpÞ ¼ 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ð1 − pÞ2

q
; ð3Þ

which is the bound of Lemma 1 for q ¼ 1=2. We now prove
that playing CHSH½p; 1=2� near optimally using some
C� ∈ Q requires approximating ω by a small set of linear
functions (i.e., polynomials in p of degree 1). Roughly, the
idea is that there are only so many things one can do with
C�, and each of them gives rise to a strategy for the biased
CHSH game with a success probability that depends
linearly on p.
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Lemma 2. Suppose C�∶X × Y → A × B is in Q and
k ∈ N. For p ∈ ½1=2; 1�, let Cp;1=2 be the box of Lemma 1.
There is a set LC�;k of linear functions R → R such that the
following conditions hold.
(1) For every p ∈ ½1=2; 1� and every ε > 0, if there exists

a k-query ε-error reduction from Cp;1=2 to C�, then there
exists l ∈ LC�;k such that jlðpÞ − ωðpÞj ≤ ε.
(2) If X, Y, A, B are all finite, then jLC�;kj is at most

ð2jXjÞ2jAjk × ð2jYjÞ2jBjk . If X, Y are countable and A, B are
finite, then LC�;k is countable.
Proof.—A deterministic k-query C� protocol is a

protocol that uses k copies of C� in a deterministic way.
(The output of such a protocol is random, but only because
of the internal randomness of C�.) For each such protocol
Π, let lΠðpÞ be the probability that Π wins CHSH½p; 1=2�.
Then, lΠ is a linear function, since

lΠðpÞ ¼
1 − p
2

P00 þ
1 − p
2

P01 þ
p
2
P10 þ

p
2
P11; ð4Þ

where Pxy is the probability that aþ b ¼ xy (mod 2) where
ða; bÞ ¼ Πðx; yÞ. Let LC�;k be the set of all lΠ.
To prove the first item, let Λ be a k-query ε-error

reduction from Cp;1=2 to C�. We can think of Λ as a
distribution over deterministic C�-protocols Π. By the
correctness of the reduction, jEΠ∼Λ½lΠðpÞ� − ωðpÞj ≤ ε.
The best case is at least as good as the average case, so there
is a deterministic protocolΠ� such that lΠ� ðpÞ ≥ ωðpÞ − ε.
Since C� ∈ Q and Q is closed under reductions, Π�
implements a correlation box in Q. Therefore, by the
optimality clause of Lemma 1, lΠ� ðpÞ ≤ ωðpÞ, and
hence jlΠ� ðpÞ − ωðpÞj ≤ ε.
To prove the second item, we bound the number of

deterministic k-query C� protocols. Such a protocol can be
specified by the following data.
(i) Functions qi∶f0; 1g × Ai−1 → X for each 1 ≤ i ≤ k,

telling the ith query that Alice makes as a function of her
input and the query responses she has seen so far, and
corresponding functions ri∶f0; 1g × Bi−1 → Y for Bob.
(ii) A function s∶f0; 1g × Ak → f0; 1g, telling the out-

put Alice gives as a function of her input and all query
responses, and a corresponding function t∶f0; 1g × Bk →
f0; 1g for Bob.
If X, Y are countable and A, B are finite, then there are

only countably many possibilities for each of these func-
tions, so there are countably many such protocols. Suppose
now that X, Y, A, B are all finite and jAj, jBj ≥ 2. The
number of possibilities for qi is jXj2jAji−1 , and similarly for
ri. The number of possibilities for s is 22jAjk , and similarly
for t. Therefore, jLC�;kj is bounded by

�Yk
i¼1

jXj2jAji−1
��Yk

i¼1

jYj2jBji−1
�
× 22jAjk × 22jBjk ð5Þ

¼ jXj2
P

i
jAji−1 × jYj2

P
i
jBji−1 × 22jAjk × 22jBjk ð6Þ

≤ jXj2jAjk × jYj2jBjk × 22jAjk × 22jBjk ð7Þ

¼ ð2jXjÞ2jAjk × ð2jYjÞ2jBjk : ð8Þ

Finally, if A is a singleton set, the step above where we
bounded

P
ijAji−1 by jAjk was not valid, but in this case

q1;…; qk do not need to be specified anyway, so the final
bound still holds, and similarly if B is a singleton set. ▪
Next, we show that ω cannot be well approximated by a

small set of linear functions. To prove Theorem 1, the
following trivial fact suffices.
Lemma 3: Suppose L is a countable set of linear

functions R → R. Then, there is some p ∈ ½1=2; 1� such
that for every l ∈ L, lðpÞ ≠ ωðpÞ.
Proof.—Suppose lðpÞ ¼ ωðpÞ, where l ∈ L.

Rearranging,

p2 þ ð1 − pÞ2 ¼ rðpÞ2; ð9Þ

where rðpÞ is another linear function. The quadratic
expression on the left hand side of Eq. (9) is not a square
(e.g., the discriminant is −4 ≠ 0). Therefore, Eq. (9) is a
nondegenerate quadratic equation, so it has at most two
solutions p. So l intersects ω at most twice, and hence L
intersects ω in countably many places. ▪
Proof of Theorem 1.—Fix C�∶X × Y → A × B, where X,

Y are countable, A, B are finite, and C� ∈ Q. We will show
that there is some choice of p so that there is no reduction
from Cp;1=2 to C�; since Cp;1=2 ∈ B and Cp;1=2 has binary
alphabets, this will complete the proof.
For each k ∈ N, let LC�;k be the set of linear functions

given by Lemma 2. The alphabet bounds for C� imply that
LC�;k is countable. Let L ¼ ⋃k∈NLC�;k, so that L is still
countable. By Lemma 3, choose p ∈ ½1=2; 1� so that for
every l ∈ L, lðpÞ ≠ ωðpÞ. Then, Cp;1=2 does not reduce to
C�, because if there were a k-query (zero-error) reduction
for some k, Lemma 2 would imply that there was some
l ∈ L with lðpÞ ¼ ωðpÞ. ▪
To prove Theorem 2, we need a quantitative lower bound

on the error of any approximation of ω by linear functions.
Lemma 4: Pick p ∈ ½1=2; 1� uniformly at random.

Then, for any linear function l∶R → R and any ε > 0,

Pr ½jlðpÞ − ωðpÞj ≤ ε� ≤ Oð ffiffiffi
ε

p Þ: ð10Þ

Proof.—Let I ¼ ½1=2; 1�. We first compute

ω00ðxÞ ¼ 1

2

�
2

�
x −

1

2

�
2

þ 1

2

�
−3=2

≥
1

2
on I: ð11Þ

Hence, ω is uniformly convex on I.
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Without loss of generality we can assume that the graph
of l intersects the graph of ω twice (with a point of
tangency counted as a double intersection). After all, if
l < ω on I, translate l up until the first moment of equality
with ω, thus decreasing the pointwise error between l and
ω at every x ∈ I. If l is then tangent to ω, we are done.
Otherwise, l intersects ω at an end point, so rotate l up
about this point until it is tangent to ω (no other inter-
sections occur because ω is uniformly convex). Again,
pointwise errors do not increase under this rotation. Similar
considerations hold if initially l > ω or l intersects ω at
one point.
Therefore, suppose l linearly interpolates ω at the

(potentially coincident) points x1, x2 ∈ I. By a standard
argument in interpolation theory, for all x ∈ I, there exists
ξx ∈ I such that

ωðxÞ − lðxÞ ¼ ω00ðξxÞ
2

ðx − x1Þðx − x2Þ: ð12Þ

By Eq. (11), jωðxÞ − lðxÞj ≥ 1
4
jx − x1jjx − x2j. In particular,

when minfjx − x1j; jx − x2jg > 2
ffiffiffi
ε

p
, jωðxÞ − lðxÞj > ε.

The probability that p is within 2
ffiffiffi
ε

p
of either x1 or x2 is

Oð ffiffiffi
ε

p Þ. ▪
Proof of Theorem 2.—Fix C�∶X × Y → A × B, where X,

Y, A, B are finite and C� ∈ Q. Let LC�;k be the set of linear
functions given by Lemma 2. Pick p ∈ ½1=2; 1� uniformly
at random. By Lemma 4 and the union bound, for any
εk > 0, the probability that some l ∈ LC�;k satisfies
jlðpÞ − ωðpÞj ≤ εk is at most Oð ffiffiffiffi

εk
p jLC�;kjÞ. Therefore,

by the union bound over k, the probability that there is such
an l for any k is

O

�X∞
k¼1

ffiffiffiffi
εk

p jLC�;kj
�
: ð13Þ

Choose εk so that
ffiffiffiffi
εk

p jLC�;kj ¼ c=k2, where c is a
sufficiently small constant so that the bound in Eq. (13)
is strictly less than 1. (Such a c exists because

P
k1=k

2

converges.) This implies εk ≥ Ωðk−4jLC�;kj−2Þ. Hence, by
Lemma 2,

k4 × ð2jXjÞ4jAjk × ð2jYjÞ4jBjk ≥ Ωð1=εkÞ: ð14Þ
By our choice of εk, there exists some p so that for

every k, for every l ∈ LC�;k, jlðpÞ − ωðpÞj > εk. Choose
C ¼ Cp;1=2. By Lemma 2, if there is a k-query ε-error
reduction from C to C�, then ε > εk. ▪
We end this section with two simple consequences of our

main results. We say that C1 ≤ C2 if there is a reduction
from C1 to C2. We say that C1 < C2 (“simulating C1 is
strictly easier than simulating C2”) if C1 ≤ C2 and C2≰C1.
Theorem 3: For any finite-alphabet correlation box

C1 ∈ B, there is another finite-alphabet correlation box
C2 ∈ B such that C1 < C2.

Proof.—By Theorem 1, there is a correlation box
C ∈ B with binary alphabets such that C≰C1. Write
C1∶X1 × Y1 → A1 × B1. By relabeling if necessary, we
can assume that 0; 1 ∉ X1; Y1. Define X2 ¼ X1∪f0; 1g,
Y2 ¼ Y1∪f0; 1g, A2 ¼ A1∪f0; 1g, B2 ¼ B1∪f0; 1g.
Define C2∶X2 × Y2 → A2 × B2 by the following B proto-
col. If x ∈ X1, then Alice does what she would have done in
the protocol witnessing C1 ∈ B. Otherwise, if x ∈ f0; 1g,
she does what she would have done in the protocol
witnessing C ∈ B. Bob acts similarly. By construction,
C1 ≤ C2 and C ≤ C2, so by transitivity, C1 < C2. ▪
The same technique used to prove Theorem 3 can also be

used to generalize Theorem 1 as follows. Suppose we have

a finite set of correlation boxes fCð1Þ
� ; Cð2Þ

� ;…; CðtÞ
� g ⊆ Q,

each with countable input alphabets and finite output
alphabets. As in the proof of Theorem 3, we can construct
a single correlation box C� ∈ Q with countable input

alphabets and finite output alphabets such that every CðiÞ
�

reduces to C�. Hence, by Theorem 1, there is a correlation
box C∶f0; 1g × f0; 1g → f0; 1g × f0; 1g such that C ∈ B,
but it is impossible to simulate C using shared randomness

and any finite number of copies of each CðiÞ
� .

Positive results.—We now show how to construct a
finite-alphabet correlation box that is approximately com-
plete for B. The construction is simple, and essentially
consists of a discretization of the Bloch sphere [25].
Theorem 4: For every ε > 0, there exists

C�∶f1;…; Tg × f1;…; Tg → f1;−1g × f1;−1g with T ≤
Oð1=ε2Þ such that C� ∈ B, and for every C ∈ B, there is a
one-query ε-error reduction from C to C�.
Proof.—Let S2 denote the unit sphere in R3. A pair of

local projective measurements as in the definition of B
can be described by x⃗ ∈ S2 chosen by Alice and y⃗ ∈ S2

chosen by Bob; the ð�1Þ-valued outcomes a, b satisfy
E½a� ¼ E½b� ¼ 0 and E½ab� ¼ x⃗ · y⃗. (For example, x⃗ and y⃗
might specify spin axes along which Alice and Bob are
measuring).
Let c⃗1; c⃗2;…; c⃗T ∈ S2 be points such that every point in

S2 is within ε of some c⃗i in l2 distance. Such a collection of
points exists with T ≤ Oð1=ε2Þ. The correlation box C�
simply makes the measurements described by c⃗i and c⃗j,
where i is the input to Alice and j is the input to Bob. By
construction, C� ∈ B.
For the reduction, when Alice and Bob need to measure

according to x⃗; y⃗ ∈ S2, they simulate the measurement by
inputting i, j to C�, where i and j minimize ∥c⃗i − x⃗∥2 and
∥c⃗j − y⃗∥2. Correctness follows from the fact that

jx⃗ · y⃗ − c⃗i · c⃗jj ≤ jx⃗ · y⃗ − c⃗i · y⃗j þ jc⃗i · y⃗ − c⃗i · c⃗jj ð15Þ

≤ ∥x⃗ − c⃗i∥2 þ ∥y⃗ − c⃗j∥2: ð16Þ

▪
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Proposition 1: There exists C�∶N × N → f0; 1g ×
f0; 1g such that C� ∈ B, and for every C ∈ B, ε > 0,
there is a one-query ε-error reduction from C to C�.
Proof sketch.—Use a countable dense subset of S2. ▪
Conclusion.—To better understand quantum entangle-

ment, it is desirable to characterize what can and cannot be
achieved using quantum nonlocality. In this Letter, we have
ruled out a natural type of characterization, even if attention
is restricted to projective measurements of a single Bell
pair. We hope that this Letter inspires future researchers to
circumvent our results by formulating a different type of
characterization of the power of quantum nonlocality.

We thank Scott Aaronson and Ronald deWolf for helpful
comments and encouragement. We thank referees for
numerous suggestions. This material is based upon work
supported by the National Science Foundation Graduate
Research Fellowship under Grants No. DGE-1610403 and
DGE-1656518. C. A. G. gratefully acknowledges the sup-
port of the Fannie and John Hertz Foundation.

*grahamca@stanford.edu
†whoza@utexas.edu

[1] L. A. Khalfin and B. S. Tsirelson, in Symposium on
the Foundations of Modern Physics (Singapore, World
Scientific, 1985), Vol. 85, p. 441.

[2] S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).
[3] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,

Phys. Rev. Lett. 23, 880 (1969).
[4] B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980).
[5] J. Bell, Physics (Long Island City, N.Y.) 1, 195 (1964).
[6] T. Maudlin, in PSA: Proceedings of the Biennial Meeting of

the Philosophy of Science Association (University of
Chicago Press, Chicago, 1992), pp. 404–417.

[7] G. Brassard, R. Cleve, and A. Tapp, Phys. Rev. Lett. 83,
1874 (1999).

[8] M. Steiner, Phys. Lett. A 270, 239 (2000).
[9] N. J. Cerf, N. Gisin, and S. Massar, Phys. Rev. Lett. 84,

2521 (2000).
[10] J. A. Csirik, Phys. Rev. A 66, 014302 (2002).
[11] A. Coates, arXiv:quant-ph/0203112.
[12] D. Bacon and B. F. Toner, Phys. Rev. Lett. 90, 157904

(2003).
[13] B. F. Toner and D. Bacon, Phys. Rev. Lett. 91, 187904

(2003).
[14] N. J. Cerf, N. Gisin, S. Massar, and S. Popescu, Phys. Rev.

Lett. 94, 220403 (2005).
[15] R. Gallego, L. E. Würflinger, A. Acín, and M.

Navascués, Phys. Rev. Lett. 107, 210403 (2011).
[16] M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acín,

Nat. Commun. 6 (2015).
[17] J. Barrett and S. Pironio, Phys. Rev. Lett. 95, 140401

(2005).
[18] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and

D. Roberts, Phys. Rev. A 71, 022101 (2005).
[19] See F. Dupuis, N. Gisin, A. Hasidim, A. A. Méthot,

and H. Pilpel, J. Math. Phys. (N.Y.) 48, 082107 (2007)
Note that the article claims to prove this theorem
more generally for correlation boxes with finite output
alphabets and arbitrary input alphabets, but the authors
agree that the proof is flawed (F. Dupuis, private
communication).

[20] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot,
A. Tapp, and F. Unger, Phys. Rev. Lett. 96, 250401
(2006).

[21] M. Forster, S. Winkler, and S. Wolf, Phys. Rev. Lett. 102,
120401 (2009).

[22] N. Brunner and P. Skrzypczyk, Phys. Rev. Lett. 102, 160403
(2009).

[23] W. van Dam, Nat. Comput. 12, 9 (2013).
[24] T. Lawson, N. Linden, and S. Popescu, arXiv:1011.6245.
[25] F. Bloch, Phys. Rev. 70, 460 (1946).

PRL 119, 050402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

050402-5

https://doi.org/10.1007/BF02058098
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1007/BF00417500
https://doi.org/10.1103/PhysRevLett.83.1874
https://doi.org/10.1103/PhysRevLett.83.1874
https://doi.org/10.1016/S0375-9601(00)00315-7
https://doi.org/10.1103/PhysRevLett.84.2521
https://doi.org/10.1103/PhysRevLett.84.2521
https://doi.org/10.1103/PhysRevA.66.014302
http://arXiv.org/abs/quant-ph/0203112
https://doi.org/10.1103/PhysRevLett.90.157904
https://doi.org/10.1103/PhysRevLett.90.157904
https://doi.org/10.1103/PhysRevLett.91.187904
https://doi.org/10.1103/PhysRevLett.91.187904
https://doi.org/10.1103/PhysRevLett.94.220403
https://doi.org/10.1103/PhysRevLett.94.220403
https://doi.org/10.1103/PhysRevLett.107.210403
https://doi.org/10.1038/ncomms7288
https://doi.org/10.1103/PhysRevLett.95.140401
https://doi.org/10.1103/PhysRevLett.95.140401
https://doi.org/10.1103/PhysRevA.71.022101
https://doi.org/10.1063/1.2767538
https://doi.org/10.1103/PhysRevLett.96.250401
https://doi.org/10.1103/PhysRevLett.96.250401
https://doi.org/10.1103/PhysRevLett.102.120401
https://doi.org/10.1103/PhysRevLett.102.120401
https://doi.org/10.1103/PhysRevLett.102.160403
https://doi.org/10.1103/PhysRevLett.102.160403
https://doi.org/10.1007/s11047-012-9353-6
http://arXiv.org/abs/1011.6245
https://doi.org/10.1103/PhysRev.70.460

